185 research outputs found

    Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review

    Full text link
    BACKGROUND Visualization, analysis and characterization of the angioarchitecture of a brain arteriovenous malformation (bAVM) present crucial steps for understanding and management of these complex lesions. Three-dimensional (3D) segmentation and 3D visualization of bAVMs play hereby a significant role. We performed a systematic review regarding currently available 3D segmentation and visualization techniques for bAVMs. METHODS PubMed, Embase and Google Scholar were searched to identify studies reporting 3D segmentation techniques applied to bAVM characterization. Category of input scan, segmentation (automatic, semiautomatic, manual), time needed for segmentation and 3D visualization techniques were noted. RESULTS Thirty-three studies were included. Thirteen (39%) used MRI as baseline imaging modality, 9 used DSA (27%), and 7 used CT (21%). Segmentation through automatic algorithms was used in 20 (61%), semiautomatic segmentation in 6 (18%), and manual segmentation in 7 (21%) studies. Median automatic segmentation time was 10 min (IQR 33), semiautomatic 25 min (IQR 73). Manual segmentation time was reported in only one study, with the mean of 5-10 min. Thirty-two (97%) studies used screens to visualize the 3D segmentations outcomes and 1 (3%) study utilized a heads-up display (HUD). Integration with mixed reality was used in 4 studies (12%). CONCLUSIONS A golden standard for 3D visualization of bAVMs does not exist. This review describes a tendency over time to base segmentation on algorithms trained with machine learning. Unsupervised fuzzy-based algorithms thereby stand out as potential preferred strategy. Continued efforts will be necessary to improve algorithms, integrate complete hemodynamic assessment and find innovative tools for tridimensional visualization

    Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals

    Get PDF
    The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions.We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters.To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies

    Advocating Intraluminal Radiation Therapy in Cerebral Arteriovenous Malformation Treatment

    Get PDF
    In 2014, ARUBA (a randomized trial on cerebral Arteriovenous Malformation – AVM) found patients treated using prevalent interventional strategies are three times more likely to suffer a stroke/die compared with those treated conservatively (blood pressure reduction). Subsequent controversy led the European societies dealing with AVM to organize a consensus conference. Among the statements made was: “There may be indications for treating patients with higher Spetzler-Martin (SM) grades, based on a case-to-case consensus decision of the experienced team”. Thus, a clear accord emerges. There is a lacuna/weakness of interventional modalities when addressing high SM grade AVMs. This lack of a clear treatment choice originated our review. We attempt to identify the advantages and challenges of each present treatment/evaluation modality and highlight core requirements for future strategies. We conclude that existing modalities provide substantial recent improvements, yet the core challenge persists. Finally, we advocate testing a novel modality – intraluminal radiotherapy (active implants) by exploiting the “candy wrapper” or edge effect. If proven effective, this approach could offer gradual vessel occlusion with minimal abrupt hemodynamic changes known to induce hemorrhage, the lowest recurring session number (reduced costs), minimally invasive attributes and very low radiation (dose/dose rate) kinetics minimizing potential Adverse Radiation Effects (AREs)

    3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries

    Get PDF
    open9noRadiosurgery of arteriovenous malformations (AVMs) is a challenging procedure. Accuracy of target volume contouring is one major issue to achieve AVM obliteration while avoiding disastrous complications due to suboptimal treatment. We describe a technique to improve the understanding of the complex AVM angioarchitecture by 3D prototyping of individual lesions. Arteriovenous malformations of ten patients were prototyped by 3D printing using 3D rotational angiography (3DRA) as a template. A target volume was obtained using the 3DRA; a second volume was obtained, without awareness of the first volume, using 3DRA and the 3D-printed model. The two volumes were superimposed and the conjoint and disjoint volumes were measured. We also calculated the time needed to perform contouring and assessed the confidence of the surgeons in the definition of the target volumes using a six-point scale. The time required for the contouring of the target lesion was shorter when the surgeons used the 3D-printed model of the AVM (p=0.001). The average volume contoured without the 3D model was 5.6 ± 3 mL whereas it was 5.2 ± 2.9 mL with the 3D-printed model (p=0.003). The 3D prototypes proved to be spatially reliable. Surgeons were absolutely confident or very confident in all cases that the volume contoured using the 3D-printed model was plausible and corresponded to the real boundaries of the lesion. The total cost for each case was 50 euros whereas the cost of the 3D printer was 1600 euros. 3D prototyping of AVMs is a simple, affordable, and spatially reliable procedure that can be beneficial for radiosurgery treatment planning. According to our preliminary data, individual prototyping of the brain circulation provides an intuitive comprehension of the 3D anatomy of the lesion that can be rapidly and reliably translated into the target volume.openCONTI, Alfredo; PONTORIERO, ANTONIO; IATI', GIUSEPPE; MARINO, DANIELE; LA TORRE, Domenico; VINCI, Sergio Lucio; GERMANO', Antonino Francesco; PERGOLIZZI, Stefano; TOMASELLO, FrancescoCONTI, Alfredo; PONTORIERO, ANTONIO; IATI', GIUSEPPE; MARINO, DANIELE; LA TORRE, Domenico; VINCI, Sergio Lucio; GERMANO', Antonino Francesco; PERGOLIZZI, Stefano; TOMASELLO, Francesc

