2,084 research outputs found

    Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural Network Pruning

    Full text link
    Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline significantly increases the overall training time. In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation, which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem. We prove that our method ensures fast convergence of the model compression problem, and the convergence of the SLR is accelerated by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate our method on image classification tasks using CIFAR-10 and ImageNet with state-of-the-art MLP-Mixer, Swin Transformer, and VGG-16, ResNet-18, ResNet-50 and ResNet-110, MobileNetV2. We also evaluate object detection and segmentation tasks on COCO, KITTI benchmark, and TuSimple lane detection dataset using a variety of models. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves a higher compression rate than state-of-the-art methods under the same accuracy requirement and also can achieve higher accuracy under the same compression rate requirement. Under classification tasks, our SLR approach converges to the desired accuracy 3×3\times faster on both of the datasets. Under object detection and segmentation tasks, SLR also converges 2×2\times faster to the desired accuracy. Further, our SLR achieves high model accuracy even at the hard-pruning stage without retraining, which reduces the traditional three-stage pruning into a two-stage process. Given a limited budget of retraining epochs, our approach quickly recovers the model's accuracy.Comment: arXiv admin note: text overlap with arXiv:2012.1007

    Applications of Simple Markov Models to Computer Vision

    Get PDF
    In this report we advocate the use of computationally simple algorithms for computer vision, operating in parallel. The design of these algorithms is based on physical constraints present in the image and object spaces. In particular, we discuss the design, implementation, and performance of a Markov Random Field based algorithm for low level segmentation. In addition to having a simple and fast implementation, the algorithm is flexible enough to allow intensity information to be fused with motion and edge information from other sources

    Integration of traditional imaging, expert systems, and neural network techniques for enhanced recognition of handwritten information

    Get PDF
    Includes bibliographical references (p. 33-37).Research supported by the I.F.S.R.C. at M.I.T.Amar Gupta, John Riordan, Evelyn Roman

    Bottleneck Potentials in {Markov Random Fields}

    Get PDF
    We consider general discrete Markov Random Fields(MRFs) with additional bottleneck potentials which penalize the maximum (instead of the sum) over local potential value taken by the MRF-assignment. Bottleneck potentials or analogous constructions have been considered in (i) combinatorial optimization (e.g. bottleneck shortest path problem, the minimum bottleneck spanning tree problem, bottleneck function minimization in greedoids), (ii) inverse problems with LL_{\infty}-norm regularization, and (iii) valued constraint satisfaction on the (min,max)(\min,\max)-pre-semirings. Bottleneck potentials for general discrete MRFs are a natural generalization of the above direction of modeling work to Maximum-A-Posteriori (MAP) inference in MRFs. To this end, we propose MRFs whose objective consists of two parts: terms that factorize according to (i) (min,+)(\min,+), i.e. potentials as in plain MRFs, and (ii) (min,max)(\min,\max), i.e. bottleneck potentials. To solve the ensuing inference problem, we propose high-quality relaxations and efficient algorithms for solving them. We empirically show efficacy of our approach on large scale seismic horizon tracking problems

    Integrating Learning and Reasoning with Deep Logic Models

    Full text link
    Deep learning is very effective at jointly learning feature representations and classification models, especially when dealing with high dimensional input patterns. Probabilistic logic reasoning, on the other hand, is capable to take consistent and robust decisions in complex environments. The integration of deep learning and logic reasoning is still an open-research problem and it is considered to be the key for the development of real intelligent agents. This paper presents Deep Logic Models, which are deep graphical models integrating deep learning and logic reasoning both for learning and inference. Deep Logic Models create an end-to-end differentiable architecture, where deep learners are embedded into a network implementing a continuous relaxation of the logic knowledge. The learning process allows to jointly learn the weights of the deep learners and the meta-parameters controlling the high-level reasoning. The experimental results show that the proposed methodology overtakes the limitations of the other approaches that have been proposed to bridge deep learning and reasoning

    Relational Neural Machines

    Get PDF
    Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First--Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks
    corecore