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Abstract

In this report we advocate the use of computationally simple algorithms for computer 
vision, operating in parallel. The design of these algorithms is based on physical con
straints present in the image and object spaces. In particular, we discuss the design, 
implementation, and performance of a Markov Random Field based algorithm for low 
level segmentation. In addition to having a simple and fast implementation, the algo
rithm is flexible enough to allow intensity information to be fused with motion and 
edge information from other sources.



!• Introduction

Gpniputef Vision is the study of computer algorithms and architectures relating to 
visual perception, applying the physics and physiology of vision to the ultimate goal of 
endowing machines with sight. This area has been the subject of intensive research for 
over 20 years, and the goal has proved elusive; despite the success of industrial visual 
systems in controlled environments, no such machine approaches the capabilities of the 
human visual system. Most computer vision algorithms have heen designed by com
puter scientists and engineers, far removed from neurophysiological investigation, lack
ing a unified theory of vision. The empirical approach was most common, applying 
insight gained from past experience to the next generation of algorithms [Marr 1980]. 
This approach yielded a series pf increasingly complex algorithms, able to handle 
increasingly complex images. But as complexity increases, so top does processing time, 
thus rendering these algorithms impractical for real-time applications in unstructed 

■.-environments.- - ■

We propose a new design philosophy. The original image is first decomposed into 
several simple subimages (image fission), each reflecting a different property of the ori
ginal (eg. intensity, motion), which can then be analyzed separately using robust algo
rithms tailored to each property. Higher level processes direct the flow of information 
across these analytical domains, thus ensuring a consistent interpretation is reached. 
Algorithms following this design principle are not subject to the same stringent perfor
mance requirements as conventional algorithms which concentrate on only one aspect 
of the data, since an equivocal interpretation in one domain may be resolved by infor
mation from another domain. Thus the algorithms operating in each domain may be 
simpler, and consequently more amenable to a highly parallel implementation. Each 
algorithm should also have a means of integrating information from other domains.

The motivation behind this design philosophy is to exploit constraints imposed by the 
physical world, which inevitably leads5 to a multiple constraiiit satisfaction problem. 
In this report, we describe a segmentation algorithm incorporating intensity and 
smoothness constraints. The intensity constraint dictates that pixels belonging to the 
same imaged object have similar intensity, while those belongiiig to different objects 
have dissimilar intensity. The smoothness constraint, embodied in a Markov Random 
Field ipodel of the image, requires that adjacent pixels be highly correlated. MAP
estimation theory provides a mathematical framework into Which these constraints 
Can be incorporated. The simplicity and highly parallel nature of the algorithm 
presented here make it suitable for use as a component of a larger system, as discussed



- 3 -

previously.

The remainder of this paper is devoted to further discussion of the issues raised above, 
along with design and implementation considerations of the algorithm. Section II 
describes the algorithm formulation, while Section III discusses parallel implementa
tion options, and Section IV develops both deterministic and stochastic solutions. Sec
tion V is devoted to the analog VLSI implementation of this algorithm, while Section 
VI discusses the implications raised for the design of military computer vision systems. 
Section VII presents a derivation of the algorithm, and a discussion of the results 
obtained on aerial imagery.
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II. Problem Formulation

The problem of image segmentation in computer vision can be defined as grouping 
parts of a generalized image into units which are homogeneous with respect to some 
characteristics or feature, resulting in a segmented image. It can be expressed as fol
lows: Define a picture F = f(x,y) as a two dimensional intensity function f(x,y). The 
quantized version of f(x,y) in both spatial coordinates and intensity is denoted by the 
matrix G=[gij](N1 x iV2). F is composed of M different region types and through the 
use of different sensors one can obtain K distinct images {Gk} k=lm„ K of the same scene. 
Assume that each element g~ is actually the sum of band rjfj, with pixel (i,j) being in 
region m through observation k:

9ij=bij+~Vij (1)

where {&£•} and {>?*,} are stochastic fields characterizing the underlying scene, and the 
observation noise, respectively, in the data set k. A further simplifying assumption is 
made: each region type m in each data set k can be characterized by a constant inten
sity, rkm, the mean of that region, i.e. 6*y = rkm, if the pixel (i,j) is in region type m. 
Furthermore the additive noise field ??*• is assumed to be spatially uncorrelated, and 
Gaussian, so that the vector of the observation noise

%■ = bh, tfj,-,riij]T (2)

is multivariate normal with mean zero and covariance matrix Cm in region m. This 
implies that the observation vector

9a = [g\j, g%,-,gfj]T (3)

is multivariate normal with mean Cm

Tm = {r\n,rll,...,r^\T (4)

and covariance Cm if pixel (i,j) is in region type m.