    A Computational Framework for Pre-Interventional Planning of Peripheral Arteriovenous Malformations

    Get PDF
    PURPOSE: Peripheral arteriovenous malformations (pAVMs) are congenital lesions characterised by abnormal high-flow, low-resistance vascular connections-the so-called nidus-between arteries and veins. The mainstay treatment typically involves the embolisation of the nidus, however the complexity of pAVMs often leads to uncertain outcomes. This study aims at developing a simple, yet effective computational framework to aid the clinical decision making around the treatment of pAVMs using routinely acquired clinical data. METHODS: A computational model was developed to simulate the pre-, intra-, and post-intervention haemodynamics of a patient-specific pAVM. A porous medium of varying permeability was employed to simulate the sclerosant effect on the nidus haemodynamics. Results were compared against clinical data (digital subtraction angiography, DSA, images) and experimental flow-visualization results in a 3D-printed phantom of the same pAVM. RESULTS: The computational model allowed the simulation of the pAVM haemodynamics and the sclerotherapy-induced changes at different interventional stages. The predicted inlet flow rates closely matched the DSA-derived data, although the post-intervention one was overestimated, probably due to vascular system adaptations not accounted for numerically. The nidus embolization was successfully captured by varying the nidus permeability and increasing its hydraulic resistance from 0.330 to 3970 mmHg s ml-1. The nidus flow rate decreased from 71% of the inlet flow rate pre-intervention to 1%: the flow completely bypassed the nidus post-intervention confirming the success of the procedure. CONCLUSION: The study demonstrates that the haemodynamic effects of the embolisation procedure can be simulated from routinely acquired clinical data via a porous medium with varying permeability as evidenced by the good qualitative agreement between numerical predictions and both in vivo and in vitro data. It provides a fundamental building block towards a computational treatment-planning framework for AVM embolisation

    Vascular Malformations of the Central Nervous System

    Get PDF
    Vascular malformations of the central nervous system are important pathologies that could present with abrupt onset hemorrhage resulting in devastating neurological deficits. Current knowledge of their biology and natural history is increasing. Diagnostic modalities help clinicians to better evaluate the individual cases, and to decide the best treatment options. Treatment alternatives are various and all treatment options should be evaluated before choosing the final therapeutic modality. The purpose of this book is to review the current knowledge about vascular malformations of the central nervous system and to evaluate the treatment alternatives

    Trends in Cerebrovascular Surgery and Interventions

    Get PDF
    This is an open access proceeding book of 9th European-Japanese Cerebrovascular Congress at Milan 2018. Since many experts from Europe and Japan had very important and fruitful discussion on the management of Cerebrovascular diseases, the proceeding book is very attractive for the physician and scientists of the area

    Tetrahedral Image-to-Mesh Conversion Software for Anatomic Modeling of Arteriovenous Malformations

    Get PDF
    We describe a new implementation of an adaptive multi-tissue tetrahedral mesh generator targeting anatomic modeling of Arteriovenous Malformation (AVM) for surgical simulations. Our method, initially constructs an adaptive Body-Centered Cubic (BCC) mesh of high quality elements. Then, it deforms the mesh surfaces to their corresponding physical image boundaries, hence, improving the mesh fidelity and smoothness. Our deformation scheme, which builds upon the ITK toolkit, is based on the concept of energy minimization, and relies on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of the extracted feature points needed for the registration, and thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. While many medical imaging applications require robust mesh generation, there are few codes available to the public. We compare our implementation with two similar open-source image-to-mesh conversion codes: (1) Cleaver from US, and (2) CGAL from EU. Our evaluation is based on five isotropic/anisotropic segmented images, and relies on metrics like geometric & topologic fidelity, mesh quality, gradation and smoothness. The implementation we describe is open- source and it will be available within: (i) the 3D Slicer package for visualization and image analysis from Harvard Medical School, and (ii) an interactive simulator for neurosurgical procedures involving vasculature using SOFA, a framework for real-time medical simulation developed by INRIA

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória
    • …
    corecore