21,331 research outputs found

    Camera based Display Image Quality Assessment

    Get PDF
    This thesis presents the outcomes of research carried out by the PhD candidate Ping Zhao during 2012 to 2015 in Gjøvik University College. The underlying research was a part of the HyPerCept project, in the program of Strategic Projects for University Colleges, which was funded by The Research Council of Norway. The research was engaged under the supervision of Professor Jon Yngve Hardeberg and co-supervision of Associate Professor Marius Pedersen, from The Norwegian Colour and Visual Computing Laboratory, in the Faculty of Computer Science and Media Technology of Gjøvik University College; as well as the co-supervision of Associate Professor Jean-Baptiste Thomas, from The Laboratoire Electronique, Informatique et Image, in the Faculty of Computer Science of Universit´e de Bourgogne. The main goal of this research was to develop a fast and an inexpensive camera based display image quality assessment framework. Due to the limited time frame, we decided to focus only on projection displays with static images displayed on them. However, the proposed methods were not limited to projection displays, and they were expected to work with other types of displays, such as desktop monitors, laptop screens, smart phone screens, etc., with limited modifications. The primary contributions from this research can be summarized as follows: 1. We proposed a camera based display image quality assessment framework, which was originally designed for projection displays but it can be used for other types of displays with limited modifications. 2. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact, which is mainly introduced by the camera lens. 3. We proposed a method to optimize the camera’s exposure with respect to the measured luminance of incident light, so that after the calibration all camera sensors share a common linear response region. 4. We proposed a marker-less and view-independent method to register one captured image with its original at a sub-pixel level, so that we can incorporate existing full reference image quality metrics without modifying them. 5. We identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays, and we used the proposed framework to evaluate the prediction performance of the state-of-the-art image quality metrics regarding these attributes. The proposed image quality assessment framework is the core contribution of this research. Comparing to conventional image quality assessment approaches, which were largely based on the measurements of colorimeter or spectroradiometer, using camera as the acquisition device has the advantages of quickly recording all displayed pixels in one shot, relatively inexpensive to purchase the instrument. Therefore, the consumption of time and resources for image quality assessment can be largely reduced. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact primarily introduced by the camera lens. We used a hazy sky as a closely uniform light source, and the vignetting mask was generated with respect to the median sensor responses over i only a few rotated shots of the same spot on the sky. We also proposed a method to quickly determine whether all camera sensors were sharing a common linear response region. In order to incorporate existing full reference image quality metrics without modifying them, an accurate registration of pairs of pixels between one captured image and its original is required. We proposed a marker-less and view-independent image registration method to solve this problem. The experimental results proved that the proposed method worked well in the viewing conditions with a low ambient light. We further identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays. Subsequently, we used the developed framework to objectively evaluate the prediction performance of the state-of-art image quality metrics regarding these attributes in a robust manner. In this process, the metrics were benchmarked with respect to the correlations between the prediction results and the perceptual ratings collected from subjective experiments. The analysis of the experimental results indicated that our proposed methods were effective and efficient. Subjective experiment is an essential component for image quality assessment; however it can be time and resource consuming, especially in the cases that additional image distortion levels are required to extend the existing subjective experimental results. For this reason, we investigated the possibility of extending subjective experiments with baseline adjustment method, and we found that the method could work well if appropriate strategies were applied. The underlying strategies referred to the best distortion levels to be included in the baseline, as well as the number of them

    Testing QoE in Different 3D HDTV Technologies

    Get PDF
    The three dimensional (3D) display technology has started flooding the consumer television market. There is a number of different systems available with different marketing strategies and different advertised advantages. The main goal of the experiment described in this paper is to compare the systems in terms of achievable Quality of Experience (QoE) in different situations. The display systems considered are the liquid crystal display using polarized light and passive lightweight glasses for the separation of the left- and right-eye images, a plasma display with time multiplexed images and active shutter glasses and a projection system with time multiplexed images and active shutter glasses. As no standardized test methodology has been defined for testing of stereoscopic systems, we develop our own approach to testing different aspects of QoE on different systems without reference using semantic differential scales. We present an analysis of scores with respect to different phenomena under study and define which of the tested aspects can really express a difference in the performance of the considered display technologies

    Using high resolution displays for high resolution cardiac data

    Get PDF
    The ability to perform fast, accurate, high resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to rendering and visualization must evolve. In this paper we address the interactive display of data from high resolution MRI scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled LCD panel display wall and associated software which provide an interactive and intuitive user interface. The oView software is an OpenGL application which is written for the VRJuggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at both Leeds and Oxford Universities. We discuss important factors to be considered for interactive 2D display of large 3D datasets, including the use of intuitive input devices and level of detail aspects

    Augmented Reality-based Feedback for Technician-in-the-loop C-arm Repositioning

    Full text link
    Interventional C-arm imaging is crucial to percutaneous orthopedic procedures as it enables the surgeon to monitor the progress of surgery on the anatomy level. Minimally invasive interventions require repeated acquisition of X-ray images from different anatomical views to verify tool placement. Achieving and reproducing these views often comes at the cost of increased surgical time and radiation dose to both patient and staff. This work proposes a marker-free "technician-in-the-loop" Augmented Reality (AR) solution for C-arm repositioning. The X-ray technician operating the C-arm interventionally is equipped with a head-mounted display capable of recording desired C-arm poses in 3D via an integrated infrared sensor. For C-arm repositioning to a particular target view, the recorded C-arm pose is restored as a virtual object and visualized in an AR environment, serving as a perceptual reference for the technician. We conduct experiments in a setting simulating orthopedic trauma surgery. Our proof-of-principle findings indicate that the proposed system can decrease the 2.76 X-ray images required per desired view down to zero, suggesting substantial reductions of radiation dose during C-arm repositioning. The proposed AR solution is a first step towards facilitating communication between the surgeon and the surgical staff, improving the quality of surgical image acquisition, and enabling context-aware guidance for surgery rooms of the future. The concept of technician-in-the-loop design will become relevant to various interventions considering the expected advancements of sensing and wearable computing in the near future

    OSGAR: a scene graph with uncertain transformations

    Get PDF
    An important problem for augmented reality is registration error. No system can be perfectly tracked, calibrated or modeled. As a result, the overlaid graphics are not aligned perfectly with objects in the physical world. This can be distracting, annoying or confusing. In this paper, we propose a method for mitigating the effects of registration errors that enables application developers to build dynamically adaptive AR displays. Our solution is implemented in a programming toolkit called OSGAR. Built upon OpenSceneGraph (OSG), OSGAR statistically characterizes registration errors, monitors those errors and, when a set of criteria are met, dynamically adapts the display to mitigate the effects of the errors. Because the architecture is based on a scene graph, it provides a simple, familiar and intuitive environment for application developers. We describe the components of OSGAR, discuss how several proposed methods for error registration can be implemented, and illustrate its use through a set of examples

    Quantifying the Tibiofemoral Joint Space Using X-ray Tomosynthesis

    Get PDF
    Purpose: Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. Methods: A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior–anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0–5 mm in 0.5 mm increments (VolumeRadTM, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. Results: The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R2¼0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R2¼0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. Conclusions: A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee
    corecore