The segmentation problem can be stated as mapping G into a matrix B formed from 
an estimate S of the sets S = m where

= {ft;): bfi = rkm} (5)

5 = [bij](N1 x N2): b;j £ [1...M] A bfj = m G Sm (6)

meaning, B is a M-level image matrix, where = m if Sm contains pixel (i, j).
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Using the classical maximum likelihood segmentation method, let’s define:

*■(*) = (27r)-*/2 |Cm |-,/2exp((2 - rm)TC^{x - rj) (7)

The segmentation procedure would assign pixel (i, j) to region set 5m if

S: Pf (Sij) and 1 ^ ^ M (8)

This method only works well if the signal-to-noise ratio s /n 4 A/cr > 2, where 
Ain- r2. :

In order to develop a more robust procedure, it is necessary to bring other constraints 
into the model. In this case, it is assumed that solid objects will appear in connected 
blobs, or subsets. At the pixel level this would imply that for (i, j) to belong to region 
m:

bH = i3 bi-H,j+e-bi-H,j+c = m A e € {-1, 0, 1}, (i+e,j+e) ? (t,y)} (9)

This can be modeled by a Markov field with the 8-nearest neighbors defining the pro
cess support. Assuming this limited support, the Markov process can be characterized 
by the transition probabilities

P{t>ij = rkm, IS i< K | bk„, 1 < r < Nu 1 < « < No,

(r,s) # (t,/), 1 < A < A) = , ;

p{bij=rm, 1 ^ k < K | 6*„ (r,s) <E Sij, 1 < k < K) — Pijm (10)

where is the local neighborhood of pixel (i, j) as in (9). The segmentation problem 
can now be formulated as a Maximum A Posteriori probability (MAP) estimation 
problem. In particular, let €(.) represent a log-likelihood function. One would then like 
to find the estimate £ which maximizes the conditional likelihood

£{S\G) = €{G |S)+ €{S) -€{G) ; - (11)

or since ^(G) is independent of S, more simply one can maximize

^l<?W(G|5) + ^) (12)

In this case,

: ^|5)=E E MPmiVij)} (13)
. rn=l {i,j)esm

and
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m=S £ fn{Pijm} 
m=1 (<',/)65ro (14)

where Pro and Pijm are defined in (8) and (10), respectively. We shall now give a brief
account of the methods employed by other authors in finding the segmentation § which 
maximizes (12j.



HI. Optimal and Suboptimal Parallel Segmentation

The Markov modeling of images and the use of MAP techniques have been employed 
before. These algorithms vary in their modeling assumptions but more fundamentally, 
they are quite different in the methods and scanning techniques used to minimize the 
modeling equation such as (12).

In the image segmentation case, Elliott and others have used dynamic programming 
(DP) techniques for the minimization process [Hansen and Elliott 1982, Tenorio 1982, 
Scharf and Elliott 1981, Elliott et al. 1982]. The fundamental problem with this 
approach is the suboptimality imposed on the DP due to the following two factors. 
First, the full DP algorithm is untractable in practice for this type of segmentation. 
Second, only the causal part of the Markov support can be used, due to the necessity 
of having a sequential scanning regime. [Tenorio 1982, Tenorio and Hughes 1987, 
Elliott et al. 1982]. The modifications of the DP algorithm assured tractability, and 
the restriction of the model to causal support allowed the extension of the DP to two 
dimensions. For image restoration, Geman and Geman (1984) used simulated anneal
ing (SA) to minimize an objective function. In the case of DP, very little parallelism is 
available if segmentation of images with low s/n is desired. The scanning method 
introduces burst errors into the segmentation, and the accuracy of the algorithm is 
reduced.

- 7- ; ■ . .

For image restoration, Geman and Geman (1984) used simulated annealing (SA) to 
minimize the objective function. SA offers much higher amounts of parallelism but 
incurs in a very high computational cost due to the number of iterations needed for 
final convergence (~ 1000 iterations). This renders the algorithm impractical for real
time applications.

Geman and Geman, Hansen and Elliott, Derin et al. dealt with the single spectra, sin
gle object, and binary image cases. In this work, we extend the ideas of Hansen and 
Elliott (1982), Tenorio (1982), to the multiobject, multispectra, multilevel image case, 
using natural image data, remotely acquired. We also want to compare highly parallel 
strategies and computational structures for the minimization of (12).



m.A Optimization Using Neural Networks

Neural network computational models are not a recent idea [Rosemblatt 1962, McCul
loch and Pitts 1943]. These models have mainly been employed in tasks siich as learn
ing pattern classifications and associative memory recall [Rumelhart et ah 1986], The 
resurgence of interest in these models was sparked by yet another promising applica
tion area: constraint satisfaction optimization problems [Hopfiejd 1982]. This area 
deals with the optimization of NP-complete problems using a pure relaxation of the 
network energy, which has the characteristics of gradient descent (GD) [Hopfield 1984,
Hbpfield and Tank 1985, Bruck and Goodman 1987a and 1988]. Carsten and Peterson
(1978 a,b) have compared the relaxation of networks using mean-field theory (MFT) 
with SA and GD. Bachman et al. (1987) have demonstrated a relaxation model based 
on an N-dimensional Coulomb potential.

Our particular object model has a very regular and bounded structure, which lends 
itself to a neural network optimization solution without the problems associated with 
network size [Bruck and Goodman 1987b]. Furthermore, the locality of it?s support is 
well suited to real-time parallel hardware implementation. We have used a pure relax
ation method with both hard thresholds and graded units [Tenorio and Hughes 1987]. 
These attempts have led to a reasonable segmentation with s/n down to 0 db, which 
are superior to results obtained using DP. Here we compare these results with SA 
using a short annealing schedule, a modified parallel GD method, and other variations 
of the algorithm for both parallel processing, and nearly real-time serial processing.

