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Abstract          

Semantic concepts, such as faces, buildings, and other real world objects, are the most preferred

instrument that humans use to navigate through and retrieve visual content from large multimedia

databases. Semantic annotation of visual content in large collections is therefore essential if ease of

access and use is to be ensured. Classification of images into broad categories such as

indoor/outdoor, building/non-building, urban/landscape, people/no-people, etc., allows us to obtain

the semantic labels without the full knowledge of all objects in the scene.

Inferring the presence of high-level semantic concepts from low-level visual features is a research

topic that has been attracting a significant amount of interest lately. However, the power of low-

level visual features alone has been shown to be limited when faced with the task of semantic

scene classification in heterogeneous, unconstrained, broad-topic image collections. Multi-modal

fusion or combination of information from different modalities has been identified as one possible

way of overcoming the limitations of single-mode approaches. In the field of digital photography,

the incorporation of readily available camera metadata, i.e. information about the image capture

conditions stored in the EXIF header of each image, along with the GPS information, offers a way

to move towards a better understanding of the imaged scene. 

In this thesis we focus on detection of semantic concepts such as artificial text in video and large

buildings in digital photographs, and examine how fusion of low-level visual features with selected

camera metadata, using a Support Vector Machine as an integration device, affects the

performance of the building detector in a genuine personal photo collection. We implemented two

approaches to detection of buildings that combine content-based and the context-based

information, and an approach to indoor/outdoor classification based exclusively on camera

metadata. An outdoor detection rate of 85.6% was obtained using camera metadata only. The first

approach to building detection, based on simple edge orientation-based features extracted at three

different scales, has been tested on a dataset of 1720 outdoor images, with a classification accuracy

of 88.22%. The second approach integrates the edge orientation-based features with the camera

metadata-based features, both at the feature and at the decision level. The fusion approaches have

been evaluated using an unconstrained dataset of 8000 genuine consumer photographs. The

experiments demonstrate that the fusion approaches outperform the visual features-only approach

by of 2-3% on average regardless of the operating point chosen, while all the performance

measures are approximately 4% below the upper limit of performance. The early fusion approach

consistently improves all performance measures.



Table of Contents 

Table of Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       v

List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       vii

1    Introduction                     1

      1.1   General objective  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       1

      1.2   Content-based indexing and retrieval of visual content  . . . . . . . . . . . . . . . . . . . . . . . .       2

              1.2.1  Content-based image retrieval vs. image classification  . . . . . . . . . . . . . . . . . . .       3

              1.2.2  The “Semantic Gap” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4

      1.3   Image and scene understanding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       5

      1.4   Digital photo collections: consumer vs. corporate photos  . . . . . . . . . . . . . . . . . . . . . .       6

      1.5   “Is semantic image annotation feasible”? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       7

      1.6   Summary and thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       8

      1.7   Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      9

2    Data Fusion: State-Of-The-Art:                       11

      2.1   Fundamental concepts . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        11

              2.1.1  Data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        11

              2.1.2  Classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        13

      2.2   Fusion methods in image analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       15

              2.2.1  Fusing  low-level visual features with textual features . . . . . . . . . . . . . . . . . . .       15

              2.2.2  Fusing low-level visual features with mid-level semantic features  . . . . . . . . .       17

              2.2.3  Fusing low-level visual features with camera metadata . . . . . . . . . . . . . . . . . .       21

      2.3   Fusion methods in video analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       24

              2.3.1  Fusing low-level visual features with textual features  . . . . . . . . . . . . . . . . . . .       24

              2.3.2  Fusing low-level audio-visual features with textual features . . . . . . . . . . . . . . .      27

              2.3.3  Fusing different statistical models for different audio-visual features  . . . . . . .       29

      2.4   Summary and Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       30

i



3    Detecting Large Buildings In Natural Images Using Visual Features                                 33

      3.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       33

      3.2   Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       34

      3.3   Proposed approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       37

              3.3.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       37

              3.3.2  Low-level feature representation: edge orientation . . . . . . . . . . . . . . . . . . . . . .       39

              3.3.3  Algorithmic details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       44

              3.3.4  Low-level feature classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       49

      3.4   Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       50

              3.4.1  Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       50

              3.4.2  Classifier training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       51

              3.4.3  Classification based on low-level features and discussion of experimental resu-

                        lts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .       54

      3.5   Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       56

4    An Improved Building Detection Using Camera Metadata                                                  57

      4.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       58

      4.2   A hierarchical approach to semantic image classification. . . . . . . . . . . . . . . . . . . . . .       60

      4.3   Indoor/outdoor classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      62

      4.4   Digital camera metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       63

              4.4.1  The EXIF standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       63

              4.4.2  Camera metadata potentially useful for indoor/outdoor classification . . . . . . .       64

              4.4.3  Metadata discriminatory power for indoor/outdoor classification  . . . . . . . . . .       68

      4.5   Proposed approaches to fusing camera metadata with low-level features  . . . . . . . . .       76

              4.5.1  Early fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       77

              4.5.2  Late fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       78

      4.6   Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       78

5    Experimental Evaluation of Metadata-Inclusive Implementation And Performance 

      Comparisons                          80

      5.1   Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       80

              5.1.1  The MediAssist dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       80

      5.2   Experiments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       84

              5.2.1  Dataset comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       87

ii



              5.2.2  Visual features combined with the indoor/outdoor groundtruth information . .       88

              5.2.3  Indoor/outdoor classification based on camera metadata . . . . . . . . . . . . . . . . .       91

              5.2.4  Early fusion of visual features with the selected camera metadata . . . . . . . . . .       92

              5.2.5  Late fusion of visual features with the selected camera metadata  . . . . . . . . . .       95

              5.2.6  Result comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       96

      5.3   Discussion and Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       97

6    Conclusions and Future Work                                                                                               100

A    Artificial Text Detection in Digital Video                                                                            104

      A.1   Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       104

      A.2   Literature review  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       106

      A.3   Relevant compression standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       109

      A.4   Our approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       110

              A.4.1  Detection and localisation of artificial text  . . . . . . . . . . . . . . . . . . . . . . . . . .       111

              A.4.2  Segmentation of characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       114

              A.4.3  Recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       115

      A.5   Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       116

              A.5.1  Dataset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       116

              A.4.2  Results of text detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       116

              A.4.3  Results of recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       117

      A.5   Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .       117

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        119

iii



List of Figures 

2.1   Block diagrams of typical early fusion and late fusion schemes  . . . . . . . . . . . . . . . . . . .       12

3.1   Variety of building shapes and views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       37

3.2   A building projection as a function of common viewing angles: a) frotal view, b) frog's 

        view, c) bird's eye view, d) view from right, e) view from left, f) “”street” . . . . . . . . . . .       38

3.3   Comparison of normalised smoothed 36-bin edge orientation histogram for building, 

        nature and structure images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       38

3.4   An example of multi-scale image representation (scaling by factor 2)  . . . . . . . . . . . . . .       42

3.5   “The dog” - an example of emergence in perception [51]  . . . . . . . . . . . . . . . . . . . . . . . .       44

3.6   Gaussian function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       45

3.7   Histogram bins corresponding to relevant edge orientation intervals . . . . . . . . . . . . . . . .       46

3.8   An example of outdoor non-building structure edge orientation contributions of rele-

        vant  edge orientation intervals: (a) original image, (b) near-horizontal, (c) near-45, 

        (d) near- vertical, (e) near-135, and (f) all relevant edge orientations  . . . . . . . . . . . . . . .       46

3.9   Contributions from different edge orientation intervals for two building images, na-

        ture and non-building structure images: (a) original image, (b) near-horizontal, (c) ne-

        ar-45, (d) near- vertical, (e) near-135, and all relevant edge orientations in (f) black, 

        and (g) colour-coded relevant edge contributions (from the top left to the bottom right .       47

3.10   Coherency check in 8-neighbourhood for the edge angle 
�

of the central pixel: 

        a)  
���

[0,10] � [170,180], b)  
���

[35,55], c)  
���

[80,100], d)  
���

[125, 145]  . . . . . . . . . . .       49

3.11   Geometric interpretation of Support Vector Machine in 2-D space  . . . . . . . . . . . . . . . .      50

3.12   Determination of recall/precision break-even-point on the training set for classifier se-

          lection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       51

3.13   Projections of the training patterns into 2-D feature space: (a) near-horizontal/near-

          vertical plane and (b) near-45/near-135 plane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       52

3.14   Projections of the training patterns into 3-D feature space: (a) near-horizontal/near-

           45/near-vertical plane and (b) near-horizontal/near-vertical/near-135 plane . . . . . . . . .       53

3.15   Typical non-building images misclassified as buildings  . . . . . . . . . . . . . . . . . . . . . . . .       55

3.16   Classification results for building images in order of decision confidence i.e. distance 

          from the separation plane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       56

4.1   An example of edge orientation histogram distributions for building, indoor, outdoor 

        non-building structure and nature images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       60

4.2   The Vailaya's image classification hierarchy [87]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       61

4.3   An example of the EXIF header content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       64

iv



4.4   The effect of varying shutter speed on night photography (captions indicate the num-

        ber of seconds the shutter was kept open) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       67

4.5   Relationship between the calculated exposure values and the recorded brightness va-

        lues: a) indoor, b) outdoor images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       68

4.6   Distribution of brightness values of indoor and outdoor images: a) 10 bins, b) 15 bins, 

        c) 20 bins, and d) 30 bins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       70

4.7   Distribution of exposure values of indoor and outdoor images: a) using 10 bins, and b) 

        using 20 bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       71

4.8   Recorded brightness and calculated exposure values of indoor and outdoor images un-

        der daylight and no-daylight (dusk, dawn, night) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       71

4.9   Distribution of flash value of indoor and outdoor images  . . . . . . . . . . . . . . . . . . . . . . . .       72

4.10   Distribution of TimeOfTheDay value of indoor and outdoor images  . . . . . . . . . . . . . .       73

4.11   Distribution of focal length of indoor and outdoor images: (a) 10 bins, (b) 15 bins, (c)

          20 bins, and (d) 30 bins (zoomed-in version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       74

4.12   Subject distance range distribution of indoor and outdoor images (unknown, macro 

          view close view, and distant view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       74

4.13   Subject distance range distribution of indoor and outdoor images for known va-

           lues (macro view, close view, and distant view only)  . . . . . . . . . . . . . . . . .       75

4.14   Low-level and metadata features used in fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       77

4.15   Block diagram for the early fusion scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       77

4.16   Block diagram for the late fusion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       78

5.1   The annotation taxonomy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       83

5.2   Example photographs from the MediAssist collection . . . . . . . . . . . . . . . . . . . . . . . . . . .       86

5.3   Comparison of  SVM scores (a) for visual features only approach (lin, j=1.2), with (b)

        the early fusion approcahes with groundtruth for indoor/outdoor class using linear, 

        j=1.25, and (c) polynomyal kernel of degree 4, j=1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . .       90

5.4   Distribution of SVM ouputs for indoor and outdoor categories, based on the following         

        metadata: brightness, exposure, flash, focal length and subject distance, using a linear

        kernel, j=3, with 200 trainig examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       92

5.5   Comparison of SVM scores for (a) visual features only approach (lin, j=1.2), with (b)

        the early fusion approaches using linear, j=1.25, and (c) polynomyal kernel of degree 4, 

        j=1.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       94

5.6   Comparison of SVM score distributions for (a) visual features only approach, (b) early 

        fusion and (c) late fusion approaches for building and non-building classes . . . . . . . . . .       97

A.1   Examples of  (a) artificial text,  (b) combination of artificial and scene text,  and (c) 

         scene text in video frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       105

A.2   System block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       111

v



A.3   (a) Input image, (b) horizontal difference magnitude, (c)(d) binarised edge map be-

         fore and after morphological processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       113

A.4   Cropped text image  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       113

A.5   Intensity variations across character and background  . . . . . . . . . . . . . . . . . . . . . . . . . .       114

A.6   Some text segmentation results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       115

A.7   Examples of video frames from our database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       116

A.8   (a) Input image, (b) horizontal difference magnitude, (c) and (d) binarised  edge map 

        before and after morphological processing, (e) cropped text image, and (f) segmented 

        text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       118

vi



List of Tables 

3.1   Comparison of experimental results for different methods (200 training images, 1520

        test images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       54

3.2   Comparison of performance of 12-component and 24-component representation for 

        strong coherency weighting (200 training images, 1520 test images)  . . . . . . . . . . . . . . .       55

5.1   Metadata tags recorded by the different camera models . . . . . . . . . . . . . . . . . . . . . . . . . .       82

5.2   The MediAssist dataset structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       84

5.3   Performance comparison of a building detector trained on different number of exam-

        ples and on different datasets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       87

5.4   Comparison of building detector performance on outdoor and all images in the MA 

        database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .       88

5.5   Comparison of the best performing approach using only visual features with the app-

        roaches based on visual features fused with groundtruth information for indoor/out-

        door status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       89

5.6   Outdoor detection using different number of metadata fetaures and different number 

        of training examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       91

5.7   Results of early fusion of visual fetaures with selected camera metadata (BEFLD, 

        using 1400 training examples)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       93

5.8   Results of late fusion of building detection decision, based on visual features, with in-

        door/outdoor detection based on camera metdata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       96

5.9   Comparison of the best performing classifiers for each approach . . . . . . . . . . . . . . . . . .       96

5.10   Comparison of the classifier performances for each approach for the same kernel ty-

          pe (the best performing classifiers are highlighted)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .       98

A.1   Text detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       117

vii



Chapter 1

Introduction

This chapter outlines the research objective addressed and provides a context to the thesis. In

the introductory part, it gives an overview of the relevant concepts in the wider research area,

which includes content-based image indexing and retrieval, as well as image and scene

understanding. Further on, we present a short comparison between consumer and corporate

photo collections, and highlight the differences between the two in terms of potentially

exploitable characteristics of images in each, as well as challenges they each present to

research in the field of visual content analysis in general, and for the task of semantic

classification in particular. Next, we briefly discuss the scope for improved semantic

annotation of digital photographs. Finally, an outline of the thesis and the list of associated

publications are presented.

1.1    General objective

The last decade has seen an enormous surge in the number of digital images being generated.

The arrival of digital cameras and, more recently, camera phones in such a ubiquitous manner

has brought yet another challenge – how to organise and manage large collections of digital

photographs - how to facilitate a fast, yet user-friendly and easy retrieval of and access to a

desired photo in a collection of several thousands photographs?

Is this an indoor or outdoor scene? What objects are present in the scene? Is there a building or

some other human-made structure in the scene? Is there any artificial text included? Which
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part of the world was the photo captured in? These are the sorts of questions that must be

addressed when aspiring to annotate images in a fashion that facilitates user-friendly retrieval

from a large collection of images. Users prefer expressing their needs in natural language, and

rather that looking for “images with large objects that exhibit strong edges in horizontal and

vertical directions, in muted colours”, they prefer to look for “images depicting large

building(s) in Copenhagen”. To facilitate this type of query, which also emphasises the close

bond between the location information and the image semantics [85], the images need to be

annotated with semantic concepts rather than low-level descriptors. As manual annotation of

images with linguistic terms (visual concepts) is time-consuming and expensive, and

inevitably prone to subjectivity in perception, the need arises for automated annotation with

semantic concepts as a viable alternative. Apart from semantic annotation, automatic

understanding of image content is a key requirement to a plethora of applications in content-

specific/content-sensitive image enhancement, analysis, organisation, etc.

In summary, the general objectives of this work are (i) to extract knowledge from digital visual

content for the purpose of automated annotation of large personal photo collections with

semantic concepts, and (ii) to examine the impact of multimodal data fusion of content-based

and the context-based features on semantic concept detection performance. In this work, we

focus on the task of detecting large building objects in still images, and the impact of

integration of content-based evidence with the contextual evidence on the performance of the

building detector. Here, the task of large building detection is viewed as an image

classification problem.

1.2    Content-based indexing and retrieval of visual content 

Content-based indexing and retrieval (CBIR) of visual content is a research area dealing with

indexing and retrieval of still images and video, which are indexed by their own visual content,

using low-level features such as shape, colour, texture, etc. Unlike text-based retrieval which

relies on manual annotations (or the surrounding text, captions, etc.), the indexing in CBIR is

performed automatically. Different visual features and their combinations may be used for

content-based image representations. However, due to perceptual subjectivity, it is not possible

to identify a single best representation for a given feature. For instance, in the case of a texture
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feature, a number of different texture descriptors are typically used, such as the Tamura texture

representation [83], co-occurrence matrix-based [25], Wavelet transform-based [2], Fourier

power spectrum-based [56], etc. Besides, a suitable representation is usually task dependent as

well [61].

The idea of CBIR emerged as a complementary approach to earlier text-based image indexing

and retrieval. This happened at a time when large-scale image collections started to appear,

thus rendering manual image annotation infeasible and impractical, especially in near-real time

applications. More importantly, the automated approach to indexing offers the possibility of

dealing with the issue of perception subjectivity and annotation imprecision that originated in a

combination of the subjectivity of human perception and the richness of the image content

[25].

1.2.1   Content-based image retrieval vs. image classification

Content-based image retrieval (CBIR) and image classification are closely related: the ultimate

aim of image classification is to generate linguistic terms that can be used for semantic image

indexing and, therefore, organisation of and retrieval from image databases. The aim of CBIR,

on the other hand, is to provide methods for searching image databases based on visual

features. However, while there are many similarities between image retrieval and classification

tasks, image classification is considered an easier task as explained in the following.

The aim of image classification is to categorise an image into one of predefined, usually broad

mutually exclusive classes: indoor or outdoor, cityscape or landscape, building or non-

building, no-people or people-present, etc. For a classification, the available training set can be

made arbitrarily large (of course, bearing in mind the associated costs). Image classification is

oftentimes approached in a hierarchical manner. Decomposing the problem into a set of two-

class classifications, conducted in a number of stages, whilst using a simple feature

representation tailored to the task at the hand, has been shown to be one of the most effective

approaches [82,88].

However, in the case of image retrieval (by example), the number of potential image classes

that a query image may belong to is large and remains unknown until the time a query is made.
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This lack of knowledge on the query image's class prevents us from selecting the most suitable

or most discriminative subset of features. Furthermore, the input space is usually high-

dimensional, while the training set on which to learn is much smaller than the one available in

classification [90].

1.2.2   The “Semantic Gap”

Notwithstanding the apparent richness that a content-based representation may provide in

terms of high-dimensionality, numbers and the different types of visual descriptors used, there

still remains a gap between such a low-level representation of an image, which is semantically

poor, and the high-level semantics that are inherent in a human query [75]. In the literature,

this gap between the user's semantic query and the low-level information extracted from

images is referred to as the semantic gap. In [78], Smeulders et al define the semantic gap as

follows:

“....The lack of coincidence between the information that one can extract from the visual

data and the interpretation that the same data have for a user in a given situation.”

The main challenge in closing this gap is how to best translate a user's request into the

“language” of low-level features. How can we, for instance, adequately capture the semantics

of an image depicting a piece of baroque architecture, or the Roman amphitheatre in the centre

of Pula, a close-up of humans engaged in lively conversation, a joyous atmosphere of a

Christening or sombre mood of a funeral, in terms of texture, colour and shape?

