A family of the Block Matching 3-D (BM3D) algorithms for various imaging
problems has been recently proposed within the framework of nonlocal patch-wise
image modeling [1], [2]. In this paper we construct analysis and synthesis
frames, formalizing the BM3D image modeling and use these frames to develop
novel iterative deblurring algorithms. We consider two different formulations
of the deblurring problem: one given by minimization of the single objective
function and another based on the Nash equilibrium balance of two objective
functions. The latter results in an algorithm where the denoising and
deblurring operations are decoupled. The convergence of the developed
algorithms is proved. Simulation experiments show that the decoupled algorithm
derived from the Nash equilibrium formulation demonstrates the best numerical
and visual results and shows superiority with respect to the state of the art
in the field, confirming a valuable potential of BM3D-frames as an advanced
image modeling tool.Comment: Submitted to IEEE Transactions on Image Processing on May 18, 2011.
implementation of the proposed algorithm is available as part of the BM3D
package at http://www.cs.tut.fi/~foi/GCF-BM3