83,519 research outputs found

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201

    Efficient smile detection by Extreme Learning Machine

    Get PDF
    Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning Machine (ELM). The faces are first detected and a holistic flow-based face registration is applied which does not need any manual labeling or key point detection. Then ELM is used to train the classifier. The proposed smile detector is tested with different feature descriptors on publicly available databases including real-world face images. The comparisons against benchmark classifiers including Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) suggest that the proposed ELM based smile detector in general performs better and is very efficient. Compared to state-of-the-art smile detector, the proposed method achieves competitive results without preprocessing and manual registration

    Detecting semantic concepts in digital photographs: low-level features vs. non-homogeneous data fusion

    Get PDF
    Semantic concepts, such as faces, buildings, and other real world objects, are the most preferred instrument that humans use to navigate through and retrieve visual content from large multimedia databases. Semantic annotation of visual content in large collections is therefore essential if ease of access and use is to be ensured. Classification of images into broad categories such as indoor/outdoor, building/non-building, urban/landscape, people/no-people, etc., allows us to obtain the semantic labels without the full knowledge of all objects in the scene. Inferring the presence of high-level semantic concepts from low-level visual features is a research topic that has been attracting a significant amount of interest lately. However, the power of lowlevel visual features alone has been shown to be limited when faced with the task of semantic scene classification in heterogeneous, unconstrained, broad-topic image collections. Multi-modal fusion or combination of information from different modalities has been identified as one possible way of overcoming the limitations of single-mode approaches. In the field of digital photography, the incorporation of readily available camera metadata, i.e. information about the image capture conditions stored in the EXIF header of each image, along with the GPS information, offers a way to move towards a better understanding of the imaged scene. In this thesis we focus on detection of semantic concepts such as artificial text in video and large buildings in digital photographs, and examine how fusion of low-level visual features with selected camera metadata, using a Support Vector Machine as an integration device, affects the performance of the building detector in a genuine personal photo collection. We implemented two approaches to detection of buildings that combine content-based and the context-based information, and an approach to indoor/outdoor classification based exclusively on camera metadata. An outdoor detection rate of 85.6% was obtained using camera metadata only. The first approach to building detection, based on simple edge orientation-based features extracted at three different scales, has been tested on a dataset of 1720 outdoor images, with a classification accuracy of 88.22%. The second approach integrates the edge orientation-based features with the camera metadata-based features, both at the feature and at the decision level. The fusion approaches have been evaluated using an unconstrained dataset of 8000 genuine consumer photographs. The experiments demonstrate that the fusion approaches outperform the visual features-only approach by of 2-3% on average regardless of the operating point chosen, while all the performance measures are approximately 4% below the upper limit of performance. The early fusion approach consistently improves all performance measures

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    corecore