In [64], Mojsilović et al describe a set of psychophysical experiments conducted in an effort to

“gain insight into the semantic categories that guide the human perception of image

similarity”. Having established the most important semantic categories (such as portraits,

people indoors, people outdoors, crowds, cityscapes, architecture, waterscapes, landscapes

with human influence, sky/clouds, animals, textures, etc.) in the first set of experiments, they

conducted further experiments in order to find correlations between these semantic categories

and low-level descriptors. The objective of the work was the identification of the most

appropriate low-level descriptors that could best capture the semantics of each image category

and thus help to bridge the semantic gap. Using a set of 40 features, for each of the 20
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semantic categories they determine a feature combination that discriminates that category from

all other images. Their results suggest that, even though the visual features cannot fully capture

the entire semantics of an image, there exists a significant correlation between them.

1.3    Image and scene understanding

The term image understanding refers to the process of generating a linguistic or natural

language description of a given image, or attaching a textual description to an image

automatically. It provides a description of an image in terms of objects, places, people and

events. Image and scene understanding is a part of high-level vision - “...the highest processing

level in computer vision” according to Sonka et al [81]. Semantic interpretation of an image

provides answers to questions such as: “What objects are present in the scene? What location

does the image depict? What is happening, what event does it depict?”

There exist different levels of understanding in the hierarchy of image understanding: the

lowest level is the level of objects. Further up, in order of complexity, understanding entails

understanding of the relationships between the objects in the scene (spatial and otherwise).

Understanding and interpreting the mood and atmosphere the imaged scene conveys is the

most complex task and comes at the very top of the image understanding hierarchy [52].

Thus far, image understanding has been successful in constrained domains such as medical and

military applications, industrial inspection, etc. Unconstrained consumer photos, however,

pose a far greater challenge due to the complete freedom associated with the process of image

creation as well as the versatility in terms of content and scene composition. As a result, both

the image content (e.g. no well-defined subject, no sense of conformance with the rules of

good composition) and capture conditions (e.g. poor lighting, poor focus) vary a lot [49]. At

present, image understanding mainly serves as a means to two distinct purposes: as an

instrument to facilitate automated semantic indexing and content-sensitive adaptive image

enhancement [20].
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1.4    Digital photo collections: consumer vs. corporate photos

Digital photo collections constitute an important subset of general image collections. They can

be divided into consumer collections and corporate collections:

� Consumer photo collections are heterogeneous by nature and generally unconstrained in

scope. Consumer photos are captured without necessarily obeying photographic

conventions (i.e. rules governing the capture of a good quality photograph) with regard to

good composition, lighting, focus, exposure, etc. Such photos may be cluttered and contain

a high number of objects in the scene, frequent occlusions, etc. In general, “they do not fall

nicely into well-defined categories” [6]. While the number of distinct individuals occurring

in an average consumer's photo collection is usually limited (e.g. family members, relatives,

friends, etc.), such a collection is normally unconstrained with respect to its topic, content

and composition. The number of photographers contributing to the collection may be

relatively small, nevertheless the quality of their contributions may vary significantly. On a

positive note, since fewer camera models are likely to be used, there is a greater consistency

over types and quality of metadata associated with the images.

As regards the motivation driving the capture of the image in a personal photo collection, it

is largely emotional, it is merely to save the moment, to record an interesting object or an

event worth saving from oblivion, to create a memento that can be shared now and kept for

posterity. In contrast to photos in corporate photo collections, the temporal context of a

photo in a consumer photo collection is valuable and informative, as people tend to take

photos in bursts. Thus, the photos taken in temporal proximity are usually related, belong to

the same event, share a common theme, etc. The temporal context can be exploited to

reinforce the classification results and propagate labels to temporally close images.

� Corporate photo collections (digital archives and stock photography), on the other hand,

can be broad in topic, but can also be domain specific. In the case of digital archives,

owned and maintained by broadcasting corporations, the collections may cover a large time

span. The number of distinct individuals appearing in such collections is virtually unlimited

and their identity can often be quite specific and important. Collections of this type are

normally the result of the work of a large number of photographers with their individual
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styles. However, good rules of photography, such as good lighting, good composition,

proper focus and exposure, conspicuous lack of clutter, etc., usually apply. In the case of

stock photography, it is important that an image conveys a clear message. Therefore such

images are unlikely to be cluttered or badly lit, the number of objects in the scene is

expected to be low, etc. Essentially, those images are captured with a specific purpose in

mind and thus focus on what is important. However, the identity of people present in such

photos is rarely relevant. The time attribute may not be very relevant either.

In either case, the motivation driving the capture of images in corporate photo collections in

general is by no means uncertain: it may be the intention to document an event for the wider

public, or to create an image that could evoke certain emotions in people, provide some

incentive, pass a certain message, and so on. They are characterised by their clarity of

purpose.

1.5    “Is semantic image annotation feasible?”

The research thus far in the area of semantic image classification in broad topic image

collections has shown that low-level features on their own do not have sufficient power to

bridge the semantic gap between the high-level semantic concepts that humans communicate

in, and content-based image description. The potential for filling that void may lie in using

other contextual information that may be available. As capture devices become more powerful,

more and more information is recorded at capture time [20]. For instance, the GPS information

accompanying a digital photo easily answers the location-question. Dates and times, along

with the location information can facilitate an automatic annotation of a photo with semantic

labels with respect to the season (winter, spring, summer, autumn) and time of the day (dawn,

morning, midday, dusk, night). Likewise, the EXIF's scene brightness tag could help determine

whether the photo was taken indoor or outdoor. All this, in turn, could possibly assist other

classification and annotation tasks by way of refining their results. In conclusion, the

integration of visual features extracted from image content with information originating in

other modalities is likely to offer an improved solution to the task of semantic image

classification. Some of the challenges rest in identifying supplementary sources of information

as well as finding smart and efficient ways of combining such diverse information. The work
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described in this thesis explores some of these challenges.

1.6    Summary and thesis structure

This chapter provides context to the thesis by providing a brief introduction to the wider

research area of content-based image retrieval, semantic classification and annotation of digital

media. The target application of the methods presented in this thesis is an automated semantic

annotation of large personal photo collections, with associated GPS location information.

There are many possible semantic aspects of a large photo collection that might be explored

such as indoor/outdoor, cityscape/landscape, waterscapes, sky/clouds, presence of people,

crowds, presence of animals, architecture and so on. However, a semantic distinction that is

consistently relevant is that between natural scenery and the human-made environment.

Consequently, the focus of our work is on automatic detection of the presence of a dominant

building object in a digital photo, i.e. classification of photos into building and non-building

images. 

Our goal is two fold. Firstly, we aim to identify a simple and computationally cheap, low-

dimensional and low-level feature representation that could be a basis for detection of large

buildings in natural images, captured by a ground-level camera, at a short to medium distance

from the camera. Assuming an implicit presence of indoor/outdoor information, i.e. only

outdoor images as an input, we identify an edge orientation based, multi-scale feature

representation that, when evaluated on a constrained dataset of 1720 images, reasonably well

captures the coarse building geometry/shape.

Secondly, we aim to make use of the available alternative, secondary sources of information

and apply multi-modal fusion of low-level visual features with information from other

modalities, that could facilitate automatic indoor/outdoor discrimination. We examine the

impact of fusion of content-based information with contextual information in the form of the

digital camera metadata, on the performance of the detector, and show that integration of the

content and context of a photo positively affects the image classification rates. We implement

early fusion and late fusion schemes to examine how each benefits the classification

performance. The evaluation is performed on an unconstrained dataset of 8000 digital photos.
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This thesis is laid out as follows. Chapter 2 provides an overview of the research efforts to date

in the area of data fusion in the field of image and video analysis. The work on detection of

large buildings in outdoor images relying on a simple low-level visual feature representation is

presented in Chapter 3. In Chapter 4, we examine the potential of digital camera metadata for

data fusion for the task of large building detection in unconstrained photo collections. We also

look at the discriminative power of a selected subset of digital camera metadata for

indoor/outdoor discrimination. Chapter 5 presents the results of evaluation of metadata-

enhanced building detector. Finally, Chapter 6, summarises the thesis and discusses possible

extensions of the method.

1.7    Publications

Part of the work in this thesis has been presented in the publications listed below.

� J. Malobabić, N. O'Connor, N. Murphy, S. Marlow, “Automatic Detection and Extraction

of Artificial Text in Video”, Proceedings of the 3rd International Workshop on Image
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� J. Malobabić, H. Le Borgne, N. Murphy, N. O'Connor, “Detecting large buildings in natural

images”, Proceedings of the 3rd Int. Workshop on Content-Based Multimedia Indexing,

CBMI 2005, Riga, Latvia, June 2005.

� N. O'Hare, H. Lee, S. Cooray, C. Gurrin, G. Jones, J. Malobabic, N. O'Connor, A.F.

Smeaton, and B. Uscilowski, “MediAssist: Using Content-Based Analysis and Context to

Manage Personal Photo Collections”, Proceedings of CIVR 2006-International Conference

on Image and Video Retrieval, Tempe, AZ, 13-15 July 2006

� P. Wilkins, T. Adamek, P. Ferguson, M. Hughes, G. Jones, G. Keenan, K. McGuinness, J.

Malobabic, N. O'Connor, D. Sadlier, A.F. Smeaton, R. Benmokhtar, E. Dumont, B. Huet,

B. Merialdo, E. Spyrou E, G. Koumoulos, Y. Avrithis, R. Moerzinger, P. Schallauer, W.

Bailer, Q. Zhang, T. Piatrik, K. Chandramoul, E. Izquierdo, L. Goldmann, M. Haller, T.
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Chapter 2

Data Fusion: State-Of-The-Art

Information fusion or the combination of information originating from different sources is one

of the major areas of investigation in the analysis of visual content at present. In this chapter,

we present an overview of some of the popular fusion-based approaches employed in the field

of image and video analysis. The late fusion approaches we review here focus primarily on the

issue of finding smart ways of combining data from different modalities at the decision level,

i.e. ways of combining outputs of different classifiers into a single output. They also look at

the issue of identifying the complementary modality that is best suited to a specific task (in

both content-based image retrieval and image classification).

We begin by briefly introducing some of the fundamental concepts, such as data fusion itself

and classification. Next, we present fusion approaches employed in image analysis, followed

by those applied in video analysis, grouping them with respect to the types of features they

combine. Finally, we conclude the chapter with a summary of the fusion methods presented

here.

2.1    Fundamental concepts

2.1.1   Data fusion 

Fusion is “a union by or as if by melting; merging of diverse, distinct, or separate elements into
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a unified whole” [62]. Fusion of multiple inputs comes to humans naturally. In everyday life,

humans combine visual, audio and tactile information for example in order to obtain a more

accurate sense of the world and thus enhance their ability to act on it or react to it

appropriately. In fact, most biological systems use some sort of combination of sensory

information of different types so as to infer knowledge about the environment [24]. Thus the

prime motivation for data fusion is obtaining more reliable knowledge about the surrounding

world. The need for data fusion arises due to the following: (i) there is no perfect sensor nor

perfect knowledge source and (ii) one modality is usually not sufficient to obtain an accurate

and a complete picture of the observed phenomenon. 

Hence, the need for the data fusion as a synergistic combination of information, which is

performed in order to better understand the phenomenon under consideration, to achieve

improved accuracy and obtain information of better quality [89].

Data from different types of sources may be combined. The following combinations of

modalities for fusion in image and video analysis were encountered in the literature:

� low-level visual with textual features (i.e. accompanying text, captions, ASR);� visual features with semantic features (detected using selected semantic object detectors);� visual features with camera metadata and GPS information (i.e. data recorded in the EXIF

header of each image).

Early vs. Late fusion

With respect to the stage at which the fusion is performed, fusion methods can be divided into

early fusion and late fusion methods. Block diagrams of typical early and late fusion schemes

are shown in Figure 2.1. 

Figure 2.1   Block diagrams of typical early fusion and late fusion schemes.
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In the case of early fusion, the fusion is performed at the feature level, i.e. the features are

combined before classification (usually based on concatenated feature vectors for SVM,

Bayesian networks and so on). In the case of late or decision fusion, the fusion is carried out

later on in the process, that is at the decision level, by combining scores, ranks or probabilities

obtained using classifiers on individual features or feature sets. In late fusion, individual

“opinions” are combined in order to arrive at a final decision. The combination can be

performed in parallel, serial, hybrid or in a multi-stage fashion. 

Combination strategies for late fusion

A combination strategy determines how judgments from different classifiers are combined in

order to arrive at the final decision. Two types of combination strategies are usually

considered: probability-based strategies and meta-classification strategies. 

� Probability-based strategies. Given a feature vector (that may belong to one of p classes)

and k classifiers, its class will be determined as the class with the highest posterior

probability. The final decision is based on the product (product rule) of posterior

probabilities of all classifiers for a given class. The approach assumes that feature vectors

from different modalities are conditionally independent and that prior probabilities for all

classes are equal. In probability-based fusion an appropriate function (e.g. the sigmoid

function) is used to map the classifier scores into (pseudo-)probabilities.

� Meta-classification strategies. The idea here is to treat the judgment from each classifier for

each class as a feature in its own right. Based on feature vectors constructed in that way,

another classifier, i.e. a meta-classifier, makes the final decision. So, unimodal classifiers

first classify an image or video from the perspective of individual modalities then their

judgments are concatenated into a new feature vector and the final decision is reached by

the meta-classifier. A meta-classifier “observes more information” when making the final

decision than any of the individual unimodal ones did in the first place [45,46].

2.1.2   Classification

A classification is a process whereby an entity, an object or entire image, is assigned to one of

a set of classes, where classes are disjoint subsets whose elements have some common
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properties. The classification objective determines how the set of entities are divided into

classes [81]. A prerequisite for a good classification rate is a good quality feature

representation [32]. Provided the feature representation is well chosen, vectors corresponding

to a particular pattern should form a cluster, as intra-class variance will be small while the

inter-class variance will be large.

Supervised vs. Unsupervised classification

The main distinction between the supervised and unsupervised approach to classification is

that, in supervised classification, the number of classes as well as class labels (i.e. the classes

themselves) are predefined and known in advance of classification, whereas in an

unsupervised classification (aka clustering) patterns are assigned to hitherto unknown classes.

As both the number of object classes and the classes themselves are unknown in unsupervised

classification, the aim of the classification process is limited to grouping or clustering similar

patterns together. In either case, the goal is to partition the feature space in a such a fashion

that misclassification of objects is minimised [31].

In both supervised and unsupervised classification, the classification process is preceded by a

learning step, during which a classifier is trained to distinguish between entities belonging to

different classes. In the case of supervised classification, the training step involves presenting

the classifier with a set of available examples along with their correct class labels (i.e. the

expected output of classification) [81]. In contrast, examples presented to an unsupervised

classifier are unlabeled examples (which is cheaper in terms of time and labelling effort

needed), and the classifier then attempts to discover “natural” groupings without any

knowledge of the class labels. The desired number of clusters may then either be decided in

advance heuristically or learned during the training.

Exemplar-based vs. Model-based approach to classification

The task of scene or image classification is usually approached in two ways: exemplar-based

or model-based.

	 All exemplar-based approaches are based on learning, i.e. the knowledge inferred from the

training examples is incorporated in the design of classifier [19]. Pattern recognition

techniques are typically applied to image representations in the form of feature vectors,

either based on low-level features (such as colour, texture, shape) or medium-level semantic
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features (such as sky, grass, face). The inherent structure or partitioning of the feature space

in the exemplars is learned during the classifier training and, in the next step, novel images

are then classified based on the learned partitioning of the feature space. In exemplar-based

systems, semantic “understanding” is achieved based on the similarity between the novel

images and the exemplar images that were used in the training.


 Model-based approaches involve “building a model of the scene based on the expected

scene configuration”[6]. The term model refers to a description that is both the simplest and

the most general one, but still capable of describing the observations with minimum

deviations. From this definition, it follows that a model can only describe the observation to

some degree of accuracy and correctness [32]. The classification of novel images is

performed based on the expected layout of the scene and expected relative sizes and

positions of the objects. Explicit models of the scene are built using expert knowledge of

the scene.

Clearly, the main limitations of the model-based approach lie in the fact that it only works in

constrained and well-defined domains, requires expert knowledge and lacks generalisability.

The exemplar-based approaches, on the other hand, require sizeable training sets, collection

(as well as labelling, in the case of the supervised approach) all of which may be expensive,

time-consuming and labour-intensive.

2.2    Fusion methods in image analysis

The image analysis fusion methods reviewed here employ the following combinations of

features: (i) low-level visual features with textual features, (ii) low-level visual features with

mid-level semantic features, and (iii) low-level visual features with digital camera metadata

features.

2.2.1   Fusing low-level visual features with textual features

In [95], Yavlinsky et al conducted a comparative study of evidence combination strategies.

They investigated the effectiveness of SVM meta-classification, CombMIN, CombMAX,
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CombSUM and BordaFuse evidence combination strategies, combining visual features with

textual annotation obtained by ASR (automatic speech recognition). A retrieved image is

considered relevant if it comes from the same category as the query image. The Comb-SUM

method is a simple linear combination of individual relevance scores. The Borda Fuse model is

based on the Borda Count, an optimal voting procedure. It works as follows: each voter ranks a

fixed set of m candidates in order of their preference. The top ranked candidate receives m

points, the second-ranked received (m-1) points, and so on. The last on the list receives one

point. In the case of unranked candidates the remaining points are evenly shared between the

remaining candidates. The final ranking of the candidates is based on the total number of

points. The Borda fuse model requires neither training data nor relevance scores, and is

considered to be very simple and effective. CombMIN, CombMAX and CombSUM are the

unweighted minimum, maximum and sum, respectively, of normalised relevance scores for

each image over all classifiers.

The following low-level features were considered in [90]: the HSV global colour histogram,

the HSV focus colour histogram, a colour structure descriptor, marginal RGB colour moments,

a thumbnail feature, convolution filter-based features, texture variance, smoothness and texture

uniformity.

The “bag-of-words” feature used in [95] is based on textual annotation obtained from the ASR

transcripts. Each image is represented by a set of stemmed words and their normalised

weights. The weights were determined using the TF-IDF formula [73] in which weights sum to

one. The term frequency (TF) in a document is the number of times a given term occurs in a

document, ni, normalised by the number of occurrences of all terms in the document. The

inverse document frequency (IDF) measures the overall importance of the term across all

documents. The IDF is calculated by taking the logarithm of the ratio of the number of all

documents, nd, and number of documents containing the term, ndi. A high TF*IFF weight is

thus associated with less common terms and measures the term relevance.

TF i � IDF i � n i
k

n k

� log
n d

n di
(1)

The distances between the corresponding feature vectors are used to compare similarity of two

images. The L1-norm is used throughout for visual features while the L1-norm raised to the

power of three is used for the “bag-of-words” feature. A variant of the distance-weighted k-
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nearest neighbour (k-NN) approach is used to retrieve images with respect to a given feature.

This results in clustering of images that are similar with respect to a given feature.

The combination strategies in [95] use the similarity scores (i.e. distances of k-NN neighbours

from query images) computed for each image to determine the overall ranking. A score vector

for an image is defined as the vector containing n similarity scores for the images, each

corresponding to one of n features. A linear SVM, acting as a meta-classifier, classifies the

scores corresponding to each feature as provided by the k-NN algorithm. Novel images are

ranked based on a single relevance score returned by the SVM. The SVM is trained using the

scores and relevance information obtained by running the retrieval test on the training set.

Relevance is defined as the distance of the score vectors from the hyperplane (i.e a linear

weighted sum of the vector's components). 

