837,284 research outputs found

    Graph-based transforms based on prediction inaccuracy modeling for pathology image coding

    Get PDF
    Digital pathology images are multi giga-pixel color images that usually require large amounts of bandwidth to be transmitted and stored. Lossy compression using intra - prediction offers an attractive solution to reduce the storage and transmission requirements of these images. In this paper, we evaluate the performance of the Graph - based Transform (GBT) within the context of block - based predictive transform coding. To this end, we introduce a novel framework that eliminates the need to signal graph information to the decoder to recover the coefficients. This is accomplished by computing the GBT using predicted residual blocks, which are predicted by a modeling approach that employs only the reference samples and information about the prediction mode. Evaluation results on several pathology images, in terms of the energy preserved and MSE when a small percentage of the largest coefficients are used for reconstruction, show that the GBT can outperform the DST and DCT

    Active Image-based Modeling with a Toy Drone

    Full text link
    Image-based modeling techniques can now generate photo-realistic 3D models from images. But it is up to users to provide high quality images with good coverage and view overlap, which makes the data capturing process tedious and time consuming. We seek to automate data capturing for image-based modeling. The core of our system is an iterative linear method to solve the multi-view stereo (MVS) problem quickly and plan the Next-Best-View (NBV) effectively. Our fast MVS algorithm enables online model reconstruction and quality assessment to determine the NBVs on the fly. We test our system with a toy unmanned aerial vehicle (UAV) in simulated, indoor and outdoor experiments. Results show that our system improves the efficiency of data acquisition and ensures the completeness of the final model.Comment: To be published on International Conference on Robotics and Automation 2018, Brisbane, Australia. Project Page: https://huangrui815.github.io/active-image-based-modeling/ The author's personal page: http://www.sfu.ca/~rha55

    Image based modeling pipeline

    Get PDF
    poste

    Generative Image Modeling Using Spatial LSTMs

    Full text link
    Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting

    BM3D Frames and Variational Image Deblurring

    Full text link
    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.Comment: Submitted to IEEE Transactions on Image Processing on May 18, 2011. implementation of the proposed algorithm is available as part of the BM3D package at http://www.cs.tut.fi/~foi/GCF-BM3

    Language-Based Image Editing with Recurrent Attentive Models

    Full text link
    We investigate the problem of Language-Based Image Editing (LBIE). Given a source image and a natural language description, we want to generate a target image by editing the source image based on the description. We propose a generic modeling framework for two sub-tasks of LBIE: language-based image segmentation and image colorization. The framework uses recurrent attentive models to fuse image and language features. Instead of using a fixed step size, we introduce for each region of the image a termination gate to dynamically determine after each inference step whether to continue extrapolating additional information from the textual description. The effectiveness of the framework is validated on three datasets. First, we introduce a synthetic dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE system. Second, we show that the framework leads to state-of-the-art performance on image segmentation on the ReferIt dataset. Third, we present the first language-based colorization result on the Oxford-102 Flowers dataset.Comment: Accepted to CVPR 2018 as a Spotligh
    • …
    corecore