HI.B The Network Model

For our particular application, we define a neural network model as a discrete time 
system that can be represented by a weighted, undirected graph. The edges of the 
graph are labelled by weights (W), which connect nodes (neurons) or processing ele
ments (pe’s), each characterized by a transfer function (F). This transfer function can 
be a simple threshold, a sigmoid function, or a stochastic function.

In the simplest case of a hard threshold, the next state of each neuron is computed by:

vi(*+i) = ^n(ir,(t))
1 > 0 

1 otherwise

where *



The energy associated with the network has the following general form:

^ = + (17)
. . 7 »w * i

and T,-is the threshold and the activation of neuron i.

E = a(constraint violation) + ft (cost) 

where /,* is the external input to neuron i.

(18)

It has been shown in the literature that using both hard thresholds and graded neurons 
allows the network to eventually reach a minimum of the energy function [Hopfield 
and Tank 1985, Bruck and Goodman 1988]. Peterson and Anderson (1988) have shown 
how to craft the network for the MFT solution to the graph bisection problem.

We now discuss the mapping of (12) into a network defined by the tuple (W,F).

IV. The Network Mapping 

IV.A Gradient Descent

The most naive mapping of (12) is accomplished as follows [Tenorio and Hughes 1987]: 
for every pixel (i, j), there are M classes it can belong to, according to (5). Let’s create 
a cluster of pe’s of size M for each pixel (i, j), representing membership of the pixel 
in one of the sets of S; Every neuron that belongs to the same C# is connected to every 
other neuron in that cluster through an inhibitory weight:

Wke. = < 0 'if pek ’and :.pe€ "e C- (i9)

This connection reinforces the syntax term, which does not allow a pixel to belong to 
more than one region (ie. objects are opaque). In figure 1, a cluster of three pe’s is 
shown; all the interconnections are bidirectional and symmetric.
The pixel (i, j) can be classified in one of three classes (e, e', e"), represented by the 
activation of the three pe’s (pc,jm).



For every neuron in the cluster there is an incoming connection from every neuron 
in all the clusters that belong to the support of pijj (10). This connection represents 
both the cost for deciding on a contiguous region and the penalty for deciding on a 
boundary. The strength of this connection corresponds to the transition probability 
between the neighboring pixel of the set Sm and the neuron in cluster of the set Sm>:

= p(6i7 - | b„ = rm,(r,«) £ fy) (20)

where; is the weight of the connection between per*m and , V

Figure 1: Cluster C^ for M=3

For the multispectra case, we have:

= ptf; = rl \bk„ = rkm,(r,s) G 8{j) v (21)

In figure 2, the intercluster Connections between pe’s of the support belonging to 
region m and pe’s belonging to region m' in the center of the support are shown. 
Connections between mf and m, m and m, m' and and symmetrical connections 
are omitted for clarity.

Initially the network is excited with the values of €{ G fS) from (13). Each likelihood 
(L^) excites the corresponding neuron in the corresponding cluster. This excifcatipn is 
}clarnped5 through the entire run, and works as the boundary conditions for the prob
lem. The entire network comes to rest (has a fixed point or a minimum) when no 
change in state occurs. We can: define a change of state as being the reassignment of 
pixel (i, j) to a new category:
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s
ii

Figure 2 Intercluster connections of pe'il for M=2 and 8-nearest 
neighbor support.

M* G 5m 6 Sm> (22)

In this case, we need to define, at each cluster level, when such a change might occur 
(omitting the cluster indexes for clarity):

'£Wm'’mpem' +Lm- E l'm^{Wm'’m"pem" + Lm„) >0 (23)
m'Vm m'

where Im» is the inhibition weight from pem" to pem.

We have studied the issues associated with the choices for the values of I. The theoreti
cal models of the energy function are hard to formulate, but one can define the condi
tions under which the cluster makes a decision for region m or m'. For example, one 
can establish that if the upper half of the cluster belongs to region m and the bottom 
half to m', and Lm = Lm>, then I can be fine tuned to produce either m or m', or be 
unbiased. A simpler approach, experimental tuning, leads to acceptable results. The 
results of this type of segmentation are discussed in Tenorio and Hughes (1987), and so 
will not be presented here.



In closing this subsection, it is important to say something about the hardware 
required in the above arrangement. Let’s suppose that our problem involves the seg
mentation of M regions, with K sensors, and an L-nearest neighbor support:

Digital implementation:

The largest overhead comes from computing the multiplication associated; with the 
connections. In this case:

Exciting connections from m to m L 
Inhibiting connections from m to m' L(M-l)
Intercluster connections M(M-l)
Total (M-i)(M+L) + L
For the entire image Nx N2{{M—1)(M+L) + L}

Or of the order of l^M2 .