Performance of the SVM-meta classifier is compared against the standard combination

strategies such as CombMIN, CombMAX, CombSUM and BordaFuse as well as the

performance based on individual features on two test collections: the Corel collection and the

TRECVID 2003 collection. The main conclusions drawn from the experimental evaluation are:

(i) performance on the Corel data set is not indicative of the performance of the evidence

combination on a real world data set such as the TRECVID set (greater care should be taken in

identifying an appropriate benchmark collection), and (ii) the SVM meta classification appears

to be a promising approach for specific topics in the TRECVID collection.

2.2.2   Fusing low-level visual features with mid-level semantic features

Luo et al [49] investigated the effectiveness of a Bayesian network-based framework for

fusion of low-level features (colour, texture, shape) with semantic features (objects) for the

task of semantic image understanding. The efficacy of the approach is demonstrated on three

applications concerned with semantic understanding of digital photographs: detection of the

main subject of an image, selection of the most appealing image from an event, and

classification of images into indoor and outdoor scenes. It is argued in the paper that

satisfactory results can be achieved in a specific image understanding task by using low-level

visual features complemented by a small number of well chosen semantic object detectors. In

other words, there is no need to detect every object in the scene, as selective object recognition

suffices for the particular tasks selected.
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Colour and texture low-level descriptors were extracted (either on pixel or block basis) for

indoor/outdoor classification. The colour features were based on quantised colour histograms

(3x64 bins) in the Ohta colour space [70] while the texture features were based on an MRSAR

(Multiresolution Simultaneous Autoregressive) model [58]. A bank of filters was applied to an

image in order to extract the low-level representation. However, the paper does not provide a

detailed description of the features used.

The semantic features (in the form of semantic objects) were extracted using a bank of object

detectors “of reasonable accuracy”, two semantic features were extracted in this case: sky and

grass. Regions containing grass and sky were identified using colour and texture features.

The proposed Bayesian network-based integration framework is considered to be a hybrid

approach between exemplar-based systems, that use low-level features, and model-based

approaches, that are built on the expected configuration of a specific type of scene. The choice

of the Bayesian network as an instrument of feature integration is justified by its ability to

incorporate domain knowledge both in the network structure and its parameters. The approach

relies on both low-level and semantic features, and a probabilistic knowledge integration

network allows all data to be both expressed and integrated in common terms of probabilities.

The low-level and semantic evidence from a hybrid stream is fed to a Bayesian Network-based

inference engine. Bayesian belief networks offer the capability of representing such diverse

feature sets in a common modality (i.e. probability space) as well as of fusing those

probabilities in order to obtain a final decision. The output of a Bayesian network may either

be in the form of semantic labels for the entire image or “importance maps indicating different

scene content”.

The approach is evaluated on three tasks: main subject detection, emphasis image selection

(the most appealing image in an image set pertaining to the same event) and indoor vs. outdoor

classification. The MLBN (multi-level Bayesian network) system is benchmarked against

versions of the system built using one naive and two different Neural Network-based (NN-

based) classifiers. The authors claim that the major advantages of Bayesian Networks over

Neural Networks are extreme stability in the case when some feature detectors are missing or

faulty, as well as good generalization ability on novel data and ease-of-use. 

Paek et al [68] present an approach for an indoor/outdoor scene classification, which combines

image-based and text-based methods (i.e. image classifiers based on information originating
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from the different modalities). They used a combination of the text accompanying images in

multimedia documents (in a TF*IDF vector-based approach and the novel OF*IIF vector-

based approach) in order to automatically annotate photos with content descriptions. The

OF*IIF approach is a variation of the TF*IDF adapted for use in image analysis domain,

where OF is the object frequency and IIF is the inverse image frequency.

The method makes use of the text accompanying an image (e.g. web pages, news articles with

images and corresponding captions). The amount of text taken into consideration (e.g. full

article, image caption, first sentence of the caption) and types of text information extracted is

varied. 

Two alternative approaches for indoor/outdoor classification based on text are examined: (i)

TF*IDF scores and (ii) machine learning of words that distinguish well between the classes to

categorise images using corresponding captions and articles. In the first text-based approach

TF*IDF scores were computed for each document and class TF*IDF scores for all documents

in each of the classes (indoor and outdoor): TF (term frequency) for a single document is the

number of times a word appears in the document, TF for a given class is the number of times a

word occurs over all documents in a given class. The inverse document frequency of a word

(IDF) is the log of the ratio of total number of the documents and the number of documents

that contain a given word. The product TF*IDF is higher for a word that is characterised by

higher frequency within a document and low overall spread over the collection. Two scores

were assigned to each image: one measures similarity with a prototypical indoor image and

another similarity with an outdoor one. 

The second text-based approach is based on automatically locating words (they selected 80

words) or phrases whose presence is a strong indicator of membership of one of the classes. 

The image-based classifier used in [68] is analogous to the TF*IDF approach for text-based

classification of images: they use OF*IIF scoring of images. Object frequency (OF) for a

single image is the number of times an object occurs in the image, while an object frequency

for a given class (indoor or outdoor) is the number of times an object occurs in all the images

in a given class. The IIF of an object, inverse image frequency, is defined as the log of the ratio

of the total number of images and the number of images that contain that object. The set of

objects is predefined for a given set of training images in a cluster-based approach to defining

and detecting of objects. In their experiments each image is divided into a 8x8 grid and a set of
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colour and texture features is generated for each block (166 bin HSV colour histogram, 73-bin

edge direction histogram of each block). The feature vectors associated with each block are

clustered based on a single feature and the cluster centroid for each of the clusters defines an

object. The next step involves detection of the objects defined in this way in both the training

and test images. Similarly to their text-based approach, in [64] the authors computed OF*IIF

scores for each image in the test set and class OF*IIF scores for the same objects. The dot

product between the OF*IIF vectors for each image and each of two class vectors was

computed in order to obtain two scores that measure the similarity of the image with the

prototypical images of the classes. 

Integration of the two approaches, the approach that draws on textual data (TF*IDF score of

image captions) and the one drawing on visual information (OF*IIF score of image) is

achieved by combining their respective scores. The aggregated score for an image is a

weighted sum of dot products TF*IDF and OF*IIF with their respective class vectors. The

probability density of the difference of two scores is empirically estimated by applying a

rectangular smoothing window over the histogram of the difference. The integration of

approaches results in a significant improvement in classification accuracy. 

The method in [68] was evaluated on the task of indoor/outdoor classification. The raw data

consisted of news articles containing images and associated captions. Images were labelled by

14 volunteers with each image being labelled by at least two volunteers. Only images for

which the judgments of both subjects were in agreement were used in the experiments. In

order to determine the upper bounds on the performance of classifiers, their experiments

during labelling included restricting the amount of information available to humans: labeling

based on text only and labelling based on the images only was performed. A conclusion drawn

from these experiments is that humans make the indoor/outdoor distinction more easily from

the image data, while the opposite is true for the automated classification system.

The experimental results show that for the first text-based approach, the most effective strategy

involves the following: restricting the analysis to the first sentence of the caption, using

normalised class frequency vectors and empirically estimating the probability density of the

difference of the two scores. Experiments show that captions are much more closely related to

images whereas the inclusion of the text from associated articles brings in background noise.

The experiments demonstrated that by fusing the information from the two modalities, a

classification accuracy of 86.2% could be obtained. This represented an improvement of
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approximately 12% over image classifiers of the time, an improvement of approximately 3%

over their text-based classifier alone and 4% over their image-based classifier alone.

2.2.3   Fusing low-level visual features with camera metadata

Boutell and Luo [8] investigated the use of camera metadata (“data about data”) for improved

semantic scene classification of digital photographs, through fusion of visual features with

camera metadata. They considered three different classification problems (indoor/outdoor

classification, sunset detection and manmade/natural classification) and analysed the camera

metadata statistics for each of the classes. To identify the most discriminative cue for a given

problem, they calculated the average Kullback-Leibler (KL) divergence [39] of each cue for

the two scene classes: the maximum average divergence corresponds to the most

discriminative cue for a given task. The same analysis was applied to the cue combinations for

joint distributions of variables. The analysis of camera metadata statistics shows that the

following metadata fields are the most discriminative for each of the classification problems

listed: exposure time, flash fired and subject distance.

Among the hundreds of metadata tags contained in the EXIF1 header of a JPEG image, there

are a number of tags that relate to image capture conditions such as: Flash, FocalLength,

ExposureTime, ApertureValue, FNumber, ShutterSpeed and

SubjectDistance, ISOSpeedRatings, etc. The authors categorised the relevant metadata

tags into four families they considered useful for scene categorisation and valid beyond the

applications they address in the paper: Scene Brightness (includes exposure time, aperture, f-

number and shutter speed), Flash, Subject Distance, and Focal Length. It is claimed that the

above features are mutually independent. However we note that scene brightness and flash are

actually dependent as the use of flash affects the scene brightness. Similarly, camera focal

length is dependent on the subject distance.

The authors proposed a probabilistic approach to the fusion of low-level content-based

evidence (i.e. the output of a classifier) with the evidence based on the camera metadata.

Following a statistical discriminant analysis conducted in order to identify the most

discriminant cues for each of the classification problems, the visual content-based features and

metadata cues were fused in the probability domain using a Bayesian network. All evidence

1 The EXIF components are explained in Chapter 4 in detail
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was expressed in common terms of probabilities. Evidence fusion was performed in two

stages: firstly, two separate classifiers were employed in order to classify metadata evidence

on one side and low-level visual evidence on the other side. Low-level input was of a pseudo-

probabilistic type (e.g. SVM output mapped into probabilities), while metadata input was

either of Boolean type (e.g. flash used) or discrete type (e.g. quantised exposure time). At the

second stage a Bayesian network completes the integration of both types of evidence.

The model was successfully applied to tasks of indoor/outdoor classification, sunset detection

and manmade/natural scene detection. The experimental results for the three classification

problems demonstrate that integration of content-based features and metadata contributes to

improved classification performance. The experiments also showed that their classification

scheme still works even in the absence of some cues and, more particularly, even in the

absence of all content-based cues (in the case of indoor/outdoor classification). The results of

indoor/outdoor classification based solely on metadata (no content-based cues) are comparable

to those based on integrated content-based and metadata features. In fact, in the case of the

indoor/outdoor classification task, metadata features on their own outperform the content-

based features alone. In the case of indoor/outdoor detection, the best performing metadata cue

combination results in detection accuracy of 92.2%, whereas the accuracy of the detection

based on low-level visual features alone stands at 81%. By integrating low-level visual

features with camera metadata, the detection accuracy is raised to 94.1%. In the

manmade/natural scene classification task, use of metadata along with visual features

improves the classification accuracy for an average of 2% over the entire operating range.

In [7], Boutell and Luo presented a probabilistic approach for indoor/outdoor scene

classification of images in home photo collections based on integration of the image temporal

context with the image content. The approach exploited the fact that, in a personal photo

collection, unlike professional stock photos, each photo has a temporal context in the form of

other photos that have been captured in close temporal proximity. They assumed that this

contextual relation will be strongest in the closest proximity of an image.

In the Boutell and Luo approach, context and content were combined using a probabilistic

model: a Hidden Markov Model (HMM) was used to model a sequence of images. A

hierarchical classification method was employed. At the first level, each image was classified

on its own based on image content using a SVM classifier. At the second level, classification
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was performed using the combined evidence: classification based on content-based features

plus the evidence gleaned from contextual relationship with the surrounding images. The

approach assumes the following: (i) image classification at the first level, using content-based

evidence, only depends on that image itself, (ii) the context of a node i only depends on the

previous image/node (i-1) in the sequence.

Content-based evidence included colour and texture features: block-based colour histograms

and wavelet texture features. Initial indoor/outdoor classification was performed using a

Support Vector Machine classifier. The SVM's output was then transformed into pseudo-

probabilities using a sigmoid function. 

Image timestamps were used to determine the elapsed time between each two neighbouring

images in an image sequence, thus providing a temporal context for every image in a sequence.

The temporal context of an image was modelled using a HMM model, where the class of each

image was represented by a node, and temporal dependencies between two nodes were

represented by an edge. The HMM requires that two types of probabilities, transition

probabilities and output probabilities, be either learned from data or set by an expert.

Transition probabilities denote the probabilities of an image belonging to a class i given the

classes of the images in its immediate temporal neighbourhood. For instance, an image

surrounded by two indoor images can be expected to be an indoor image itself. Transition

probabilities determine the strength of the class relationships between temporally close images:

class relationship between the neighbouring images taken in a shorter space of time is expected

to be stronger, i.e. the strength of the class relationship is inversely proportional to the the

elapsed time between two images. In this work, transition probabilities were learned from the

training set under the assumption that the strength of the relationship drops off exponentially.

The output probabilities are likelihoods of evidence (i.e. output of content-based classification)

being observed given a true scene class. A sigmoid function was used in order to convert the

real-valued output of the content-based SVM classifier into a pseudo-probability of an image

belonging to a class. To maximise the probability of classifying an entire sequence of images

correctly whilst keeping the algorithm complexity low, a dynamic programming algorithm (the

Viterbi algorithm [22]) was used to perform optimisation (iteration through a sequence

searching for the optimal path to each state from the start). The transition matrices (i.e.

transition probabilities P(Ci+1 | Ci) as a function of elapsed time) were obtained by

discretisizing the elapsed time between each two adjacent images in the test sequence and
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mapping it back to learned probabilities that correspond to those elapsed-time bins in the

training sequence. The classification was performed in two stages: the first stage was based on

low-level feature representation (SVM) and the second stage consisted of imposing the

temporal model (using metadata) on the results of the first stage using the HMM. 

The comparisons of the performance of the temporal context model against the content-based

classification only, shows a substantial increase in recall (approximate gain of 5% for ROC

curve outdoor recall vs. indoor recall obtained by varying the bias of the SVM classifier).

2.3    Fusion methods in video analysis

Although not directly relevant to the work presented in this thesis, the core of which deals with

classification of still images, we include the overview of the fusion methods in video analysis

not only for the sake of completeness, but also due to the fact that, in many instances, video

analysis could be viewed as still image analysis enriched with temporal information and audio.

Furthermore, as discussed in the previous section, even the sequences of still images in

personal photo collections do have a temporal aspect to them. The work of Boutell and Luo

[7], demonstrates how the temporal context of a still image can be exploited for image

classification. Lastly, any information on data fusion methods, even in the different domain,

may be relevant to some degree.

Fusion methods in video analysis employ, amongst others, the following combinations of

features: (i) low-level visual with textual features, (ii) audio-visual with textual features and

(iii) audio-visual features using different statistical models for each feature type.

2.3.1   Fusing low-level visual features with textual features

K. Mc Donald and A.F. Smeaton [57] conducted a comparison of score-based, rank-based and

probability-based fusion methods for video shot retrieval. They investigated a range of

standard late fusion methods for combining classification results based on (i) multiple visual

features (colour, edge and texture), (ii) multiple visual examples in the query and (iii) multiple

modalities (text and visual). The comparisons were performed on three TRECvid collections
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(2002, 2003 and 2003) as part of the TRECvid search task. They empirically established

effective fusion methods that are suitable for different types of video search.

The premise for their work was that the retrieval results of a system can be presented either as

a ranked or scored result list. While both lists are ordered lists of retrieved items sorted in

order of their relevance to the query, the scored list also provides additional information in the

form of scores. The scores measure relevance of the given item to the query, i.e. the degree of

match. The score is also an index for the quality of the decision and shows more details about

the relationship between the classes, whereas the ranking is a simple linear ordering of a set of

items. The features used in their work were four low-level features combined with text-based

features.

In [57], the authors represent the content of a video shot using four features: text obtained

using automatic speech recognition techniques (i.e. ASR text), Hue-Saturation-Value colour

space based histogram (16x4x4 bins), Canny edges (64 bins) and DCT-based texture (with 5

coefficients quantised into 3 bins each), using a 5x5 grid. This particular choice of image

partitioning provided a limited, but still beneficial amount of spatial information. A discrete

language modelling approach was used for the low-level features: shots were ranked in order

of the probability of their language model generating the query (known as a query-likelihood

approach). In order to be able to deal with low-frequency events (zero frequency in particular)

and to reduce the impact of frequent events on the empirical distribution of features, smoothing

was performed using a collection model.

A Hierarchical Mercer-Jelinek smoothed language model [35] was used for the ASR

(automatic speech recognition) text feature: each shot was smoothed with the text from

adjacent shots, from the whole video and from the entire video collection.

In the late fusion methods of McDonald and Smeaton in [57], matching was performed on

individual features first and then the matching scores were fused, with the aim of improving

upon the best individual retrieval result. Rank-based methods combine separate search results

by way of summing the rank position of a document in different search result lists (e.g. Borda

count and weighted Borda count [12]) Score-based combination methods, on the other hand,

either sum the multiple retrieval scores or sum the scores from truncated result lists (e.g. the

top 1000), and then multiply the average by the number of models that returned it (CombSUM

[79]). When heterogeneous retrieval or feature models are combined it is necessary to perform
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some sort of normalisation of retrieval scores in order to make the scores comparable (usually

by mapping the scores to a [0,1] range).

In their multi-modal fusion experiments, retrieval results for the text and visual features were

combined using variations of data fusion methods that were originally developed for

combining the results of multiple text search engines. The methods were based on normalised

score and rank and used one of the following combination functions: the average or the

weighted average of the maximum of the individual search results. When features were

combined, the result list for each feature was truncated to the top N results (N=1000). In the

case of queries with multiple visual examples, the result list for each of the visual examples

was truncated to N=M/num_vis_examples, where M was an empirically selected value in the

range [1000, 3000].

Their results suggest that the normalised score fusion should be preferred over the normalised

rank fusion as they noted that the distribution of scores holds valuable information that is lost

when normalisation is performed based on rank alone. The result of the experiment involving

fusion of the ASR text retrieval and the retrieval results of multiple visual examples show that

CombSumWtScore (i.e. weighted average of the normalised scores of the top N results) is the

best multi-modal fusion strategy.

Lin and Hauptmann [46] address the problem of classification of broadcast news video into

weather/non-weather reports using SVM-based classifiers, and investigate different

combination strategies for combining text features from closed captions and visual features

from the image. Specifically, they compared a meta-classification combination strategy using

SVM with probability-based strategies. The choice of classifiers (all SVM) for both text-based

and image-based classification is justified by high dimensionality in the text feature space and

the known ability of SVMs to work well in high-dimensional feature spaces.

In [46], news transcripts extracted from closed captions are used as sources of text features. In

the text categorisation domain, a document is viewed as a “bag-of-words” where the order of

words is considered irrelevant. Each individual word is treated as a feature, the document is

represented as a feature vector (i.e. relative frequency vector) whose dimensionality equals the

size of the vocabulary. Each feature value is a normalised word frequency (i.e. the number of

times a word from the vocabulary appears in the documents normalised by the length of the

document). Word frequency measures the significance of a word in the document. Stop word
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removal and stemming are applied in order to reduce the dimensionality, which normally

results in better performance. The feature vector is very long (vocabulary size is 19895), but it

is sparsely populated i.e. most of its elements are zero. 

Visual features in the form of colour histograms were extracted from a keyframe representing

each shot. The keyframe was partitioned into a 5x5 rectangular grid and colours were mapped

into a 5x5x5 cube in RGB colour space resulting in 125-dimensional feature vector for each

block. By concatenation of feature vectors associated with each of 25 blocks, a long feature

vector with 3125 elements was formed to represent an image.

Two types of combination strategies were considered: probability-based strategies and meta-

classification strategies. The authors aim to achieve an improved classification performance by

building several weak (as well as cheap) classifiers and then combining their scores. A weak

classifier is a classifier whose accuracy is only slightly better than pure chance classification.

