1,315 research outputs found

    Elimination of Glass Artifacts and Object Segmentation

    Full text link
    Many images nowadays are captured from behind the glasses and may have certain stains discrepancy because of glass and must be processed to make differentiation between the glass and objects behind it. This research paper proposes an algorithm to remove the damaged or corrupted part of the image and make it consistent with other part of the image and to segment objects behind the glass. The damaged part is removed using total variation inpainting method and segmentation is done using kmeans clustering, anisotropic diffusion and watershed transformation. The final output is obtained by interpolation. This algorithm can be useful to applications in which some part of the images are corrupted due to data transmission or needs to segment objects from an image for further processing

    Real-time automated road, lane and car detection for autonomous driving

    Get PDF
    In this paper, we discuss a vision based system for autonomous guidance of vehicles. An autonomous intelligent vehicle has to perform a number of functionalities. Segmentation of the road, determining the boundaries to drive in and recognizing the vehicles and obstacles around are the main tasks for vision guided vehicle navigation. In this article we propose a set of algorithms which lead to the solution of road and vehicle segmentation using data from a color camera. The algorithms described here combine gray value difference and texture analysis techniques to segment the road from the image, several geometric transformations and contour processing algorithms are used to segment lanes, and moving cars are extracted with the help of background modeling and estimation. The techniques developed have been tested in real road images and the results are presented

    Identification of body fat tissues in MRI data

    Get PDF
    In recent years non-invasive medical diagnostic techniques have been used widely in medical investigations. Among the various imaging modalities available, Magnetic Resonance Imaging is very attractive as it produces multi-slice images where the contrast between various types of body tissues such as muscle, ligaments and fat is well defined. The aim of this paper is to describe the implementation of an unsupervised image analysis algorithm able to identify the body fat tissues from a sequence of MR images encoded in DICOM format. The developed algorithm consists of three main steps. The first step pre-processes the MR images in order to reduce the level of noise. The second step extracts the image areas representing fat tissues by using an unsupervised clustering algorithm. Finally, image refinements are applied to reclassify the pixels adjacent to the initial fat estimate and to eliminate outliers. The experimental data indicates that the proposed implementation returns accurate results and furthermore is robust to noise and to greyscale in-homogeneity

    Direct virtual viewpoint synthesis from multiple viewpoints

    Get PDF

    A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers

    Get PDF
    This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system
    corecore