Analog Implementation:

The number of operational amplifiers here are the main consideration. One is needed 
for every region in every cluster, or the order of ISPM. It is also important to point out 
that a support of size 8 is sufficient since it fully determines how a line can cross a 
point in a quantized image. A support of size 4 works adequately for certain applica
tions. Larger support adds little to the result and can unfairly bias the result towards 
oversiiiooth surfaces.
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IV.B Stochastic Update

It has been shown in the literature that the previous circuit will show a stable decrease 
in energy, following a gradient descent strategy. There are a few shortcomings associ
ated with: it has all the problems of hill-climbing techniques, which worsen with higher 
noise; and it requires a large number of processing elements, which need inhibition for 
the correct problem syntax, complicating the model.

To avoid these problems, we have extensively tested a new mechanism for relaxation. 
The mechanism is based on the SA algorithm: a neuron, in one of M different states, 
computes the difference in the local energy for changing to some arbitrary state. If the 
difference is negative, the neuron moves to the lower energy state. If it is positive, it 
will move to that state only with a certain probability, computed from a Gibbs distri
bution 1/(1 + e-A£/r), where T is the annealing temperature. For details on this algo
rithm, the: reader is referred to Geman and Gem an (1984). With this new approach, 
the number of elements is only on the order of IV2, but the annealing schedule for T 
might require that thousands of iterations be performed for optimal results [Geman 
and Geman 1984]. We have tested a deterministic variation of the algorithm with a 
very small number of iterations (~ 5) and it performs well as long as the schedule is 
carefully chosen. The computation of the new energy function and updates, com
pounded by the number of sweeps required seems to take away any computational 
advantage of the fully stochastic method.

V. Analog Implementation

Since the results obtained with the GD algorithm are fair, we decided to explore 
modifications to the original paradigm to improve it’s performance without incurring 
additional costs. A modification of the initial cost function is possible to allow for inex
pensive analog implementation of the M=2 case. When the evaluation of this design is 
complete, we will proceed with the extension to the M>2 case.

Other options yet to be explored are the Mean Field Theory and Diffusion Equation 
approaches to relaxation [Cater and Peterson 1987, Geman and Hwang 1985), and 
Markov based initialization procedures with multicycle clock updates [Derin and Won 
1987].



In the original formulation, the segmentation was based on finding the maximum for 
equation (12):

t{S,-G) = €{G/S) + €[S)

This is done by assigning a pixel to one of the sets of S, where each set corresponds to 
a category. Notice that these sets are mutually exclusive (object opacity). Let’s con
sider now only the figure-background segmentation problem: 2, Equation 5 gives
us the rule for assigning pixels to objects:

Soii = {(hi)- % = r*»,} (23)

And by construction we have:

S^^G-Sw (24)

Now let’s assume that the optimum segmentation has a cost of f associated with it. If 
for every pixel assigned to Sohj, we reassign it to Sbkgd and vice-versa (the negative of 
the first segmentation), it is easy to see that the cost would be a lot higher than f, and 
would not be a local minimum of (12). Soij would be the most unlikely segmentation 
and therefore have the highest cost associated with it. Any change of state would 
decrease the cost £.

This argument can be made recursively for all minima of (12), and the possible seg
mentations could form a poset (partially ordered set) with the cost:

' - {^objySabj' i ^obj" j •••; ^ob}",yS0by, $06/} (25)

and

e'> ■£" >■...> > r> r (26)

Therefore one could maximize f — f = Af, which would equivalently maximize f.

With this in mind, an analog computing element can be designed to maximize this 
difference. The transfer function of the element can be a hard threshold (yielding to 
more degradation at low s/n), or a sigmoid function (for fuzzy decisions under uncer
tainty). The element could incorporate a varying sigmoid (variable gain) which has 
been shown by Hopfield to improve results in the presence of local minima, similar to 
an annealing schedule. The circuit could also incorporate light sensors and the likeli
hood function calculation. The element is shown below in figure 3.



Likelihood of backgroundFrom another element in the 
cluster

O Furriness control

to other elements

# Likelihood of ob ject

Partial view of the analog element to maximize the cost 
difference

Figure 3

In the above figure, the analog element is shown with input connections to only one 
element of the cluster. The total number of diodes and resistors required for an octal 
neighborhood is 32. For an asynchronous solution, the fuzziness control would increase 
the gam according to an exponential schedule for 3 to 5 time constants of the element.



^^Application to Military Systems

There are several instances where military technology could benefit froiri computer 
vision: passive target tracking and recognition, part inspection and automated
manufacturing, smart ammunition, automated weapon operation, and; autonomous 
vehicle control. These systems require a special purpose, multistage vision system.

The vision problem is not trivial; in trying to enhance a single algorithm to the limit 
of its performance, we usually increase the computational cost to non tractable limits, 
With only marginal gains. With this in mind, we therefore advocate an integrated 
approach to computer vision, where several algorithms of varying strengths can be 
combined, yielding a very robust system. This is the lesson we see repeated in nature. 
Lattice based algorithms can deliver good performance for both globally and locally 
optimal parallel segmentations. Since they are highly distributed, they can be easily 
integrated with other modules to resonate to a correct interpretation. Their simple
local structure makes them suitable for VLSI implementatioh, and portable or auto
nomous operation. These algorithms deteriorate at object boundaries with low s/n, 
but are extremity robust for regions two or more pixels away from the boundaries. A 
solution for this deterioration is to couple them with algorithms that are robust at the 
edgeS| and use a different kind of information from the image. This is done by explor
ing more constraints from the problem space.