A performance comparison of unimodal classifiers shows that the text-based classifier has

higher precision. However, the image-based classifier has higher recall, as well as a smaller

difference between recall and precision values. A comparison of probability-based classifier

(product rule) and meta-classifier demonstrate the superior performance of the meta-classifier

as shown by an improved precision. The authors believe that naive estimation of prior class

probabilities (i.e. all prior probabilities are equal) may be one of the reasons for inferior

performance of the probability-based classifier. Also, in contrast to probabilities-based

classifier, a meta-classifier “observes more information” when making the final decision.

Namely, unlike the product rule which treats all classifiers equally and assigns them equal

weights, the SVM meta-classifier learns the weights associated with different classifiers and in

that way recognises that one classifier may perform better in recognising a particular class, but

not all the classes. The authors also note the remarkable stability of SVM-based meta-

classifiers even in a high dimensional environment, when using noisy data and simple features.

2.3.2   Fusing low-level audio-visual features with textual features

In [1], Adams et al presented a learning-based approach to semantic indexing of multimedia

content based on cues derived from multiple modalities: audio, visual and textual features.

They defined a lexicon of atomic concepts (e.g. sky, water, music, speech) and developed a set
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of corresponding statistical models. They used Gaussian Mixtures (GMM), Hidden Markov

Models (HMM) and Support Vector Machines (SVM) to model the atomic concepts in the

lexicon. New concepts were defined in terms of concepts in the lexicon. High-level concepts

were expressed in terms of the concepts contained in the lexicon and information in the

annotated training data, using Bayesian Networks and SVMs as an integration framework for a

late fusion approach. The paper investigates two main approaches to modelling of semantic

concepts and events: probabilistic approaches (GMM, HMM and Bayesian Nets) and

discriminant approaches such as SVMs.

Visual properties of a region are represented using a total of 56 visual features: normalised,

linearised 3-channel histogram in HSV colour space (6-6-12 bins), 24-bin histogram of edge

directions (Sobel detector applied on 3x3 windows) and moment invariants to describe the

shape of each region. The low-level audio features are 24-dimensional Mel-Frequency Central

Coefficients (MFCC).

The lexicon contains over 50 semantic concepts which are used to describe events, scenes and

objects. The experiments used only a subset of those: visual concepts (rocket object,

fire/smoke, sky, outdoor), audio concepts (rocket engine explosion, music, speech, noise) and

multi-modal concepts (rocket-launch). For instance, the high-level concept of rocket-launch is

inferred from the detected visual (atomic) concepts in multiple modalities.

Integration or fusion of information from different modalities may occur at different levels: (i)

at the low-level features level, (ii) within atomic concept models or (iii) through the

combination of several atomic concept models into multi-modal high-level concept models.

The focus of the work presented in [1] is on modelling of atomic concepts using low-level

features, and representing the high-level concepts using atomic concepts modelled across

different modalities.

This fusion scheme obtains over 10% relative improvement in comparison to the best

unimodal concept detector. Retrieval performance is measured using precision-recall curves

and an overall-figure-of-merit (FOM), i.e. the average precision over the top 100 documents. 

28



2.3.3 Fusing different statistical models for different audio-visual

features

In [79], Smith et al described a model-based classification system that integrates features,

models and semantics for automatic and interactive content-based video retrieval. Audio-visual

descriptors were extracted on the shot level from a keyframe selected to represent the video

shot. Using the audio-visual descriptors, they developed and applied models of scenes and

events for classifying video shot content (i.e. assigning semantic labels) into broad categories

such as: indoor vs. outdoor, nature vs. man-made, face detection, sky, land, water and

vegetation. Statistical models for semantic concept modelling that they developed using the

training data, were subsequently used to semi-automatically assign labels to novel video shots.

All semantic labels were contained in “a lexicon for describing events, scenes and objects”.

The labels are automatically propagated to similar shots.

The following descriptors were extracted from each keyframe: colour histogram (166-bin HSV

colour space), grid-based colour histogram (4x4 grid of the HSV histogram), texture spatial-

frequency energy (variance measure of each of 12 bands) and edge histogram (using Sobel and

quantisation to 8 angles and 8 magnitudes). 

Statistical models were developed to model the following groups of concepts: events (fire,

smoke, launch), scenes (greenery, land, outdoors, rock, sand, sky, water) and objects (airplane,

boat, rocket, vehicle). Descriptors extracted from the video were modelled by a

multidimensional random variable. Each semantic concept was modelled by two Gaussian

Mixture Models (GMM) with 5 Gaussians each: a positive model for a given label (i.e. concept

present) using positive examples in the training set and a negative model or garbage model (i.e.

concept absent) for that label using negative examples. Parameter estimation was performed

using annotated examples in the training set. The likelihood ratio (i.e. ratio of likelihood of

being in a class � 1 and likelihood of not being in a class � 1 given a feature vector x) was

chosen to be the measure of the confidence of classifying a test image correctly.

The objective of feature fusion in this paper is to combine multiple statistical models for the

different video features. Statistical models generate semantic labels, each with an associated

confidence score. Each of the descriptors is modelled using a separate GMM (whose

parameters were determined using the annotated examples in the training set) and an image is
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classified based on each of the descriptors, resulting in a number of individual classification

confidences. Individual confidences associated with each descriptor are combined in a

straightforward manner, by taking a sum, maximum or product of the individual confidence

values to compute the final classification confidence. An alternative to this late fusion method

corresponding to a concatenation of different descriptors into a single feature vector and

building a single GMM model was not pursued due to the large dimensionality.

Using the ASR retrieval as a benchmark, the authors report that, although the performances

varied for different search topics, the integrated interactive retrieval approach resulted in an

overall performance improvement. The average number of hits per query over 46 general

searches for an integrated approach was 4.3, whereas it was only 1.9 for the ASR-based

approach.

2.4    Summary and Conclusions

In this chapter we present a number of fusion approaches employed in the analysis of the

semantics of visual content, both in video and still images. As these fusion methods were

evaluated on different datasets it is difficult to make direct comparisons in terms of

performance. Moreover, some of the approaches were tested on consumer photographs,

generally considered a very challenging dataset due to its unconstrained nature and high degree

of ambiguity with respect to any predefined scene categories, whereas others were evaluated

on less-real-world datasets such as the Corel dataset. This also makes direct comparison

difficult.

Finally, various domains, from which the images were drawn, offer different alternative

sources of information to complement the low-level visual feature representation. Examples

are audio cues and temporal context in video, associated text in multimedia documents,

temporal context for still images in personal photo collections, easily detectable semantic

concepts, partial annotations and camera metadata in consumer photographs. A summary of

the conclusions drawn as applicable to the work reported in the remainder of this thesis are:

� The power of low-level visual feature representation as a means to infer the semantics of an

image is limited and it is thus necessary to explore and utilise data originating in
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complementary modalities. Overall, individual performance comparisons between multi-

modal and single mode approaches show superior performance of the multi-modal

approaches to that of single-modal approaches.

� Successful approaches that overcome the limitations of low-level features, usually combine

low-level visual descriptors (e.g. colour, texture, shape) with complementary information

such as text [1,46,57,95], low-level audio features [1,79], mid-level semantic features such

as grass and sky [49,68] or camera metadata in the case of digital photographs [7,8].

� Combination strategies employed in the approaches presented here are of two types:

probability-based strategies and meta-classification strategies. In the case of probability-

based methods, the final decision is based on the product (product rule) of posterior

probabilities of all classifiers for a given class. On the other hand, a meta-classification is

based on the idea of treating the judgments from each classifier for each class as a feature

and concatenating individual class judgments into a new feature vector. The final decision

is reached by the meta-classifier. A comparison of the probability-based method and the

meta-classifier in [46] demonstrate the superior performance of the meta-classifier in terms

of improved precision. The improvement is attributed to that fact that, compared to

probabilities-based classifier, a meta-classifier “observes more information” when making

the final decision.

� The majority of the methods are either pure exemplar-based or hybrid, and thus involve

some degree of learning performed using annotated examples. This is a reflection of the fact

that in the face of unconstrained image scenes, in consumer photographs in particular,

building scene models becomes a virtually impossible task.

� The high dimensionality of feature spaces that sometimes result from feature fusion may be

prohibitive for inference engines other than SVMs, which are distinguished for their ability

to work well in high dimensional spaces. For this reason, the SVMs are expected to be

particularly well suited for early fusion approaches. The authors in [46] also note

remarkable stability of SVM-based meta-classifiers in a high dimensional environment

when using noisy data and simple features. Overall, SVM appears to be the learning

technique of choice along with the Bayesian networks.

� Broad-topic digital photographs in general, and consumer photographs in particular,

constitute a rather challenging subset of still images due their their unconstrained nature.
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However, digital photographs have an advantage of bringing with them a valuable and

easy-to-obtain complementary source of information that also comes cheaply: namely

camera metadata. The potential of camera metadata is well demonstrated in [8]: the results

of indoor/outdoor classification based solely on camera metadata are comparable with that

based on fusing content-based features with metadata. Moreover, metadata features on their

own outperform the content-based features alone in the task of indoor/outdoor

classification.

In summary, the following is highlighted as being of particular relevance to our objective here:

� superior performance of the multi-modal approaches over single-mode approaches;

� good discriminative power of some of the camera metadata features for the task of

indoor/outdoor classification of consumer photographs;

� the SVM's ability to work well in high-dimensional spaces and “observe more

information” when acting as a meta-classifier makes the SVM suitable for use as an

integration device in both the early and late fusion approaches.

Hence, it seems feasible to pursue a multi-modal approach that combines low-level visual

features with selected camera metadata, using a SVM for data integration, in order to achieve

an improved detection of buildings in consumer photographs, which is our objective here.
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Chapter 3

Detecting Large Buildings in Natural Images Using

Visual Features

3.1    Introduction

Semantic concepts, such as objects, people, etc., are the main “instruments” that humans use to

navigate through and retrieve examples from large image/video databases [64]. Semantic

annotation of large image/video databases is thus essential if ease of access and use is to be

ensured. Inferring the presence or absence of high-level semantic concepts from low-level

visual features is a research topic that has attracted a considerable amount of interest lately.

Our objective in this chapter is to detect the presence of a large building object (i.e. outdoor

architecture according to [64]) in an outdoor colour image within a general purpose collection

of digital photos. All photos are taken by a ground-level camera in an otherwise unconstrained

environment. In the image of interest, a building is either a single dominant object or one of

the dominant objects. We aim to show that a feature representation based on a few carefully

selected and physically meaningful low-level features, coupled with the high generalisation

ability of an SVM classifier engine, may be sufficient to detect some high-level concepts, such

as buildings. As there exist a number of methods that reasonably successfully address the issue

of indoor/outdoor classification of consumer photographs [51,82], we assume the availability

of contextual information in the form of an indoor/outdoor label.
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In section 3.2, a short review of relevant work is presented, while section 3.3 provides details

of the approach. The results of performance evaluation and conclusions are given in sections

3.4. and 3.5 respectively.

3.2    Literature review

A significant portion of research work in the area of building detection focuses on building

detection in a constrained environment using multiple images of a scene (e.g. building

detection in aerial photography). The majority of researchers, addressing either aerial or

ground-level photography, utilise some sort of edge distribution-based feature as a low-level

descriptor. In the following, we review some of the work on detection of buildings, and

human-made structures in general, in ground-level photographs.

Vailaya et al [87] developed a procedure to qualitatively measure the saliency of a feature

towards a particular classification problem based on a plot of the intra-class and inter-class

distance distributions of that feature. They show that a specific high-level classification

problem can be solved using relatively simple low-level features geared for the particular

classes. The edge direction coherence histogram was found to have sufficient discrimination

power to distinguish between cityscape and landscape images (an edge pixel is considered

coherent if it belongs to a connected component in a given direction whose size is at least

0.1% of the image size). This feature is geared towards discriminating structured edges from

arbitrary edge distributions. The presence of human-made objects or structure in an image

results in an edge direction histogram that exhibits peaks at or around the significant edge

directions, whereas the edge distribution for “natural” images appears to be of random nature,

i.e. the distribution usually appears to be flat.

The Dorado and Izquiredo [18] approach is based on the MPEG-7 edge histogram descriptor

(an 80-bin histogram representing the local distributions of directional edges within an image:

0°, 45°, 90°, 135°, and non-directional) and on the local and global distribution of edges. The

approach exploits rough matching and problem domain knowledge through user relevance

feedback, while classification is performed based on rule-based fuzzy inference. The image is

spatially divided into 16 equally sized sub-images, each of which is further divided into a
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given number of non-overlapping small square blocks. The blocks are divided into 4 sub-

blocks and passed through 5 filters to assign them to a corresponding edge category. The

edge distribution in an image is summarised by a 80-component feature vector (16 sub-images

x 5 bins each). Fine-tuning is performed through relevance feedback.

The approach of Iqbal and Aggaraval [27,28] for detection of large man-made objects, such as

buildings, bridges, towers, etc., is based on the perceptual grouping of image primitives

according to Gestalt principles of perceptual grouping [72] (continuity, closure, proximity, co-

linearity, co-circularity, symmetry, parallelism). Lower-level primitive image features, such as

line/edge segments, are grouped hierarchically into higher-level structures aiming to reach a

meaningful semantic structure. The goal of grouping is to identify image features that are

likely to have arisen from some scene properties rather than accidental arrangements (“the

principle of non-accidentalness”). For building images, a 3-component feature vector is used to

represent an image to be classified into 3 classes: building, intermediate and non-building.

Features used are: number of “L” junctions, “U” junctions and “significant” parallel lines in

the total number of “retained” lines. In [29], they combine features based on perceptual

grouping, colour features and texture features into a 66-dimensional feature vector to represent

an image. Their experiments confirm the intuitive expectation that colour information does not

have sufficient discriminative power for building/non-building classification on its own. Their

method achieves good classification performance for broader classes such as man-made

structures, but performs modestly on subclass classification within the man-made class.

Common to all three approaches outlined above is the focus on edge/line segments features

and the use of orderliness or regularities that the presence of human-made objects in a scene

generates in terms of edge distribution. An important limitation of an edge distribution based

representation is the fact that the edge distribution in building images is a function of the

perspective distortion. To some extent, perspective distortion can be dealt with by widening

the histograms bin.

The work of Mojsilović and Rogowitz [64] describes a set of psychophysical experiments

conducted in order to gain an insight into the broad semantic categories that govern human

perception of image similarity and to understand the way in which users judge the similarity of

photographs. Based on the experiments, they (i) identify the 20 most important (broad
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semantic) categories in human similarity perception, (ii) model these semantic categories in

terms of combinations of computable images features (low-level), and (iii) develop an

appropriate similarity metric for classification and search of photographs. Among their

qualitative findings they list that semantic cues such as “water”, “sky/clouds”, “snow” “and

mountains” are very important and that the strongest cue is the presence of people. Regions in

an image of the “human-made” class usually feature straight lines, sharp edges or geometric

shapes, while regions in “natural” images feature rigid boundaries and more random edge

distributions.

Boujema et al [5] present a proposal for an improvement of the commonly used colour

histogram descriptor (a first order colour distribution with low associated computational

complexity) by way of an adaptive weighting of each pixel's contribution and accumulative

histogram. The pixel weighting schemes they propose are related to a local measure of non-

uniformity computed in a pixel's neighbourhood and are based on evaluation of perceptual

cues (e.g. corners, isolated corners), statistical colour area distribution and local colour

relevance. The magnitude of all listed measures increases with the increase of local colour

variability. By computing histograms on different windows and then combining them in

“different ways of accumulation” (e.g. additive, multiplicative accumulation) to improve

information of geometric distribution of colours, they demonstrate that the novel colour

distribution is both easy to compute and achieves superior retrieval performance irrespective of

the colour representation used.

In the work described here, we approach the problem of building/non-building classification of

the whole image using simple low-level features suited for the classification problem at hand,

resulting in a low-dimensional feature space. Our approach for detecting the presence of large

buildings in consumer photographs is based on multi-scale analysis, from global to local level,

and it relies on explicit edge detection. An SVM classifier engine is employed to infer the

information about the presence of a large/dominant building object from the edge orientation-

based features. We show that a few simple features with physical meaning coupled with the

high generalization ability of the SVM can yield satisfactory classification performance

comparable to that of the existing approaches. The key aspects of our approach are low-

dimensionality and simplicity.
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3.3    Proposed approach

3.3.1   Overview

Our objective is to detect the presence of a large building object in an outdoor colour image in

a general purpose collection of digital photos. All photos are taken by a ground-level camera,

at a close or medium distance, in an otherwise unconstrained environment. In the image of

interest, a building is either a single dominant object or one of a few dominant objects in a

possibly cluttered scene, with a complex background and frequently occurring occlusions. A

building is a human-made structure, defined as “a structure with walls and a roof such as a

house or factory”, or “a usually roofed and walled structure built for permanent use (as for

dwelling)” [62].

Figure 3.1   Variety of building shapes and views.

We approach the task of building detection as a classification problem, i.e. the assignment of

an image to one of two classes: building or non-building using an inductive-learning method (a

training set of labeled examples is used to learn the classification function automatically). Our

approach, based on the classification of low-level feature representation of an entire image, is

motivated by a simple observation: the most commonly occurring views of a building in non-

artistic, amateur, general purpose consumer photographs can be summarised into six main

types as shown in Fig 3.2.
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                 a)            b)           c)          d)        e)           f)

Figure 3.2 A building projection as a function of common viewing angles: (a) frontal view,

(b) frog's view, (c) bird's eye view, (d) view from right, (e) view from left, (f)

“street”.

The presence of a dominant human-made object in a scene generates strong low-level evidence

in the form of straight or elliptical line segments and edges [27,28,29]. Given that there is huge

variation within the building class in terms of possible shapes that different types of buildings

may take (as illustrated by Figure 3.1), we take the view that a coarse modelling of building

shape/geometric properties is an appropriate approach. Dominant edge orientations of building

object boundary edges and edges due to windows, doors, etc., are in most cases a combination

of near-vertical and near-horizontal with near-45°, or near-135° degrees. Examination of the

36-bin edge orientation histograms of nine randomly selected typical images of building,

nature, and structure in Figure 3.3 shows that “interesting events”, which distinguish between

building and non-building images, (e.g. large peaks), occur at around angles such as 0°, 45°,

90°, 135° depending on the viewing angle. This indicates that it may be sufficient to base our

representation on relevant subsets of the edge histogram instead of the entire histogram. The

edge segments are, in accordance with the Gestalt principles, which are discussed in more

detail in section 3.3.2, expected to obey the rules of good continuity and co-linearity.

Figure 3.3 Comparison of normalised smoothed 36-bin edge orientation histograms for 9

randomly selected typical building, nature and structure images.
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It is assumed that concepts that are large are also semantically important and that they usually,

in consumer photographs at least, occur around the centre of the scene. We therefore

incorporate localised information based on an analysis of a central rectangular region

comprising 25% of the image size.

3.3.2   Low-level feature representation: edge orientation

Edge orientation histogram

The edge histogram is a first-order global shape descriptor characterised by its simplicity. It

captures the general shape information in the image and it has been shown to be suited for use

in a general purpose database [5]. The fact that it does not require segmentation as a

prerequisite is a significant advantage considering that object segmentation is still a difficult

problem. Other advantages of the edge histogram include its invariance to translation in the

image and robustness to partial occlusion. However, edge histogram features are inherently

neither scale nor rotation invariant. Scale invariance, which in this context means invariance to

the absolute size of the object, is achieved by normalising the histogram by the sum of

weighted contributions of all edge pixels considered. In this way we are able to deal with

images (and buildings) of different sizes, avoiding the need for preprocessing.

Edge orientation histogram vs. edge direction histogram

The use of edge orientation histograms instead of edge direction histograms allows us to

effectively reduce the number of bins considered, while retaining the relevant information (e.g.

on parallelisms, co-linearisms) by reinforcing the relevant peaks in the 0° to 180° range. Both

the orientation and direction are cyclic quantities. However, the direction is defined over the

full angle range of [0°,360°], whereas the orientation is defined over the angle ranges of [0°,

180º].

In this application we aim to examine the edge angle distributions resulting from the presence

or absence of a large building in an image. We are particularly interested in the presence of

near-horizontal, near-vertical and near-diagonal edges etc. Obviously, such an objective does

not necessitate making a distinction between the edges with 0° direction and that with 180°

direction as for the purpose of this application it is sufficient to consider them both horizontal

edges. Consequently, by choosing to “fold over” the edge direction histograms in order to
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create edge orientation histograms we are able to maintain 5 degree quantisation while halving

the number of bins. It is clear that this transformation causes no loss of relevant information,

but allows for a reduction in the number of bins used to represent an image by factor of two.

Multi-scale generic object detection using Histogram of Orientation Gradients (HOG) has been

studied in Scale Invariant Feature Transform (SIFT) by Lowe [48]. In SIFT, an image is

represented by a number of keypoints or “key locations”, each characterised by a local gradient

orientation histograms (evenly spaced over 360° range). This results in a 128-dimensional

feature vector describing each keypoint. Scale-space analysis is conducted on a pyramid of

Gaussian smoothed images. “Key locations” or stable points in scale-space images are

identified as local extrema of difference-of-Gaussian (DoG) filters at different scales (i.e.

difference of Gaussian blurred images at adjacent levels in the image pyramid). The keypoint

orientation is determined as a peak in a smoothed gradient orientation histogram covering the

full 360° range in the local neighbourhood of the keypoint. Each pixel's contribution in a

Gaussian window (with σ of 3 times that of the current smoothing scale) is weighted by the

gradient magnitude and by a corresponding Gaussian window weight. A keypoint feature

descriptor is computed as a set of 8-bin HOG histograms on 4x4 pixel neighbourhoods. As

before, each pixel's contribution is weighted by the gradient magnitude and by a Gaussian with

σ of 1.5 times the scale of the keypoint. Rotation invariance of the SIFT descriptor is achieved

by constructing HOGs with orientations relative to the keypoint orientation. 

In retrospect, the multi-scale, 24-dimensional EOH-based image descriptor used in our work

could be thought of as consisting of two parts: a global, entire image based descriptor, and a

single keypoint based descriptor. For each, a 4-bin EOH-based descriptor is extracted at 3

scales. The keypoint is assumed to be the centre of an image, the window is an unweighted

rectangular one and its size is relative to the image size (i.e. 25% image size). A pixel's

contribution is weighted by the relevance and coherency of its orientation in its 8-pixel

neighbourhood and only relevant subsets of the EOH are used in our descriptor.

Block-based vs. object-based feature representation

Ideally, prior to feature extraction, an image is divided into meaningful regions corresponding

to real world objects, features are extracted from each object in an image and then, based on

the extracted patterns, each object is recognised or classified. However, after decades of

research, there remains little disagreement in the research community that the accurate
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segmentation of an image into objects is still a difficult task and the solution remains elusive.

The alternatives to object-based feature representation are global and block-based

representations:

� The simplest alternative that sidesteps the segmentation issue is global extraction of

features i.e. extraction of features from an image as a whole. However, the main

disadvantage of the global approach to feature extraction is the complete loss of local

information.

� A block-based approach to feature extraction was identified as a good compromise

between the aforementioned approaches. Here, an image is usually divided into a

number of non-overlapping rectangular blocks or tiles, features are extracted from each

block and then usually concatenated into a single feature vector. While avoiding the

difficult issue of image segmentation, this approach still encodes some local information

(as the position of the block in an image is implicitly encoded). For instance, blueish

coloured blocks along the upper edge of an image may be an indication of an outdoor

image, just as predominantly blue-coloured or greenish-coloured blocks at the bottom or

around the centre of an image may be an indication of a water surface, etc. The limiting

case of the block-based approach is actually a global feature extraction where the entire

image is viewed as a single block [6].

In work of Dalal and Triggs [17], which is contemporary to our work presented in this chapter,

a block-based Histogram of Oriented Gradients (HOG) representation for pedestrian detection

(object scale known) is investigated. Their HOG descriptor is computed on a dense grid

consisting of overlapping 16x16 pixel blocks of four 8x8 cells. Due to a 8 pixel block spacing,

each 8x8 cell belongs to 4 different blocks, thus participating 4 times in gradient magnitude

weighted voting. However, the cell's contribution to a block descriptor is each time normalised

with respect to a different block. Pedestrian detection is performed using a 64x128 detection

window. 

In comparison, our approach can be thought of as having cells of size one pixel and two large,

partly overlapping blocks: one corresponding to an entire image and another corresponding to

a rectangular region in the centre of the first block, 25% of its size. Each pixel's contribution to

either a global edge orientation histogram (EOH)-based descriptor or a single central block

EOH-based descriptor is weighted based on relevance and coherency of its orientation in a 8-
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pixel neighbourhood. Furthermore, our EOH-based block descriptor at each scale is

characterised by only 4 orientation intervals being considered relevant, and is normalised by

the sum of all EOH bins.

Scale-space or multi-scale representation - Pyramid approach

The optimal scale at which to conduct an analysis depends on the size of the object we aim to

detect. “The detection of certain features in an image is optimal at a certain scale”[32].

However, the scale at which the object in a given image is observed, is unknown a priori.

Therefore, it is necessary to obtain a representation of an image at different scales and to

conduct the analysis on a number of scales simultaneously so as to be able to glean the

evidence at different scales.

In a multi-scale representation, an original image I(0)=I0, is associated with a sequence of

simplified images I(x,y,t), where t is a scale parameter. As the scale parameter t increases, the

spatial resolution of an image in the sequence decreases. To obtain images from the fine

resolution of the original image to those at coarse resolution, smoothing by convolution with

Gaussian kernel is usually applied. In this way the so called Gaussian pyramid is generated.

The Gaussian kernel and its variants have been shown by Lindeberg [47] to be the only

smoothing kernels suitable for scale-space analysis. Smoothing in steps gradually reduces the

level of detail, as shown in Figure 3.4. Multi-scale edge detection is usually better able to

discriminate between texture edges and the edges that correspond to object boundaries.

Figure 3.4   An example of multi-scale image representation (scaling by factor 2).

42



In Scale Invariant Feature Transform (SIFT)[48], the input image is incrementally smoothed

with a Gaussian kernel σ =√2, and a scaling factor of √2 for subsequent smoothing, in order to

achieve scale invariance. Gaussian-smoothed images are used both for i) identifying so called

“key locations” as locations of minima and maxima in difference-of-Gaussian images, and ii)

extraction of local descriptors to characterise “key locations”.

Gestalt principles of perceptual grouping

The Gestalt theory of perceptual grouping as applied in computer vision has its roots in the

Gestalt movement in psychology and the theory that our brains perceive “configurational

wholes”, instead of a collection of components. A Gestalt is a shape or “a whole form”, “a

structure, configuration, or pattern of physical, biological, or psychological phenomena so

integrated as to constitute a functional unit with properties not derivable by summation of its

parts” [62]. It refers to “a way a thing has been put together” [10]. This holistic operational

principle is applicable to human visual recognition as well: instead of sets of curves and simple

lines, we perceive figures and “whole forms”. Under the Gestalt theory, our senses have an

innate capability to search for forms: we perceive an object as a particular orderly collection of

basic elements, or a specific arrangement of its elements. In the Gestalt interpretation of the

mechanism of perception, our mind registers and comprehends the basic/primitive elements in

the first stage, and then, whilst searching for some regularity and order among other things,

recognises “the whole” in the particular arrangement of the basic elements such as lines,

curves. Figure 3.5 illustrates the Gestalt principle of emergence of perception – the dog is

recognised as a whole and as a specific configuration of basic elements such as lines, curves,

etc. [56]. In contrast, in the conventional view of visual processing, the dog would be

perceived as a collection of its parts such as legs, head, tail, etc., each of which is perceived

individually [56].

The Gestalt principles of grouping low-level image primitives, such as edges, include the

following ideas [10]:

� Proximity or contiguity– elements which are close by tend to be grouped together and

are seen as belonging together;� Similarity – elements which are similar in some way and share some attribute tend to be

grouped together into an entity;
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� Closure – missing elements whose addition would complete some entity are filled in by

the mind. Similarly, the present elements are re-organised in a way to make a whole;

� Simplicity – elements tend to be grouped together to form simple figures;� Symmetry -  elements exhibiting symmetry in their arrangement are grouped together;� Good continuation – as a result of our preference for continuous figures, we tend to

ignore/disregard some interruptions; � Law of common fate – elements that move in the same direction are seen as a unit.

Figure 3.5   “The dog” – an example of emergence in perception [56].

The edge segments in images containing large buildings are expected to exhibit symmetry and

co-linearity, and obey the principle of good continuation. In building images, this will be

manifested in the tendency of edge segments corresponding to structural edges to be aligned

along straight lines of specific directions that outline the shapes of common building

projections as shown in Figure 3.2.

3.3.3   Algorithmic details

As the appropriate scale for detection is unknown (it is only known that a building is at a close

or a medium distance from camera), we adopt a multi-scale approach to edge detection and

apply a Canny edge detector [13] at three scales. Scaling is achieved by smoothing with the
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Gaussian kernel, as shown in Figure 3.6, with values of  = 1; 1.5; and 2; empirically selected.

The thresholds for hysteresis thresholding were set to 0.3 and 0.9 so as to ensure that most of

the edge evidence generated by the texture edges is discarded while that due to edges

corresponding to boundaries is retained. Non-maximum supression ensures that all edges are

one pixel wide.

Figure 3.6   Gaussian function.

In addition to global edge detection, we extend our search for evidence to a sub-block

corresponding to the central 25% of the image as we assume that if a building is really a

dominant object, there must be strong evidence of human-made structure in the centre of the

image. Based on the relevant edge intervals as shown in Figure 3.7, we construct a 5-bin

histogram at each scale, globally and locally. Four bins correspond to the following edge

orientation intervals: F0=[0°,10°] ! [170°,180°], F1=[35°,55°], F2=[80°,100°], F3=[125°,145°],

and one bin is used for non-relevant edge pixels (i.e. all other edge pixels). Edge pixels

contributing to the first four bins are referred to as “relevant” in the following. Each 5-bin

histogram is then normalised by the sum of all five bins. A 24-dimensional feature vector is

then formed by discarding the fifth bin and by concatenating the remaining 4 bins for each of 2

zones at each of 3 scales. Figure 3.8 illustrates the contributions of each of the significant edge

orientation intervals to the total edge magnitude image for an image containing non-building

structure. The comparison of contributions of relevant edge orientation intervals for building,

nature and non-building structures images is shown in Figure 3.9. An underlying assumption

of our method is a horizontal horizon line.
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Figure 3.7   Histogram bins corresponding to relevant edge orientation intervals.

Figure 3.8 An example of outdoor non-building structure edge orientation contributions of

relevant edge orientation intervals: (a) original image, (b) near-horizontal, (c)

near-45˚, (d) near-vertical, (e) near-135˚, and (f) all relevant edge orientations.
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Figure 3.9 Contributions from different edge orientation intervals to the edge magnitude

image for two building images, nature and non-building structure images: (a)

original image, (b) near-horizontal, (c) near-45˚, (d) near-vertical, (e) near-135˚,

and all relevant edge orientations (f) in black, and (g) colour-coded relevant edge

contribution (from the top left to the bottom right).
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Three versions of the approach, using different weighting schemes [9], were implemented by

the author. We compute the 5-bin histograms, one for each region at each scale as follows: 

H e 5 j " 1 # i $&%
m ' 0

M ( 1 )
n * 0

N + 1

W ei I ei m , n I zone

j
m , n

(2)

i=1,2,3,4,5;   j=1,2

where Hej (i) is an edge histogram bin corresponding to orientation i and region j (the first

region is the entire image and the second region is the central 25% of the image), Wei is the

weight assigned to the contribution of an edge pixel with orientation i, Iei (m,n) is an edge

image component for orientation i, and I reg.

j
m , n is a binary zone image (with value 1 for

pixels in the region of interest, value 0 elsewhere). 

In coherency weighting, a coherency check for relevant linear edge segments in a 8-pixel

neighbourhood is chosen as a simple and computationally cheaper alternative to line detection

using the Hough transform.

Gradient Magnitude Weighting

In the first version implemented, the edge pixel contribution to a given bin is weighted by the

gradient magnitude, and the five-bin histogram is normalised by the sum of all edge pixel

contributions in the image region being analysed so as to account for different image sizes. 

Coherency Weighting: Weak coherency weighting and Strong coherency weighting

In the second version implemented, a weighting scheme which favours contribution of edge

pixels more likely to belong to linear lines is introduced. The idea is to increase the importance

of the relative contribution of the pixels that obey the good continuity rule. As illustrated in

Figure 3.10, the 8-neighbourhood is examined for edge pixels with the same quantised

orientation, termed coherent pixels, and the highest weight Wei=1.3 is assigned to an edge

pixel contribution, both of whose neighbours lie in a direction perpendicular to its gradient

direction (in the case of one such neighbour weight Wei=1.2 is assigned, and in the case of two

such neighbours weight Wei=1.3 is assigned).

In the third version implemented, a stronger weighting is used and the weights for coherent

pixel contribution are increased to Wei=2 and 3 respectively.
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Figure 3.10 Coherency check in 8-neighbourhood for the edge angle , of the central pixel: (a)-/.
[0°,10°] 0 [170°,180°], (b) 1/2 [35°,55°], (c) 354 [80°,100°], (d) 6/7 [125°, 145°].

3.3.4   Low-level feature classification

The Support Vector Machine (SVM) [11] is a popular learning algorithm which has been

extensively used in a number of applications, such as text classification, feature selection and

hand-written digit recognition [37]. The SVM is characterised by high generalisation ability,

and based on the idea of finding the hyperplane that best separates two classes after mapping

the training data into a higher-dimensional feature space via some kernel function 8:9 SVM

classifiers are based on the hyperplanes of the type:

(w.x)+b=0 ,     w∈ ; N, b ∈ <        (3)

where w is a weight vector, x is the training data, and b is a threshold. The corresponding

decision function  f: = N�→{ > 1} is:

f (x)=sign((w.x) + b ). (4)

where x is a feature vector to be classified. The hyperplane is constructed by solving a

constrained optimisation problem whose solution, a weights vector w, is expressed in terms of

a subset of training examples that lie on the margin: w= ? i αi xi. This subset of training

examples, called Support Vectors, carries all the relevant information contained in the training

set. Thus the final decision function, f(x)=sign( @ i αi (x.xi)+b), where x is a new feature vector

to be classified and xi are support vectors, depends only on the dot product of the feature

vectors.

One of the advantages of SVM over other classifiers is its speed, as the number of points that

the SVM evaluates when a new point is classified is equal to the number of support vectors

(usually significantly smaller than the number of training examples).
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Figure 3.11   Geometric interpretation of Support Vector Machine in 2-D space.

We use the SVMlight [36,37] classifier which outputs a confidence measure for each test

sample, the sign of which determines the class membership (if the score is positive, the

example is labelled as a class member) while its absolute value gives an indication of the

classification decision confidence, i.e. the distance from the separating hyperplane.

3.4    Experimental evaluation

3.4.1   Dataset

In order to evaluate the performance of the method, we use a diverse collection of 1720 images

(consumer photographs), split into two sets: two different subsets of 200 images were used for

classifier training/learning and the remaining 1520 images were used to evaluate the

performance of the trained classifier. The dataset consists of images of arbitrary sizes in both

portrait and landscape format. The images were collected from various sources: 

A photo albums on the Internet,B scanned from personal photographs, and C donated digital photographs. 

Non-building images include several sub-classes such as: nature (beaches, forest, field, water

body, sunset, sunrise, etc.), large human-made-structure-other-than-building (boats, ships, cars,

wheels, monuments, windmills, etc.), close-ups of flowers, fruit, animals and people.
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Particular care was taken to ensure (i) that the data set is almost evenly split between building

(769) and non-building (751) images, (ii) that the dataset includes images of objects that may

easily be misclassified as buildings (113 non-building structure images or 15% of non-

building images) and (iii) that the intraclass variance of the building images is sufficiently

large (churches, cottages, skyscrapers, castles, huts, family houses, etc).

For the creation of a groundtruth, we apply a single label model assuming that all images can

be singly labelled. Each image was labeled by two human subjects and a class was assigned

based on the subject's perception of the dominant class in a given image.

3.4.2   Classifier training

Leave-one-out validation2 [48] on the training set of 200 images (100 building, 100 non-

building) is performed in order to determine the classifier parameters. The SVM with linear

kernel is trained with different values of cost factor (which controls the ratio of

misclassification penalty for the class and non-class members and corresponds to translation of

the separation plane). As a criteria for selection of the SVM model we use the break-even-

point (BEP) on the training set and a classifier with cost factor of 1.3 was selected. The BEP

point [15] is defined as the point for which the values of precision and recall are equal. As

shown in Figure 3.12, the BEP value of cost factor is identified as an intersection of precision

and recall curves as functions of cost factor, on the training set.

Figure 3.12 Determination of recall/precision break-even-point on the training set for

classifier selection.

2 Given a set of N images, (N-1) images are used for training and the remaining image is used for testing
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The projections of the training set patterns, building and non-building, into the 2-D and 3-D

feature spaces are shown in Figures 3.13 and 3.14 respectively. As can be seen from the

projection into the near-horizontal/near-vertical plane, shown in Figure 3.13, building patterns

tend to have more edges aligned along both horizontal and vertical orientation than non-

buildings. Furthermore, the number of edges aligned along the vertical direction is larger than

that of edges aligned along the horizontal direction, i.e. the vertical edges dominate over

horizontal ones in buildings images. The separation between the two classes in the pattern

projection into the near-45º/near-135º plane is less evident. However, it is obvious that non-

building patterns tend to exhibit large number of edges aligned along diagonals.

Figure 3.13 Projections of the training patterns into 2-D feature space: (a) near-horizontal/

near-vertical plane and (b) near-45º/near-135º plane.
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The separation of patterns corresponding to the two classes are even more evident in the

training patterns projections into the 3-D feature space as shown in Figure 3.14. Once again,

dominance of vertically aligned edges in building images is demonstrated.

Figure 3.14 Projections of the training set patterns into 3-D feature space: (a) near-

horizontal/near-45º/near-vertical plane, and (b) near-horizontal/near-

vertical/near-135º plane.
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3.4.3 Classification based on low-level features and discussion of

experimental results

As a performance measure we use classification accuracy, recall and precision on the test set

of 1520 images. Classification accuracy is the fraction of all images that has been assigned to

a correct class. Recall is the fraction of building images that has been assigned to a building

class, while the precision is the fraction of images assigned to the building class that actually

belong to the building class. For each approach we evaluate here, we use a linear SVM

classifier selected based on the BEP point and leave-one-out validation [37] on the training set.