In the case of airplane tracking, motion is a good constraint on the object. Distributed 
algorithms for motion detection are similar in structure to a resistive lattice, and could 
be fused with intensity and edge based algorithms. Smoothness constraints on sur
faces, coupled with shape from shading could be powerful additions to this first level 
set up. As we have identified in [Tenorio 1988], this group of algorithms can be 
profitably researched and developed to satisfy most of the demanding requirements for 
the first level of image computation in an integrated military environment.

Vn. Application to Aerial Imagery

This section expands upon the Markov Random Field formulation developed in section 
II. The statistical foundation developed therein gives rise to a class of algorithms 
which approximate the Maximum a Posteriori (MAP) estimate of the noise-corrupted 
image. One such algorithm, an extension of Derin and Won-s (1987), is presented here.



1. MAPestimation algorithm

Let B = [6tf] denote an NtxN2 noise-free digital image, modelled as an M-valued MRF 
assuming values rj,r2,..rWi 
Let Sk = [(»',/): &,7=r*] k =
Assume the image is corrupted by additive, independent, Gaussian, zero mean noise 
W = [u>,7] with region-dependent variance, so that tVjj N(0,<t\) for (i,j) e Sk.
Thus the observed image is G =[&,•] = B + W.
The MAP estimate S = {SUS2, • Su} of the correct segmentation S = {SUS2, • • • SM} 
is given by

maxP(5|(?) = max P(G \S)P(S) (l-l)

or equivalently by

max l(S\G) = max l(G |5) + l(S) (1-2)

where /(•) is a log-likelihood function. This expression is difficult to evaluate, due to 
the large number of possible segmentations S. Therefore, we will approximate the 
MAP estimate by maximizing P(6,7=r*|G) over r* for each pixel individually. Under 
the MRF assumption

max P{bjj=rk | G) = max P(6,7=r* \g„, (r, «)£»?,7) (1-3)

where j?,7 contains the 4 nearest neighbors of pixel (i,j). Coupled by the MRF assump
tion, the above system of equations can be solved using a relaxation approach, involv
ing multiple passes over the image. A Maximum Likelihood (ML) estimate of the 
image can be used for the initial classification :

maxP(?l7|6,7= rk) (1-4)

However, incorporating Markov structure information leads to an improved initial 
classification. Thus

max P(6,7=r* \ observed image) (j_g^

— max P,(6</=r* ?i,7-i> ?i+i,y) (1-6)



^ I] E S ' S ’P.ihj rkf-&i,j+i &»,/—i jA'-h,y 19iji ^*»y+i>0*+i,y) (1-7)

— HI ax X; E XI E 9i,j-\-l ? ^*—1,;? ^a,;—1 r^i+1,/ 1,/j ^i,/—1> ^r-H,/)

* P{bij=rky b*,j+l y bi—i jt bi,j— 1 > ^»4l,i) (l"8)

by; Bayes5 rule.

S E E S Jfyy
‘ Hy+i^-i.y^y-i-^+i,/ •

— max X] S E E l ^==^(^y+i + %,y+i 16^y-^I(6^_i,y+t^_i,y I (6^y_1 ^>y.
^y+i^-i.yKy-i^+i,^ ; ^

* ■^-(■^».+i,yt"^r+i.,i l^i+i,y)-P(^ly^fy? ^*,y+i > —1 ,y> y—1 > ^*+i,y) (1-10)

since the noise is independent.

= mu P(^|ir4 E P(^y+1 l6«,y+i) E ^(?«-i,y l^-u) E ^ (ft,y-i 16»;y-i) E p(^+i,y \bi+u)
rk Kj+l bi-U bi,3-l bi+'lJ

' P {bij—Tk)bi,j+l i bi—l,jibi,j — 1 y bi+l,j) (l“H)

This is the PR-VNS-B method of Derm and Won (1987). Although computationally 
expensive (equation 1-11 has M4 terms for the 4-neighbor Markov structure, or M8 
terms for the 8-neighbor structure), the quality of the result is high. Computation can 
be reduced, at the expense of degraded performance, by assuming conditional indepen- 
dence of neighbors :

'P(6/iy+1,^_1^,^/_1?6/+1)/ \ bij) = Plbij^ I^)P(^-u 16^)Pfc I &*)P(6;+1|y 16*y)(1—12) 

Thus max P^bjj^rk [observed image)
n

== max £ S E E p(9ii 16.7=r*)p(?f,y+i IbU+l)P(9i-U Ibi-Ui)P(to,i-l I1bi+hi)
T1t Mt3+lbi-\,jbi,3-\ki+\,j

P(bu+i i b%— i,y? P»,y — i yP* +i,y I b*j~*k)P{b*j~rk)

E E E E p(?i; l6^+i)p(?H4
r* i»,/+i^i,yKy-i^+i,y

•i k-,,--i)

I6.-+1,/)
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' P(k,+i Ih=rt)P{h-u I%=r*)P{6,.\birrk)P(bi+1J \(1-14)

by (1-12).

= max P(?,7 1&,7=r*)P(6,7=r*) £ E E E J’fay+i I h;+i)P(?.-i,y|&,-U)P fo;,., |6,-,y_1)P(?,+1./ 16,+i.y)
*sy+i*»-i,y*.;y-i*t+i,y

* **(*«+! I^=r*)P(6,_i,, 160*=r*)P(i.,y-1 16i/=rJfc)P(6>-+1(/ |6y=r*)(l-15)

= max P{gij |6,y=r*)P(6,7=rt) S ^(fyy+i 16i;y+i)^(6ify-H l^»y—r*) E l ^-i,y)^ (6,-i,y 1 bjj=rk)
6»,y+i *»-i.y ■

E Pfay-i |6,-l7-i)P(6,|6,7=r*) E ^(?i+i,y li.+i,y)-p(ti+i,y 16.j=r*)

‘•j+•© (1-16)

Thus max/(6,7=r* | observed image)
n

max / (?,7 | bij-rk) + / (6,7=r*) + l

+ /

Yj P {9i,j+i 1 &»,y+i )-P (fyy+i 1 bij—rk)
+ /

' E ^(fl'f-i.y Ii>;-i.y)-p(6.-i,y 1 &#=»•*)
biJ+lV V *»vi,y

y-i |6f,y-1)P(6,-,y-1 |6,7=rt) 4- / S ^(ft+i.y lA>i,y)-P(fri+ify [iiy=±?^)
^,y-i T ■ *i+i,y' ; /

(1-17)

where /(•) is a log-likelihood function and /(?,-,7+i |6,i7+1=r,) = -ln(\/~2Kal) - ——t.1. r<^
2(7?

Knowledge of the Markov transition probabilities P(6,-,y+i 16,7) and of the prior proba
bilities P(bij=rk) are assumed. It should be emphasized that this is a one pass algo- 
rifchm used for initial classification.

The relaxation phase attempts to find a consistent classification for each pixel by 
assuming it’s neighbors have been classified correctly :

*yy+i A,y+i> i,y ify* ^»,y—1 ^*,y—1 > ^*+i,y—^»+i,y) — 1 (1-18)

Each pass over the image performs a local boundary smoothing operation. Thus 
classification proceeds according to

max P(bi.=Tk \ observed image) rk '

max P(bjj rk | gij, g^.j+1 9ij--i, 9i+i,j)n

(H9)

(1-20)
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m^ax E S E S p(bij rk> ^*,y-H? b*— i,y> ^*,y— i? ^Y+i,y I QijiQij+i j9V— i,y>^»,y—1-90»+i,y) (1-21)
^y+i i,y^-»,y—i ®*+i,y

— max E E E P(9ih 9i. >+l ? ffi—1. >> ffi. f — 1 ? ffi+1. i 1 bii ^». i+l ? ^i—1. >> bi. f—1 > ^i4-1t t)
•r* *t’,y+i *»—i,y*»'fy—i

* p (b*j~ r*> b*, y+i * ^i—i, y > y—i > b*+i, y) (1-22)

max ESS S p{9ij\bij=rk)P{gij+i\bij+1)P{gi_Uj I^*-i?/)i=>(^,y-i 168*,y_i)/^168+i,y)
r* *t,y+i &;-i,y&&,y-i *i+i,y

T3 (&*y~rki bt,y+i > ^» —1,y> y—1 * ^ * +1, y) (1-23)

as before.

= max SEES -P(fty l&iy“r*)jP(^)y+i k\y+i)^(0r-i,y1 bi-ij)p{9u-i \bi,j-i)p{9i+i)j\bi+i,j)
n ^,y+i^-i,y^,y-i^+i,y

• P(bij=rjt | bjj+i, bi,j-i j bi+i,j)p{bij+i ^*,y-i v^*+i,y) (1-24)

= maxP(gl7 |6l/=rA)P(gl-i+1 |6,-i+1)P(^_1>/|6Vi,y)^(^,y-i |^y_i)P(^+1>y l^^+i^-)
rk

‘ p(6»y=r* lAj+i A-i(yAj-i A+i,y) (1-25)

by (1-18).

= max -P(&y I fr,-y=r*)(6,-y=rjb l^y+1 A-U> Vy-1 A+i,i) (1-26)
rk

since P(^y+1 |^y+1) is independent of r*. Thus max/(6ly=rjfc | observed image)
rk

= max / (gf,y | bjj=rk) -\-l(h{j=rk\biJ+l, ^-^y, 6,-y_i , if+i.y) (1-27)
. f*

where /($r,y |fyy'=r*) = — Itl('\/2w ak) — —-—-— and the Markov transition probabilities
2(7^

pibij\k>+i’bi-h>’bU-iybi+ij) are given.