Experiment 1 - the effect of coherency weighting

In order to determine the impact of weighting, we compare the performance of three different

versions of the method: one with edge magnitude weighting, one with weak coherency

weighting and one with strong coherency weighting with the MPEG-7 edge histogram

descriptor [65]. The results presented in Table 3.1 show that the strong coherency weighting

scheme outperforms both weak coherency weighting and edge magnitude weighting, as well as

the MPEG-7 edge histogram descriptor.

Table 3.1 Comparison of experimental results for different methods

(200 training images, 1520 test images).

Accuracy Recall Precision

Grad. Magnitude Weighting 85.52 81.27 89.16

Coherency Weak Weighting 87.30 83.38 90.81

Coherency Strong Weighting 88.22 84.01 92.02

MPEG-7 Edge Hist. Descript. 84.93 79.45 89.59

Experiment 2 – the effect of local information

In order to verify the hypothesis that the inclusion of the localised edge information pertaining

to the central 25% of the image actually improves classification performance, we compare the

performance of the 12-component global feature representation and the 24-component feature

representation (global+local information) for strong coherency weighting. The results in Table

3.2 confirm that, for this particular dataset at least, the incorporation of localised information

positively affects the classification rate. The examination of misclassified images in both cases

shows that this improvement is due to a reduction in the misclassification of structure images.
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Table 3.2 Comparison of performance of 12-component and 24-component

representation for strong coherent weighting (200 training, 1520

test images).

Accuracy Recall Precision

12-component  (global) 86.18 81.40 89.96

24-component  (global+local). 88.22 84.01 92.02

By closely examining the misclassified images, we observe that most frequently

misclassification occurs in the case of scenes containing dominant human-made structures

other than buildings with edge distributions similar to that of buildings, such as those shown in

the top rows of Figure 3.15 (a-c). In other cases, the misclassification occurs due to strong

regular textures such as the presence of tree trunks in close proximity to camera, as can be seen

in Figure 3.15 g).

Another difficult example is the Giant's Causeway (a naturally occurring outcrop of hexagonal

basalt columns in Northern Ireland) shown in Figure 3.15 h). This natural feature exhibits an

exceptionally high degree of regularity and attributes we normally associate with human-made

objects.

Figure 3.15   Typical non-building images misclassified as buildings.

We also observe misclassification of building images due to the fact that edge orientation

based features are not rotation invariant, as can be seen in Figure 3.16. The two building
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images on the left were misclassified with a high degree of confidence. The images on the

right side are those that are correctly classified.

The performance of our approach is comparable to that of existing approaches. However, we

have to emphasise that we used our own dataset and a different number of training examples

so that we are not in a position to make a direct comparison. Dorado et al. [18] report similar

recall and precision on a test set of 3000 TREC images using 115 images for training. The user

interaction improves the recall and precision to 86.31 % and 86.25% respectively. Iqbal and

Aggarwal [27] validate their approach on 120 images (using 30 images for training) and report

a recall of 80% and precision of 83.72%. 

Since the image set used by Dorado et al. [18] was not available, we used our own dataset to

compare the performance of a standard MPEG-7 edge histogram descriptor used in [18], with

the performance of our edge orientation-based descriptor. As can be seen from Table 3.1, both

of our coherency weighting approaches outperform the MPEG-7 edge histogram descriptor on

a common dataset. 

Figure 3.16 Classification results for building images in order of decision confidence, i.e.

distance from the separation plane.

3.5    Conclusions

In this chapter, we present an approach to building/non-building classification of outdoor

consumer photographs based on a few simple edge-orientation features with physical meaning,

extracted at three scales, and used in conjunction with an SVM classifier engine. Experimental

results on a diverse dataset of 1720 images show that the performance of our method is

comparable to that of existing approaches. However, the results also show that an

improvement is required in order to overcome the lack of rotation invariance and reduce

misclassification between buildings and other human-made structures. Future work in this area

should focus on extensive comparison with other techniques.
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Chapter 4

An Improved Building Detection Using Camera

Metadata

This chapter provides details of the proposed approach to applying data fusion methods to the

task of large building detection in consumer photographs. The approach presented in Chapter 3

assumed all outdoor images. This is in fact quite a strong assumption considering that in real-

world collections, indoor photos may constitute a significant portion of the collection. For

instance, nearly 23% of the photos in the MediAssist [59] collection were taken indoors. The

new approach we present here is an extension of the previous approach that (i) overcomes the

strong outdoor assumption and (ii) provides better overall performance by reducing the

misclassification rate of indoor photos containing human-made structures into buildings. We

explain the motivation in section 4.1 and re-examine the efficacy of our edge orientation

descriptor in this modified context. In section 4.2 we briefly touch upon the hierarchical

approach to image classification, while in section 4.3 some approaches to indoor/outdoor

classification are briefly reviewed. In section 4.4, we introduce a complementary set of

features, based on camera metadata, and examine their discriminative power for the task of

indoor/outdoor classification. Having established the most salient camera metadata tags, we

select a subset to be used in experimental evaluation in Chapter 5, and propose an approach in

section 4.5.
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4.1    Introduction

An automated indexing of digital photographs with semantic concepts remains an important

factor in improving the performance of the existing content-based image retrieval systems.

However, semantic classification of (or, detection of high-level semantic concepts in) images

in unconstrained, broad-topic, general purpose image collections is a challenging task and as

such remains an open problem even after some years of research. Moreover, the existing

approaches have mostly been evaluated in constrained environments (e.g. the Corel dataset).

On the other hand, the review of the literature in Chapter 2 testifies to the fact that the power

of a low-level visual feature representation as a means to infer image semantics, is limited.

Furthermore, there exists broad agreement that using features from a single modality rarely

provides enough information for the detection of high-level semantic concepts. The solution is,

thus, increasingly sought in combining, or fusing, the evidence originating in different

modalities, i.e. in a multi-modal approach to image understanding and semantic scene

classification [20]. Overall, individual performance comparisons in the surveyed literature

demonstrate superior performance of multi-modal approaches over single mode approaches.

The huge increase in the number of digital photos generated in recent years has put even more

emphasis on the task of image classification of unconstrained datasets. Consumer photographs,

a typical example of an unconstrained dataset, comprise a significant portion of the ever

increasing digital photography corpus. Due to their unconstrained nature and inherent

diversity, consumer photographs present a greater challenge for the algorithms (as they

typically do for image understanding) [86]. Fortunately, digital photographs usually offer a

valuable additional piece of information in the form of camera metadata that complements the

information extracted from the visual image content.

Our approach to the detection of large buildings in unconstrained photographs aims to combine

the low-level visual evidence with the camera metadata evidence. A set of features based on

the complementary information available with digital photographs, which is embedded in the

EXIF header, is fused with the low-level visual features (based on edge orientation

histograms). The approach is evaluated on a diverse, unconstrained photo collection

comprising 8000 genuine consumer or non-professional photographs.
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The classification problem of interest here, i.e. the large building detection, can be defined as

follows: given an arbitrary digital photo (but with proper orientation), determine whether there

is a large/dominant building present in it. In Chapter 3 we present and evaluate an approach to

classification of images into building and non-building images. However, the building detector

is developed under the assumption that all input images are outdoor images, and this may not

be true in reality. While demonstrating an overall satisfactory performance on outdoor images,

with 88% accuracy and 84% recall rates on outdoor images, it has been already shown that the

approach has difficulties in disambiguating buildings from large non-building structures (i.e.

other human-made objects that exhibit similar edge orientation distributions). Likewise, indoor

images may frequently contain human-made structures, such as large pieces of furniture,

shelves, etc. The presence of such objects in a scene generates edge orientation distributions

which somewhat resemble those generated by the presence of large buildings in outdoor

images. As illustrated by Figure 4.1, and in contrast to the nature images characterised by a

relatively flat histogram with low, wide and round peaks, i.e. more random distribution of edge

orientations, the presence of human-made structures tends to generate narrow spikes in the

edge orientation histograms. Consequently, the patterns corresponding to both the outdoor

non-building structures and indoor non-building structures are also located in close proximity

in the feature space to patterns of buildings. As such, they are difficult to separate from

buildings and this results in frequent misclassification. In any case, this conforms with the

view that a single image attribute usually lacks sufficient discriminatory information [34]. A

comparison of typical edge orientation distributions for a building, an outdoor non-building

structure, an indoor scene and nature images are shown in Figure 4.1.

Due to the fact that buildings can only occur in an outdoor photo (apart from a photo of a

building picture captured indoors, or looking through a window to the outdoors), we expect

that the capability of distinguishing between indoor and outdoor images will contribute to an

improved building detector accuracy. One of the main differences between indoor and outdoor

daylight photos is in their scene brightness levels: natural lighting in outdoor photos is very

significantly stronger than artificial lighting present in the images captured indoors. The

usefulness of some of the camera metadata, such as exposure time, flash use and subject

distance, for indoor/outdoor classification has already been demonstrated in [51]. By fusing

the selected camera metadata with the low-level visual features, which were, on their own,

sufficient to detect buildings in outdoor photos, we aim to enable the detector to effectively

handle all images, thus improving the overall classification rate.
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Figure 4.1 An example of edge orientation histogram distributions for building, indoor, and

outdoor non-building structures, and nature images.

4.2    A hierarchical approach to semantic image classification

One of the popular approaches to image classification found in the literature, is based on a

“divide-and-conquer” strategy: the classification problem is decomposed into a set of two-class

classifications for each of which a particular feature set of high discriminability is identified.

Essentially, the strategy implies a hierarchical approach, whereby the images are categorised in

a multi-stage fashion, starting with a coarse classification into broad and rather abstract

categories at the highest level. Further down the classification tree, the classes are subdivided

into finer and more specific, more refined subsets. In [87], Vailaya et al approach the
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classification of vacation images using such a hierarchy of high-level classes as shown in

Figure 4.2.

As the research work so far suggests, there is no single universal feature representation that is

suitable to every task. Thus, the main advantage of the hierarchical approach to image

classification lies in the fact that it allows the use of simple and relatively low-dimensional

feature representations, which are most appropriate for a given stage in the classification

process. While colour features and camera metadata may be the most suitable features for

indoor/outdoor classification, texture features would better serve the subsequent classification

of outdoor images into city and landscape images.

Figure 4.2   The Vailaya's image classification hierarchy [87].

We employ a modification of the above hierarchical classification method in our late fusion

approach: at the first level, each image is classified on its own based on image content using a

SVM classifier. At the second level, classification was performed using the combined

evidence: initial building/non-building classification based on content-based features plus the

indoor/outdoor classification based on camera metadata.
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4.3    Indoor/outdoor classification

At the top level of the image classification hierarchy is the discrimination between indoor and

outdoor images. The indoor/outdoor classification can either be a task in itself or a step

towards a classification into more refined categories. The task has long been studied and

colour and texture remain the low-level features of choice for the task.

In [87], Vailaya et al address the classification of vacation images to indoor and outdoor using

low-level features: colour features in the form of 10x10 sub-block colour moments in LUV

colour space. The approach exploits the fact that outdoor images tend to feature uniformity in

spatial colour distributions, while indoor images, on the other hand, tend to feature more varied

colour distributions as well as more uniform lighting. Their experiments, which used combined

texture and colour moments, did not show any improvement in accuracy when compared to the

colour moment only approach. Misclassification was reported for outdoor images which are

either close-ups (so they feature uniform lighting across the image) or low contrast images.

The approach of Szummer and Picard [82] also relies on colour and texture: it combines colour

histograms in the Ohta colour space with MSAR-based texture features (multiresolution

simultaneous autoregressive model) for the whole image and for each sub-block of a 4x4

image tesselation.

In the work of Luo and Savakis [51], indoor vs. outdoor categorization of consumer photos is

approached by using low-level visual features combined with some mid-level features so as to

infer high-level information. A Bayesian network is used as a framework to integrate

knowledge from low-level (the quantised colour histograms in the Ohta colour space and

MSAR-based texture features) and mid-level features (such as sky and grass). The authors

report an improvement over the classification results based on colour and texture alone, which

they attribute to incorporation of mid-level feature such as sky and grass. However, the results

of classification based on computed mid-level features alone are as good as those based on a

combination of colour, texture and computed mid-level features, which suggests that any

relevant information that may be encoded in either texture or colour information has already

been captured by the grass and sky detectors.
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A further advance in the indoor/outdoor classification is presented in [50] by Luo and Boutell.

They utilise the camera metadata and low-level features, and report that “the metadata was so

effective, it could be used in place of image content and still achieve high (that is 90%)

classification accuracy”. The most salient metadata cues were identified to be flash fired,

exposure time, aperture value, subject distance and focal length.

In our work, indoor/outdoor classification is used as an intermediate step towards

building/non-building classification and as a component to enhance the building detector. The

approach is described in detail in the following sections.

4.4    Digital camera metadata

Metadata is “data about data”[16]. Metadata is information, usually highly structured, about

documents, photos, books or other items, generated in order to facilitate organisation and

access to the primary information. The three broad categories of metadata include

administrative, structural and descriptive metadata [84]. Camera metadata refers to the

information embedded in the EXIF header of the JPEG image created by the digital camera. It

is a potential source of valuable information on the camera settings, capture conditions, etc.,

and, indirectly, the environmental lighting. Camera metadata can be used to infer the context

of an image, such as location, date, time, brightness of the scene, and so on.

4.4.1   The EXIF standard 

The Exchangeable Image File Format (EXIF) is one of the most commonly used image file

formats and metadata standards at present [21]. The standard defines the format of both images

and sound captured using digital still cameras and provides a standard specification for storing

metadata pertaining to images and audio. The image metadata is stored in the image file header

and is identified by unique tags. The metadata tags, as provided by the EXIF standard, include

a large number of image-related metadata such as those pertaining to:

D the image data structure (e.g. width, height, numbers of bits per component, compression

scheme, image orientation);
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E the recording offset (e.g. image data location, number of rows per strip, bytes per

compressed strip, bytes of JPEG data);

E image data characteristics (e.g. transfer function, white point chromacity, colour space

transformation matrix coefficients);

E other/general tags (e.g. file change date and time, image title, image input equipment,

copyright holder);

E picture taking conditions (e.g. exposure time, f-number, exposure program, ISO speed

rating, shutter speed, aperture, brightness, exposure bias, subject distance, flash, lens

focal length, exposure index, scene type);

E GPS (Global Positioning System) attribute information (e.g. GPS time, GPS date, speed

of GPS receiver, GPS satellites used for measurement, altitude, latitude, longitude).

Digital cameras produced by different manufacturers, as well as different camera models may

record different metadata. The quality and reliability of the metadata recorded may also vary

for different brands of digital cameras. Some metadata, such as the location information, can

be obtained using a separate GPS device and then added to the EXIF header in post-processing

by matching the image timestamps with those in the GPS device's log. This is how the location

information is obtained for images in the MediAssist collection which we use in our

experiments. An example of EXIF header content is shown in Figure 4.3.

Figure 4.3   An example of the EXIF header content 

4.4.2  Camera metadata potentially useful for indoor/outdoor classification

Among other tags, the EXIF standard for JPEG images [21], specifies a large number of tags

related to capture conditions, camera settings, etc. that can be included in the EXIF header of
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the JPEG image. Of these, there are 27 tags that are related to image capture conditions, such

as: ExposureTime, ExposureBiasValue, FNumber, ShutterSpeedValue,

ApertureValue, BrightnessValue, FocalLength, SubjectDistance,

SceneType, Flash, etc. This kind of information could be useful for gaining knowledge

about the image context. It may complement the content-based information, and thus help

distinguish between images belonging to different sematic classes. Using camera metadata

provides a way of introducing contextual information to an image classification task. For

example, an effective approach to indoor/outdoor classification could be based on

environmental light levels. We consider the following metadata, divided into original and

derived, as being potentially of interest, and use them either directly or indirectly in our

experiments. Original metatadata is raw metadata as contained in the EXIF header, whereas

derived metadata is calculated/derived using two or more original metadata values.

Original EXIF metadata:

F
BrightnessValue (Bv) – indicates the scene luminance or brightness. Larger values

of Bv indicate greater scene brightness. Not all commercial camera models record the

value of scene brightness. Brightness values in our dataset fall within the following

range: [-6.04, 12.10].

F
ShutterSpeed (ExposureTime) – is the length of time the shutter is kept open during

the photo capture. The standard sequence of shutter speed values is as follows:

8   4   2   1   ½   ¼   1/8   1/15   1/30   1/60   1/125   1/250   1/500   1/1000   1/2000 ...

F
ApertureValue – is the size of the lens opening. The size of the aperture is measured

in f-stops where the f-stop value is inversely proportional to the aperture size (the ratio of

the lens' focal length to the diameter of the lens diaphragm opening). A smaller aperture

value corresponds to more light entering the camera. The standard sequence of values (f

is the focal length) is as follows: 

f/1.0   f/1.4   f/2.0   f/2.8   f/4   f/5.6   f/8   f/11   f/16   f/22   f/32   f/45   f/64 ...

F
ISOSpeedRatings – a standard value used as an indication of the light sensitivity of a

film or electronic sensor. The higher the value of ISO speed, the more sensitive to light it

is.
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G
Flash – indicates whether an auxiliary light was used during the capture to supplement

the available lighting, be it natural (in an outdoor scene) or artificial (usually indoors).

The use of a flash usually results in better exposure and better colour, as well as

improved sharpness of the photo. The EXIF FlashValueCode values in the dataset are

{0, 1, 9, 16, 24, 25, 31, 73, 89}. The odd values indicate that flash was fired, while the

even value indicate that flash was not used. The other bits indicate the status of the

returned light.

G
Timestamp – provides time and date of the picture capture. Using the original image

timestamps along with the GPS location information, which is recorded separately, we

derive the TimeOfTheDay tag (i.e. dawn, day, dusk, or night).

G
FocalLength – indicates the focal length of the lens or a lens' angle of view. In order

to make the values comparable over the entire collection, where images were taken by

different camera models, the value is normalised with respect to focal length of a 35mm

film camera. The values in the dataset fall within the range: [1000, 250 000].

G
SubjectDistance – this is a rough estimation of the main subject distance from the

camera, quantised to four ranges and expressed as values: {0=unknown, 1= macro

view, 2=close view, 3=distant view}.

Derived metadata:

G
Exposure Value (Ev) – Camera exposure determines the amount of light that falls on

the image sensor. For a given ISO Speed, the exposure is controlled by the combination

of shutter speed and lens aperture. A given exposure value defines all combinations of

the lens aperture and shutter speed that result in the same exposure. The effect of a

varying shutter speed is shown in Figure 4.4. A larger value of Ev denotes less exposure.

Larger exposure values are appropriate for photography in more brightly lit

environments, or for higher film speeds. The following formula is used to calculate the

exposure value from shutter speed, lens aperture and ISO Speed values [61]:

Ev H log2

ApertureValue
2

ShutterSpeedValue I
100

ISOSpeedRatings
(5)
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When the ISO Speed is unknown, the following alternative formula is used (essentially

assuming an ISOSpeedRatings of 100):

Ev J log2

ApertureValue
2

ShutterSpeedValue
(6)

The Exposure Value is a function of both the environmental light as well as any artificial

light produced by the camera flash. It is calculated as an alternative measure of

environmental light levels and to act as a replacement for missing Brightness Value that

many cameras do not record. Figure 4.5 illustrates the relationship between the

Brightness Value and Exposure Values. Exposure Values in our the dataset fall into the

following range: [0.97, 17.29].

          Figure 4.4   The effect of a varying shutter speed on night photography (captions indicate

                              the number of seconds the shutter was kept open) [77].