An analogous derivation holds for the 8 nearest neighbor Markov structure, although 
conditional independence of a pixel’s 8 nearest neighbors is a questionable assumption. 
Although the model assumes regions of uniform intensity, real world images can be 
handled through adjustments in the noise variance erf of each region type. Thus 
smooth variations across a region are interpreted as an increase in erf.
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The algorithm described above scans every pixel on every iteration. If we assume that 
a pixel whose classification matches that of it’s neighbors will not be reclassified on a 
given iteration, the amount of computation can be reduced by only scanning those pix
els with at least one neighbor whose classification does not match (ie boundary pixels). 
Thus execution time is determined by the complexity of the scene. Furthermore, pix
els not reclassified will not be scanned on subsequent iterations, unless a neighbor is 
reclassified. These modifications are only possible because the initial classification is 
reasonable; objects not picked up initially will not be found. Relaxation stops when no 
further reclassifications occur.

2. Implementation

The above algorithm was implemented on a Sun 3/50 workstation using an 8 nearest 
neighbor Markov structure, and 2 region types.

2.1 Efficiency Considerations

Execution time was reduced through extensive use of lookup tables for complex com
putations. In particular, /(&•_, ,-*_i) and

l Yj l^i-i,y-i)-P(6,-_i,j-i |bjj=rk)
'i-hl-i (2-1)

are computed by indexing on gt-u-t . while the Markov transition probabilities 
' 6,+j,y+i) are indexed by 6,_ 1>y-_j, • • • bi+tj+1. The 8 dimensional Mar

kov transition probability matrix influences the segmentation through imbedded struc
tural information. However, the program fails to take advantage of this powerful 
facility by simply assuming

( Vl &i-U-l > ) hj-i, bjj+i, 6;+i,j-1, bi+lj+1 )=P[bij | )***P(6;y I 6;+($-_$)

The program departs in one respect from the above derivation, in that terms of the 
form (2-1) are computed using P(iWHl |ttf) instead of |6,-,). This is done to
make column sums of these terms invariant to translation relative to 6- . Thus to 
compute (1-17), only 3 column sums are added, instead of 8 terms like (2-1).



2.2 File Organization

init.c image.out

image

image, els

markoypr

The segmentation module "map.c" requires 3 files :

- "image”, the image to be segmented.
- "markoypr", a binary file of Markov transition probability matrices gener

ated by ,,init.c,,.
- "image,cls”, which specifies the mean rk, standard deviation ok, prior probability P(6;y=rj^

and display level for each class.

The initialization module "init.c” requires 2 files :

; - "Ml", which specifies P(bitj_i |6|;) and |6^) under Mh,
V Pibi-u 16^) and P(bi+hi 16.7) under Mv ,

16,-y) and P(bi+lj+l |6,y) under Md 1, and 
P(6i+lii_i |6,y) and P(6,„1y+1 |6,y) under Md 2.

- "M8”, which specifies P(6,y 16,, 6,+1;+1). ^

"M8" can be generated by specifying a formula in "genM8.c". The final segmentation 
is written to file "image.out", using the display levels specified in "image.els".

S. Results

The test data consisted of 512 x 480 images of jets. Results are presented in figures 1 
through 0, each figure consisting of 6 parts :
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a - Original image 
b - Initial classification 
c - Results after 5 iterations 
d - Results after 10 iterations 
e - Results after 15 iterations 
f - Results after convergence

Notice how relaxation smooths the region boundaries, fills in the smaller holes, and 
erodes background noise. Undesirable effects include erosion of object features, as is 
evident on the tail section in "jetl" (figure 1) and "jet2" (figure 2). Comparison with 
results for the 4 nearest neighbor Markov structure reveals that the above effects are 
diminished. Also noteworthy is the low incidence of burst errors. This is directly 
attributable to the independence of initial region type assignments.

Clearly, the majority of these images are too complex to segment properly using only 2 
classes, the exceptions being "jet4" (figure 4) and "air2" (figure 6). Images such as 
"jet7", with objects spanning a wide range of intensities, are particularly difficult, as 
the large object variance erf tends to misclassify background pixels. Conversely, a 
large background variance <7o reduces background noise, at the expense of distortions 
in the segmented object. The need to balance these two conflicting considerations 
makes the model sensitive to the choice of mean and variance for each class. In fact, 
the major weakness of this model is that the mean and variance for each class must be 
known a priori, and even if known, a good segmentation is not guaranteed. Increasing 
the number of classes might improve results, but would incur a heavy computational 
cost.V

For comparison purposes, "jetl" was segmented using a ML initial classification (figure 
10). The initial classification algorithm presented in this paper seems to better 
preserve the object’s silhouette (compare fig le with fig lOe), at the expense of inferior 
noise suppression, and computational overhead.

The model is relatively insensitive to changes in the first order Markov transition pro
babilities, provided those probabilities are symmetric (ie the 0-0 and 1-1 neighbor 
configurations are treated equally). Thus changing the 0-0 and 1-1 configuration pro
babilities from 0.95 (figure 1) to 0.99 (figure 11) did not significantly affect the segmen
tation of ,jetln. This contrasts dramatically with the nbn-symmetric case. Figure 12 
shows the results of segmenting "jetl" with a 0^0 configuration probability of 0.50 and 
a 1-1 configuration probability of 0.95. Here the object (class 1) regions show 
unbounded growth. An analogous result holds for a 0-0 configuration probability of



0,95 and a 1-1 configuration probability of 0.50 (figure 13). By the 15iteration the 
background (class 0) consumes nearly the entire image; only the border pixels, which 
are not updated, retain their initial ML classification.

The model is not unduly sensitive to changes in the prior probabilities P(clasB 0) and 
P(class 1). Thus figure 14 (with P(0)=0.4^ P(l)—03} shows a slight increase in the 
number of object (class 1) pixels over figure 1 (wxthT{3)^03,/'P(l)==p.5).,:--^S/.expected. 
Similarly, figure 15 (with P(0)=0.6, P(l)=0.4) shows a- slight-’'decrease• ifl"the‘ number 
of object pixels relative to figure L

To illustrate the algorithm’s performance under low signal to noise conditions, the 
ellipse shown in figure 16aa was corrupted by additive zeromean gaussian noise 
((j=50), yielding an effective SNR of

ko.-
= 0.2 (3-1)

While the overall quality of the segmented image (figure 16f) is understandably poor, it 
reveals a high concentration of object (class 1) pixels in the Vicinity of the ellipse, 
despite the apparent lack of information in the noisy image (figure 16a).
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Rgure la) jetl: 512x480 original image
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Figure 1c) jetl: results after 5 iterations
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Figure Id) jetl ‘ results after 10 iterations
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Figure le) jetl: results after IS iterations
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Figure if) jetl :results after convergence
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Figure 2a) jet2:512 x 480 original imag»
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F1gure 2b) jet2 : initial classification
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Figure 2c) Jet2 results after 5 iterations
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Figure 2d) jei2: results after 10 iterations
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Figure 2e) jei2: resulis after IS iterations
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Rgnw 3a) |Bt3 :512x480 original image
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Figure 3b) jet3: initial classification
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Wgunic) jei3: results after 5 iterations
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Figure 3d) jet3: results after 10 iterations
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Figure 3e) jet3: results after IS iterations
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Figure 3/) jcG: results after convergence
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figure 4b)jet4; initialclassification
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Figure 4c) jet4 : results after 5 iterations
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Figure 4d) jet4: results after 10 iterations
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Figure 4e) jet4: results after 15 iterations
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Figure 4f) jct4: results after cotvergence
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Figure 5b) jets: initial classification
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Figure Sc) jet5: results after 5 iterations
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Figure Se) jct5: results after iSiteratfons
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Figure «a) j«6:512 x 480 original image



Figure 6» jet6: initial classification
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Figure 6c) jet6: results after 5 iterations
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Figure Sd) jet6:results after lOiterations
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Figure 6e) jet6: results after15 iterations
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Figured!) jetg; results after convergence
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Figure 7«) jet7:512 x 480 original image
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Figure 7b) jet?: initial classification
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Figure 7c) jet7: results after 5 iterations
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FSgure 7d) jet7 : results after 10 iterations
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Figure 7«) jet7: results after 15 Iterations
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**8«w*n> jeff : results after convergence
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Figure 8a) shuttle!: 512 x 480 original image
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Figure 8b)shuulel: iiutial classification
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Figure 8c) shuttlel: results after-5 iterations
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Figure *]) shuttlel: results after 10 iterations
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Rgure 8e) shuttle!: results after 15 iterations
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Figure 9a) shuttle: 512 x 480 original image



Ftgure 9b) shuttles: initial elassification
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Figure 9c) shuttle2: results after 5 iterations
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Figure 9d) shutile2: resultsafter 10 iterations
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Figure 9e) shuttle2: results after 15 iterations
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Figure 91) shuttle2: results after convergence
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**"*10b) jetl: “itiaI maximum likelihood classification
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Figure lOe) jetl: results after 15 iterations (ML initial classification)
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Figure lib) jell: initial classification
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Hgure He) jetl: results alter S iteradpns
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Figure lid) jetl: results after 10 iterations
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jet* rresultsafter ISiterations
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Figure 12b) jctl i initial classification
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Figure 12c) jetl: results after 5 iterations
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Figure 12d) jetl: results after 10 iterations
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Figure I2e) jetl: results after 15 iterations
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Figure 13b) jetl: initial classification
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Figure 33c) jell : rcsults after 5 iha^tions
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Figure 13d) jetl: results after 10 iterations
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fciP’ifciae) jetl: results after lS iterations
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Figure 14b) jetl: initial classification

k o* II display
0
1

160
90

50
15

0.4
0.6

255
0

Pibij. ,lbl7) b‘i ~ ro bif^r,
biJ-1 = ro
bij-i-fi

0.95 0.05
0.05 0.95



Figure 14c) jetl: results after 5 iterations
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Figure 14d) jetl: results after 10 iterations
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Figure 14e) M after IS iterations
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Figure 15b) jetl: initial classification

k r* ff* p(by =r*) display
0
1

160
90

SO
15

0.6
0.4

255
0

Pibij-tibu) by =ro bu =r,
bij-i-r0
bjj-i-ri

0.95 0.05
0.05 0.95



:resultsafter5iterations
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Figure 15d) jetl: results after 10 iterations
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Rgure Kaa) el%se: 128 x 128 noise-free binary image
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Figure 16a) ellipse: comipted by additive zero-mean
gaussian noise with o^SO



Figure 16b) ellipse: initial clasgifirniin^
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Figure 16d) ellipse: results after 10 iterations
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