Using the Exposure Value calculated as described above and assuming an ISO Speed of

100 (which corresponds to Speed Value, Sv, of 5), we calculate the corresponding

Brightness Value for photos created by cameras that do not record the Bv:

 Bv K Ev L 5 (7)

As Figure 4.5 shows, based on the subset of image data for which Bv was recorded by

the camera, this relationship can indeed be reasonably well approximated by the straight

line, Ev=Bv+5.

M
TimeOfTheDay – this value is obtained using standard astronomical algorithms based

on the time and location [60]. The position of the sun in the sky is calculated at a certain

time and place: if the sun is above the horizon it is daytime, if it falls below the horizon

it is twilight (dawn or dusk), and even further below the horizon it is a night time [66].

The following labels are derived in that way: dawn. daylight, dusk, and night.

67



N
Photo's GPS location – represents the Global Positioning System coordinates of

the location at which the photo was taken. GPS is a system of 24 satellites that orbit

11,000 miles above the earth, and only 3 or 4 of those are needed to facilitate navigation

using a GPS receiver. Due to the fact that radio signals, used for communication

between the satellites and the receiver, cannot reach deeply into solid objects, such as

buildings, it does not work well indoors. GPS enabled cameras are still confined to the

high-end of the still camera market and only a handuful of cameras on the market today,

such as some of Nikon's models, support direct encoding of GPS information into the

EXIF. As none of the camera models used in the collection process for the MediAssist

image collection had an integrated GPS navigation, a separate GPS device (a Garmin

Geko) was used during the photo capture. In post-processing, which involved matching

the GPS logs and timestamps with those from the camera, the approximate GPS

coordinates for each photo were obtained.

Figure 4.5 Relationship between the calculated exposure values and recorded brightness

value for: a) indoor, and  b) outdoor images.

4.4.3   Metadata discriminatory power for indoor/outdoor classification

A feature is considered to have good discriminative power for a given classification task if its

inter-class variance is large while its intra-class variance is small. A small feature variance for

a certain class implies a small extension of the class cluster in the corresponding direction in

the feature space (i.e. the compactness of the cluster in the given direction).
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In order to establish the usefulness of a particular metadata value for the task of

indoor/outdoor classification, we examine the distribution, over the entire dataset, of different

metadata values for the two classes of interest. We plot the distributions of the following

features for indoor and outdoor classes, so as to empirically determine their discriminative

power: BrightnessValue, ExposureValue, Flash, FocalLength,

TimeOfTheDay and SubjectDistance. The aim is to identify the most informative ones

and look for features that maximise the class separability. In doing so, we distinguish between

images taken under daylight and under no-daylight (i.e. taken at dawn, dusk, night). All

metadata values are linearly normalised to the [0,1] range. The results of empirical evaluation

of distributions of metadata values are as follows:

Brightness Value

A distribution of the scene brightness values for indoor and outdoor images using different

numbers of bins (i.e. different bin sizes or widths) is shown in Figure 4.6. For this purpose, the

entire dataset is considered irrespective of the daylight status. These plots suggests that the

brightness value is useful for the task, although there exists a large overlap such that nearly a

half of the outdoor class distribution overlaps with the indoor distribution. In part, this may be

due to the fact that no distinction was made between images with different daylight status

(daylight vs. no-daylight photos). A long, slow-dropping tail on the left side of the outdoor

distribution probably includes images taken at dawn or dusk. The small peak on the right side

of the indoor distribution is likely to have been caused by the indoor images with reasonably

high light levels combined with the use of flash. Lastly, it is possible to see that, although

outdoor photos are spread across the entire range of brightness levels, in general, outdoor

photos are characterised by higher scene brightness levels.

Exposure Value

A distribution of exposure values for the two classes is shown in Figure 4.7. A visual

comparison of the distributions of brightness and exposure values indicates that a better class

separability is exhibited by exposure (which is especially evident in the case of the 20-bin

distribution). 
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Figure 4.6 Distribution of brightness values of indoor and outdoor images: (a) 10 bins, (b)

15 bins, (c) 20 bins and (d) 30 bins.

Judging by the exposure value distribution, even a relatively simple threshold-based

classification could yield reasonable classification accuracy (at the 6th or 7th bin). The

relationship between the camera recorded brightness value and calculated exposure values for

indoor and outdoor images under daylight and no-daylight (dawn, dusk and night) is illustrated

in Figure 4.8. It can be observed that, in the case of outdoor photos taken under daylight, the

relationship between the Ev and Bv values can be reasonably well approximated by the straight

line, Ev=Bv+5. On the other hand, a significant number of outliers occur in both indoor and

outdoor photos, taken at no-daylight time. In outdoor photos, both, Ev and Bv are spread over a

larger interval.
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Figure 4.7   Distribution of exposure values of indoor and outdoor images using 20 bins.

Figure 4.8 Recorded brightness and calculated exposure values of indoor and outdoor images

under daylight and no-daylight (dusk, dawn, night): (a) daylight indoor, (b)

daylight outdoor, (c) no-daylight indoor, and (d) no-daylight outdoor.
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Flash Used

Overall, the likelihood of using a flash in an indoor image is much higher than using it outdoor

as can be seen in Figure 4.9. The likelihood of using and not using a flash in an indoor image

in our dataset is nearly even: the flash is used in some 53% of all indoor images. In contrast, a

flash was used in less than 10 % of all outdoor images. In this respect, our dataset significantly

differs from that used in [7], where a flash was used in approx 90% of indoor photos and in

19% of outdoor photos, and as such was a highly discriminative cue for indoor/outdoor

classification. This difference in flash use in our indoor photos is quite significant. This may

be user-dependent as some users may be aware of the concept of “fill-in-flash” and others not.

Figure 4.9   Distribution of flash value of indoor and outdoor images. 

TimeOfTheDay (or Daylight Status)

The distribution of indoor and outdoor images with respect to the time of the day the photo

was captured, is shown in Figure 4.10. As we can see, by far the largest proportion of outdoor

photos, nearly 81% of them, were taken during the day time, while only 12% were captured at

night time. On the other hand, there is not such a huge difference among the indoor photos as

the number of those captured at day and night time stand at 43% and 55% respectively.

Therefore, if we know a photo from our collection was captured at night time it is far more

likely that the photo in question is an indoor photo. Likewise, a photo captured at daytime is

likelier to be an outdoor photo. Overall, very few photos were captured at dawn: none of the

indoor and only 0.07% of the outdoor photos. The number of photos captured at dusk were

slightly higher, and those are mostly outdoors: 2.5% of the indoor and 12.1% of the outdoor
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photos. 

          Figure 4.10   Distribution of TimeOfTheDay value of indoor and outdoor images.

Focal Length

The focal length distributions for the two classes are shown in Figure 4.11. While we can

observe differences in the distributions of the two classes of interest, the class separability

appears to be weak. The focal length distributions closely match for both classes for low

values of focal lengths. Also, the largest number of photos have a focal length which falls in

that interval3. The differences in distribution are more significant for photos with larger focal

lengths.

Subject Distance Code

As the subject distance distribution shown in Figure 4.12 illustrates, the majority of our camera

models do not record the subject distance code (i.e. the rough estimation of subject distance).

For the photos captured by the cameras that do, we see that more indoor images are shot at a

close distance range to the camera, i.e. macro view, while the opposite is true for the longest

subject distance: even greater majority of photos with that subject distance are outdoor photos.

A similar proportion of indoor and outdoor photos were taken at the medium range (i.e. close

view). While this indicates that Subject Distance Code is a potentially useful cue, it is

unfortunate that a large proportion of photos in our collection lack it. Figure 4.13 (a zoomed-in

version of Figure 4.12) shows the subject distance range distributions for the known subject

ranges: the proportion of photos captured at close view (or at medium distance) is nearly

3 Given a large range and distribution of focal length values, using log values or variable bin sizes may be

more appropriate.
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even for both classes. 

Figure 4.11   Distribution of focal length of indoor and outdoor images: (a) 10 bins, (b) 15

bins, (c) 20 bins,  and (d) 30 bins (zoomed-in version).

Figure 4.12 Subject distance range distribution of indoor and outdoor images (unknown,

macro view, close view, and distant view).
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Unsurprisingly, the photos captured as distant views were overwhelmingly outdoor photos,

while most of the close-ups (i.e. macro views) were indoor photos. Unfortunately, for the

largest majority of our photos the subject distance range value is “unknown”.

Figure 4.13   Subject distance range distribution of indoor and outdoor images for known

values (macro view, close view, and distant view only).

Summary of metadata evaluation

The empirical evaluation of the metadata subset presented thus far suggests that, to a varying

degree, all of the examined camera metadata could assist in discriminating between the classes

of interest: the indoor and the outdoor images. Based on the distributions, we can conclude

that the most discriminative of the metadata features are the exposure value, brightness and, to

a lesser degree than expected, the flash used value. Although the evaluation indicates that the

subject distance code is potentially a valuable cue for the task, as can be seen in Figure 4.13, it

is unfortunate that its value is known only for less than 10% of the photos in our collection.

Hence, the exploitability of this feature is necessarily limited. 

A metadata feature such as the TimeOfTheDay is useful for separating the images taken at

daytime (for which we assume light-level-associated features can be used to discriminate

between the classes) from those taken at other times of the day (such as dawn, night or dusk).

The focal length distributions closely match for both classes for low values of focal lengths.

Coincidently, focal lengths associated with the largest number of photos fall in the same

interval.
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4.5 Proposed approaches to fusing camera metadata with low-

level features

Our objective is defined as follows: given an arbitrary digital photo, determine whether there is

a large or dominant building present in the photo. The method we propose here is intended as

an improvement of the method presented in Chapter 3. We intend to test the hypothesis that the

fusion of camera metadata with the existing low-level visual features will improve the

classification performance by means of its capability to also distinguish between indoor and

outdoor photos. We propose to fuse a selected subset of camera metadata with the existing

low-level visual features (i.e. edge orientation histogram-based), using the Support Vector

Machine (SVM) as an inference engine so as to improve the accuracy of the existing method

of building detection. The features fused are as shown in Figure 4.14. 

We base the approach on the assumption that a reliable indoor/outdoor classification based on

lighting levels (inferred from the camera metadata such as brightness levels, exposure value,

flash used etc.) can only be performed for the photos captured during the daylight time. The

main assumption underpinning the approach is that the natural lighting in outdoor photos is

stronger than artificial lighting present in the scenes captured indoor and this is only valid

during the daylight hours. Some researchers even go as far as asserting that outdoor photos

captured at night time, due to the fact that such images lack depth, should be for practical

purposes treated as indoor [66]. Thus, we restrict our experiments to daylight photos.

In our approach, each image is represented by features extracted from two different modalities

-from the image visual content and the camera metadata. The low-level visual feature

representation comprises a 24-dimensional feature vector, based on edge-orientation features

extracted at three scales, on global and local level. The visual feature representation is

described in more detail in Chapter 3. The camera metadata representation of each image

comprises a 5-dimensional feature vector, generated using the following metadata values:

brightness value, exposure value, flash used, focal length and subject distance. All metadata

values are linearly normalised into the range [0,1], across all values of a given metadata tag in

the entire dataset. We compare two fusion strategies: (i) late fusion which entails combining

the initial decisions and (ii) early fusion of features (by concatenating feature vectors). In both

cases, the SVM is used as an integration device. The details of the approaches are introduced
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in the following two sections.

Figure 4.14   Low-level and metadata features used in fusion.

4.5.1   Early fusion 

Early fusion, or feature level fusion, combines various features into a single feature

representation. The features for fusion may originate in either different data sources or in the

same raw data [80]. In our case, the features come from two data sources or two modalities:

the image content and the camera metadata. The block diagram of our early fusion scheme is

shown in Figure 4.15. Features are computed separately for each modality, each forming a

feature vector. The two feature vectors are then combined into a single vector by

concatenation. As a result, each photo is represented by a compact vector made of the

multimodal data. The resultant feature representation, which is expected to be more

informative than either of its components, is then classified using a single SVM classifier into

either building or non-building class.

Figure 4.15   Block diagram for the early fusion scheme.
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4.5.2   Late (or decision) fusion 

Late fusion, or decision fusion, is a fusion of information from different sources at the decision

level whereby the decisions reached by two or more inference engines are combined. A fusion

of several initial classification results usually improves the quality of classification. Figure

4.16 shows the block diagram of our late fusion scheme.

Figure 4.16   Block diagram for the late fusion scheme.

The two unimodal feature representations, the visual feature-based and the metadata-based

representation, are classified separately using the SVM classifier. At this stage, the initial

classification of an image into building/non-building and indoor/outdoor categories

respectively, is performed. In order to make the SVM scores, D1 and D2, comparable, they are

then linearly normalised to the [0,1] range. By combining the normalised scores into a new 2-

dimensional feature vector, each of the decisions from the first stage of classification becomes

a feature in the new feature vector used at the subsequent stage. A new classifier is trained and

a final classification decision is obtained. In this way, the initial results of building detection

are improved in refined classification when a fusion with the decision on the image's

indoor/outdoor status, based on camera metadata, is performed.

4.6    Conclusions

We identify and examine different camera metadata for their potential to distinguish between

indoor and outdoor images. Based on the empirical evaluation of the distributions of various

camera metadata for indoor and outdoor images, we conclude that the exposure value and the

brightness value are the most discriminative cues. Due to a different pattern of use of flash in

our collection, the flash-used cue is not as highly discriminative cue as it is in [50]. However,
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it is still useful. While the subject distance code also appears to be a very valuable cue, it is

available only for a small portion of our photos. In the next chapter we evaluate our hypothesis

and show the potential usefulness of fusing visual features with camera metadata for

improving the performance of our building detector.
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Chapter 5

Experimental Evaluation Of Metadata-Inclusive

Implementation And Performance Comparisons

This chapter presents the results of the experimental evaluation of the metadata-inclusive

implementation of the building detector approaches proposed in Chapter 4. The proposed

multi-modal fusion schemes are intended to improve the classification accuracy by

incorporating the features derived from camera metadata. In section 5.1 we describe the dataset

used in the evaluation and also the annotation criteria. In section 5.2 we present the

experimental results of both the outdoor detection and the building detection. The visual-

features-based building detector is used as a baseline. The results are summarised and

discussed in section 5.3.

5.1    Dataset

5.1.1   The MediAssist dataset

The dataset used in the experiments comprises 8000 genuine consumer photographs which

were collected over the course of three years. This dataset is a subset of a larger image

collection of over 17000 photos, 11000 of which have been annotated for various concepts

such as indoor/outdoor, buildings, the presence and identity of people, etc. The images were

gathered as a part of the MediAssist project, the aim of which was to develop tools for

organising, managing and efficiently searching large personal photo collections [59]. A total of
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16 people (amateur photographers) all members of our research group, contributed their photos

to the collection, covering a total of 28 countries and 475 different locations. The photos in the

collection span all seasons, and were taken at different times of the day and under different

weather conditions. Some of the photos were taken from the air. All images in the collection

contain metadata, and are timestamped and as well as GPS location stamped. The image

database stores all images in three sizes: large (i.e. original), medium and small. The resolution

at which images were processed for the work described here was mainly medium size (i.e. 640

x 480 pixels, 540x720, 720x540) both in portrait and landscape format (between 0.3-0.4

Mpixels). All processing was performed on grayscale JPEG images, and all images were

presented to the algorithm in the correct orientation i.e. upright. Orientation correction was

performed manually at the time of upload to the database.

Camera types

A number of different camera types were used in the process of image capture. Consequently,

the number of metadata tags supported and their quality vary, as one would expect in a realistic

large collection of consumer images. Table 5.1 lists the camera types used indicating which of

the relevant metadata tags such as brightness value, shutter speed, aperture and flash were

recorded.

Annotation

The groundtruth data was generated through a manual annotation by six members of our

research group. The collection has been annotated for the presence of concepts such as large

buildings, people, vehicles, animals and for indoor/outdoor status. Categorisation during

annotation was crisp: ambiguous images and images that would have been more appropriately

described using multiple labels were assigned to the closest category. We have not separated

out close-ups, although we are aware that this has been done in the previous work [50].

According to these authors, “close-ups do not contain enough information for the algorithm

(and sometimes even for the human) to decide the category”. The issues overlooked at the time

of annotation reflected on the performance results. The annotation taxonomy we use is shown

in Figure 5.1 and the main categorical alternatives are discussed next.

Indoor vs Outdoor. Strictly speaking, an indoor image is an image captured indoors, i.e. both

the subject and the camera are indoors. Likewise, an outdoor image is an image of outdoor
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scene captured by a camera located outdoors. However, there are many borderline cases in the

collection such as those taken with both camera and subject located inside a roofed (with a

non-transparent roof), but not walled (or only partially walled) spaces. In other instances, both

camera and subject may be located in what in fact is an indoor space, completely enclosed, but

both roof and walls may be fully transparent as is the case with a greenhouse or conservatory.

So, a photo of an outdoor scene may be taken through a window of a house or a vehicle. While

the photo is clearly an outdoor one, the location of camera at the time of capture will, to a

varying degree, have bearing on the light levels falling on the light sensors, and thus will affect

the values of camera metadata. Most often, the reference point for labelling was taken to be the

position/location of the subject of the photograph.

Table 5.1.   Metadata tags recorded by the different cameras models [66].

Brightness Shutter

Speed

Aperture ISO Speed Flash

Canon PowerShot S40 O O O
Canon EOS DIGITAL REBEL O O O O
Kodak743 O O O
Kodak DX6490 O O O
Kodak DCS Pro 14n O O O O
FujiFilm FinePix40i O O O O O
FujiFilm FinePix S5000 O O O O O
FujiFilm FinePix F601 ZOOM O O O O O
FujiFilm FinePix A203 O O O O O
Minolta DiMAGE X20 O O O O O
Nikon E775 O O O O
Nikon D70 O O O
Olympus X400, D580Z, C460Z O O O O
Olympus X350, D575Z, C360Z O O O O
Olympus u20D, S400D, u400D O O O O
Sharp VE-CG30 O O O O

Building vs Non-Building. We defined a large building as a dominant object, a structure

which is usually walled and enclosed, and built for permanent use. Some of the challenging

images for annotation include images in which a significant degree of occlusion may be

present due to the presence of other objects such as large non-building structures, vegetation,

snow, etc. A photo of a large building completely covered with illuminated advertisement
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panels, captured at night, is yet another example of building candidate to be annotated as non-

building structure. Similarly, a photo of a building shot at night from a distance so that only

illuminated windows are visible was labelled a non-building structure. Deciding on the point

where an object ceases to be considered a large building and becomes a non-building structure

was also a matter of subjective assessment. Generally, non-building structures included photos

containing any human-made objects or their parts, such as monuments, furniture, vehicles,

fences, road sides, swimming pools, light poles, traffic signs, electric lines and poles, ski paths,

train tracks, etc. Close-ups of buildings depicting various parts of building such as wall texture,

architectural details, ornaments, and so on, were also labelled as non-building structure

images.

As shown in Table 5.2, out of the 8000 images, 2623 images (32.8%) contain a large building

object, 3785 images (47.3%) contain some human-made structure, both outdoor and indoor,

and 1481 (18.5%) are images of nature. The remaining 111 images (1.4%) are indoor images,

mainly close-ups of people or pets that contain no human-made structures. Out of 5377 non-

building images, 33.8% are indoor images, while 70% of all non-building images are structure

images, i.e. contain some human-made structure other that buildings, such as bridges,

monuments, ships and vehicles in outdoor images, or pieces of furniture, etc. in indoor images.

Images of nature represent only 27.5% of all non-building images.

Figure 5.1   The annotation taxonomy.

As can be seen from Table 5.2, the proportion of outdoor to indoor images in the collection is

77% vs. 23% which is quite unbalanced. This simply reflects the fact that contributors to our
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collection tended to take photos outdoors rather than indoor. The proportion of outdoor to

indoor images in the daylight-section of the database is even higher, i.e. 86%. Again, this is

due to the fact that more indoor photos were taken during night than daytime. The proportion

of indoor and outdoor images in our collection that were taken at daytime is 43% and 81%

respectively. While this may only be a feature of this particular photo collection, it may also

indicate that people are actually more likely to take outdoor than indoor photos, and that

majority of night time photos are taken indoors. Furthermore, we note that people feature more

frequently in indoor photos due to a more limited choice of available or interesting subjects

indoors. Example images from the MediAssist collection are shown in Figure 5.2.

Table 5.2   The MediAssist dataset structure.

OUTDOOR

6179    (77.23%)

INDOOR           

1821    (22.77%)

Buildings Non-building

structures

Nature Structures Non-structures

2623   (22374) 2075   (1671) 1481   (1056) 1710   (732) 111   (51)

5.2    Experiments

To evaluate the metadata-enhanced approach to building detection, we conducted a number of

experiments. We also compared the dataset used in Chapter 4 and the MediAssist dataset used

in this set of experiments. The results verify the discrimination ability of metadata for outdoor

detection and determine the upper limit of performance of a camera metadata-enhanced

version of the building detector.

Each image was represented by a combination of visual cues and camera metadata-based

features. The edge orientation based features (24) were extracted from grey scale JPEG images

to represent image content, while the image context was represented by the following metadata

features: brightness and exposure values, flash used, focal length and subject distance. All

metadata values extracted from an EXIF header were linearly normalised into the [0,1] range

so as to ensure that all the features, whether content-based or context-based, fall into the same

range. Exposure values were calculated from shutter speed, aperture and ISO speed. The

4 Number of images taken under daylight
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missing brightness values were imputed based on approximations using calculated exposure

values [69] and further analysis was carried out as if these were observed or actual data.

Due to the storage space constraints and fact that only edge-based visual features are used, all

images were processed as grey scale JPEGs. Thus the process of visual feature extraction

entailed conversion from compressed JPEG to uncompressed PGM format before the edge

orientation feature calculation. The majority of the photos processed were of the following

resolution: 540x720 for portrait and 720x540 for landscape format. The average time taken for

the extraction of visual features on a 1.5 GHz-Celeron processor running Linux RedHat 8.0

was 3.356 seconds per image.

In all experiments, the Support Vector Machine (SVM) was used as the inference engine. We

experimented with different SVM kernels, which were available off the shelf. These included

polynomial kernels of various degrees, and the radial basis function:

P Linear: K Qx i , Qx j R Qx i S Qx j (8)

P Polynomial: K Tx i , Tx j U Tx i V Tx j

d
(9)

P Radial Basis Function: 
K Wx i , Wx j X exp Y Wx i Y Wx j

2

Z 2

(10)

A kernel can be thought of as a similarity measure between the inputs [3]. This implies that,

assuming a selection of suitable kernel, feature points representing objects of the same class

should have high kernel value, whereas points representing different classes of objects should

give a low kernel value. A kernel describes a mapping from the original or an input feature

space into a higher-dimensional space. When the training data is not separable in the original

feature space, it is mapped into a higher dimensional space and a separating hyperplane is

defined there. In other words, a kernel function defines a new feature space in which the

classification will take place.

Classification accuracy, precision and recall are used as performance measures. In all cases, a

precision and recall break-even-point (BEP) during training serves as a criterion for selection

of the SVM classifier. The dataset is divided into independent training and test sets and an

effort is made to ensure that the learning examples are evenly distributed across different 
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Figure 5. 2   Example photographs from the MediAssist collection.

photographers' contributions. Approximately 1/3 of all building images are used as training

examples along with as many non-building images, resulting in a training set of 1400 images.

As the importance of a feature is monotonic in its absolute value [37], the larger valued

features are more influential. In order to bring all the feature vectors onto the same scale and

make them equally important, some sort of feature normalisation is required. We chose to

linearly normalise the features.
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5.2.1   Dataset comparison

To assess the difficulty of the MediAssist dataset we compare it with the dataset used in

Chapter 4. The MediAssist dataset, being an unconstrained collection, is considered a far more

challenging dataset. We compare the peformance of the SVM classifier trained on 200 images

(i) on 1520 images as used in the evaluation in Chapter 4, (ii) on 4964 outdoor MediAassist

images (daylight, outdoor only) and (iii) on 5747 MediAssist images (daylight, both outdoor

and indoor). In the second set of experiments we use the entire image collection from Chapter

4 (1720 images) to train the SVM classifier and compare its performance on the MediAssist

outdoor images only and on the entire MediAssist set. We use a linear kernel and select the

classifier based on the recall precision break-even-point, i.e. the BEP criterion. As can be seen

from Table 5.3, our classifier does not generalise well to consumer images, as there is a

significant drop in all performance measures: accuracy, recall and precision rates on the

MediAssist dataset, even when only outdoor images are considered. However, an increase in

the training set size from 200 to 1720 images does affect the performance positively, although

only slightly (an approximately 2% increase). Apparently, the initial training set size of 200

images, which performed very well on the Chapter 4 dataset (with recall and precision rates in

mid-80-ies to early 90-ies respectively), is inadequate both in size and diversity to meet the

requirements of the MediAssist dataset. 

Table 5.3 Performance comparison of a building detector trained on different

number of examples and on different datasets.

#

examples

Dataset Accuracy Recall Precision

200 Outdoor images 88.22 84.01 92.02

200
MediAssist (Outdoor ) 70.89 68.45 68.45

MediAssist (All) 66.02 68.45 54.42

1720
MediAssist (Outdoor) 73.35 70.23 70.54

MediAssist (All) 68.25 70.23 57.57

We also observe that, irrespective of the training set size, an inclusion of indoor images in the

test set further reduces the classification accuracy, and especially the classification precision.

A large drop in precision indicates that many of the indoor images were actually misclassified

as buildings. This indicates the need to enrich the feature representation with features that
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would aid discrimination between indoor and outdoor photos. The recall rate, however,

remains the same.

Another point well worth nothing is the fact that 71.8% of the 8000 MediAssist images were

actually used in the experiments and only images taken during non-daylight time were

removed from the dataset. As a comparison, in [50], which deals with the issue of natural vs.

manmade classification, only 39% of the intial dataset was actually used in their experiments.

All images whose scene content was considered such that the majority of it could not be

unambiguosly put in a single class were removed, as well as all close-ups. The close-ups were

left out on the account of not containing sufficient environmental information to determine the

actual class. A further 45% of the images in [50] were considered either to be ambiguous or of

low quality. As a result, a total of 61% of images were left out of the original dataset. In our

collection, a significant number of photos contain large regions exhibiting characteristics of

two different classes, and as such, could be better labelled with both. This degree of ambiguity

inherent in the MediAssist dataset contributes to a further reduction in performance measures.

In contrast, the dataset used in Chapter 4 was carefully selected so as to minimise ambiguity

with respect to the class membership.

5.2.2 Visual features combined with the indoor/outdoor ground truth

information

By utilising the groundtruth information for the indoor/outdoor categories, we determine the

upper limit of performance of the building detector based on fused visual and metadata

features. The SVM classifier is trained on 1400 images: 700 building (approximately 1/3 of all

building images) and 700 non-building images. A linear kernel is used with the BEP criterion-

based classifier selection. The comparison of performance on the entire MediAssist (MA)

dataset and the outdoor images only is shown in Table 5.4.

Table 5.4 Comparison of building detector performances on outdoor and all

images in the MediAssist dataset.

Accuracy Recall Precision

MediAssist (Outdoor),  lin, j=1.3 75.83 71.44 72.74

MediAssist (All),  lin, j=1.3 69.68 71.44 55.57
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It can be observed from Table 5.4 that both the accuracy and precison rates are significantly

reduced by the inclusion of indoor images in the dataset, while the recall rate remains

unaffected. This shows that the performance deterioration is caused by the misclassification of

many indoor images as buildings, i.e. by mistaking the human-made structures, which are

often present in indoor images, for buildings. Secondly, a considerable increase in the size and

diversity of the training set (from 200 images in Table 5.3 to 1400 MediAssist images) has

increased the recall rate on the outdoor MediAssist images by only 1.04% (from 68.45% to

71.44%), and slightly increased the precision (from 68.45% to 72.74%), while the

classification accuracy increased to 75.83% from around 70.9%. 

Another set of groundtruth experiments we conducted involves the early fusion by

concatenation of visual features with the ground truth information for the indoor/outdoor class.

A 25-dimensional feature vector is formed using 24 visual features, and the values 1 and 0 for

outdoor and indoor respectively, as the 25th feature. The performance measures for fusion

approaches presented in Table 5.5 represent the upper limit of the performance of the detector

(i.e. given a perfect indoor/outdoor detector). It can be observed that, in general and up to a

certain point, performance measures improve when more complex kerels are used. The best

performing kernel is the polynomial kernel of degree 4.

Table 5.5 Comparison of the best performing approach using only visual features

with the approaches based on visual features fused with groundtruth

information for indoor/outdoor status.

Approach Accuracy Recall Precision

Visual only, poly 3,  j=1, BEP=73.3% 71.32 72.93 57.46

Fused, linear,  j=1.25, BEP=78% 76.7 78.59 63.88

Fused, poly 2,  j=1.17,  BEP=79.3% 78.52 76.45 67.3

Fused, poly 3,  j=1.09,  BEP=79.14% 78.38 80.29 65.99

Fused, poly 4,  j=1.05, BEP=79.2% 78.48 80.29 66.13

Fused, rbf,  j=0.99, BEP=79.5% 78.11 79.83 65.69

The comparison of the SVM scores for visual feature-based and fusion approaches is presented

in Figure 5.3. As expected, the most notable difference is the impact of feature fusion on the

correct classification of indoor images as their SVM scores moved from the upper half-plane

representing building class in (a) into the non-building half-plane in (b) and (c) i.e. the indoor 
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Figure 5.3 Comparison of SVM scores for (a) visual features only approach (linear, j=1.2)

with (b) the early fusion approaches with groundtruth for indoor/outdoor class

using linear, j=1.25, and (c) polynomial kernel of degree 4, j=1.21.
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images' scores move towards the correct class label. A comparison of scores in (b) and (c)

illustrates the effect of using a differrent kernel, as we can see the scores for the polynomial

kernel of degree 4 are more clustered around the actual class label. Nature images were those

with no human-made elements to them.

5.2.3   Indoor/outdoor classification based on camera metadata

Here we evaluate the ability of camera metadata on its own to discriminate outdoor from

indoor scenes using 5747 daylight images (783 indoor, 4964 outdoor), utilising a different

number of training examples and different combinations of metadata. In all instances, a linear

kernel is used unless it proves to be too slow to train. In such cases, a polynomial kernel is

chosen. The results of outdoor detection using different combinations of metadata features,

such as brightness value (B), exposure value (E), flash used (F), focal length (L) and subject

distance (SD), and utilising different numbers of training examples is shown Table 5.6. 

Table 5.6    Outdoor detection using different number of metadata features and

different number of training examples.

#  examples Accuracy Recall Precision

B+E+F

200  (BEP: j=2.6), lin 91.64 96.07 94.48

300  (BEP: j=1.5), lin 88.42 89.72 96.56

784  (BEP: j=1.1), poly 2 85.75 85.63 98.79

B+E+F+L

200  (BEP: j=1.7), lin 89.65 98.54 90.5

300  (BEP: j=2.1), lin 89.65 98.11 90.9

784  (BEP: j=1.1), lin 86.28 86.2 98.75

B+E+F+L+D

200  (BEP: j=3), lin 91.45 96.09 94.27

300  (BEP: j=1.3), lin 88.23 89.45 97

784  (BEP: j=1.2), lin 86.9 86.88 98.76
          

A visual inspection of some of the images that are misclassified with high decision confidence

shows that these images are actually ambiguous with respect to their indoor/outdoor status.

Such examples include pictures captured through a window (i.e. camera indoors, subject

outdoors), from an aircraft, or a vehicle, etc. Furthermore, we observe that the performance 
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using 784 training examples improves when the subject distance feature is included, even

though only a small portion of images have a known subject distance. The distribution of the

SVM outputs, for a classifier trained on 200 examples, is shown in Figure 5.4. The good class

separability conforms well with the results of the empirical evaluation of the discriminatative

ability of metadata cues for the indoor/outdoor classification presented in Chapter 4.

Figure 5.4 Distribution of SVM outputs for indoor and outdoor categories, based on the

following metadata: brightness, exposure, flash, focal length and subject distance,

using a linear kernel, j=3, with 200 training examples.

A conclusion can be drawn that the integration of metadata features with low-level visual

features should improve the classification of building detection due to the ability of the camera

metadata to discriminate between indoor and outdoor photographs. This is expected to reduce

the misclassification of indoor human-made structure images into buildings.

5.2.4   Early fusion of visual features with the selected camera metadata

The early fusion approach entails fusion at the feature level. It relies on separate feature

extraction from different modalities and their subsequent combination in the new feature

space. In this work, visual features, based on edge-orientation histograms, are fused with five

metadata-based features (brightness value, exposure value, flash, focal length and subject

distance) by feature vector concatenation into a 29-dimensional vector. The results of the

evaluation using 1400 training examples and different kerenels are presented in Table 5.7.
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Table 5.7   Results of early fusion of visual features with selected camera metadata

(BEFLD, using 1400 training examples).

Accuracy Recall Precision

Visual only, poly 3, j=1, BEP=73.3% 71.32 72.15 57.46

Fused, linear, j=1.25, BEP=71% 71.16 72.74 57.27

Fused, poly 2, j=1.2,  BEP=75% 73.69 75.08 60.29

Fused, poly 3, j=1.2,  BEP=76% 74.33 75.67 61.08

Fused, poly 4, j=1.21, BEP=76% 74.36 75.67 61.11

Fused, rbf, j=1.1, BEP=76.6% 74.93 75.21 62.02

We observe that the performance of an early fusion approach using a linear kernel is

comparable to the performance of the best performing visual features classifier (using a

polynomial kernel of degree 3). All other early fusion-based classifiers outperform the visual

features alone. As can be seen from Table 5.7, the usage of polynomial kernels improves all

performance measures up to a point. After the polynomial kernel of degree 3, further increase

in the degree and/or complexity of the kernel results only in a marginal improvement in

performance.

Figure 5.5 illustrates the relationship between the correct class labels and the corresponding

SVM scores for the visual features only approach, and the two early fusion approches using

two different kernels. Firstly, we observe that, in all three plots, the nature images tightly

cluster around the actual class labels (i.e. non-building), with quite a low number of images on

the building side of the decision surface. This is as expected since our visual features are well-

capable of discriminating between the images of purely natural scenes and images containing

human-made structures.

Secondly, the introduction of new features does not significantly affect the classification scores

of the building images, as can be seen comparing plot a) with plots b) and c). An exception to

this is the first 200 building images on the very left, whose SVM scores appear to have moved

deeper into the non-building side of the decision surface. This is possibly only a side effect of

the displacement/adjustment of the decision surface caused by the introduction of the new

features.
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Figure 5.5 Comparison of SVM scores for (a) visual features only approach (lin, j=1.2) with

(b) the early fusion approaches using linear, j=1.25, and (c) polynomial kernel of

degree 4, j=1.21.
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Thirdly, the SVM scores relating to outdoor non-building structures remain largely unaffected

by the introduction of metadata features, as their scores remain scattered on both sides of the

decision surface in all three plots. This is not surprising, since the new features do not bring

any additional information that would affect their classification in either direction, and the

existing visual features are not powerful enough to discriminate between the buildings and the

other human-made structures. We note that the classification of outdoor non-building

structure images in unconstrained photo collections remains inadequately resolved.

Finally, we observe that the indoor images are the most profoundly and positively affected by

the introduction of the camera metadata features, since the majority of the SVM scores

corresponding to indoor images move into the non-building half-plane in both b) and c) plots.

However, there remains a number of indoor images that could not be correctly classified using

the selected camera metadata features.

5.2.5    Late fusion of visual features with the selected camera metadata

The late fusion approach involves two stages, each of which includes a learning step. In our

late fusion scheme, two classifiers are trained on visual and metadata features respectively.

The visual features-based classification produces an initial building/non-building score. The

metadata-based classifier generates a score on the outdoor/indoor status of the image. The best

performing classifier is selected for each task, i.e. the initial building detection (using a

polynomial kernel of degree 2, j=1, 1400 training examples) and the outdoor detection

(BEFLD, using linear kernel, j=3, 200 training examples). The SVM scores, representing the

classifier decisions at the first stage, are linearly normalised to the [0,1] range and then

combined into a 2-D feature vector (i.e. a semantic representation of an image) associated with

each image. These combined scores yield the final score. A new subset of 200 images is used

as training examples for the SVM metaclassifier in the second stage. Results of the final

classification are presented in Table 5.8.
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Table 5.8 Results of late fusion of building detection decision, based on visual

features, with the indoor/outdoor detection based on camera metadata

(for 2 approaches that result in the same accuracy, one with greater

recall-precision product is considered to be a better performing one).

Accuracy Recall Precision

Visual only, poly 3, j=1, BEP=73.3% 71.32 72.93 55.46

Fused, linear, j=0.96, BEP=73% 72.87 70.63 59.11

Fused, poly 2,  j=1,  BEP=74% 73.55 70.49 60.12

Fused, poly 3, j=1.01,  BEP=74.5% 74.1 71.61 60.74

Fused, poly 4, j=1.075, BEP=75% 74.1 71.26 60.81

Fused, rbf, j=0.9, BEP=76.5% 74 71.47 60.63

Again, we observe that the performance of the late fusion approach, using a linear kernel, is

comparable with that of the best performing visual-features-only approach. All other late

fusion-based classifiers outperform the visual features alone approach in accuracy and in

precision. However, the recall rate of the late fusion-based classifiers is consistently inferior,

and even the best fusion recall rate is still below the recall rate based on visual features on their

own.

5.2.6    Result comparison

The comparison of the best performing classifiers for visual features, early fusion and late

fusion approaches are presented in Table 5.9. These results show that the early fusion

approach, using RBF kernel and cost factor of j=1.1, with BEP=76.6%, performs best overall

on our dataset. As can be seen from Table 5.9, the early fusion approach improves all

performance measures. The classification accurary is increased by 3.59%, while the recall and

precision rates are increased by 3.05% and 3.53% respectively.

             Table 5.9   Comparison of the best performing classifiers for each approach.

Accuracy Recall Precision

Visual only, poly 3, j=1, BEP=73.3% 71.32 72.93 57.46

Early fusion, RBF, j=1.1, BEP=76.6% 74.93 75.21 61.11

Late fusion, poly 3, j=1.01, BEP=74.5% 74.1 71.61 60.74

The comparison of the SVM output distributions for the three approaches is shown in Figure

5.6. Although the class separation is weak in all three cases, it does appear to be the best in the

case of the early fusion approach, which corresponds to the evaluation results.
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Figure 5.6 Comparison of SVM score distributions for (a) a visual features only approach, (b)

early fusion and (c) late fusion approaches for building and non-building classes.

The comparison of the performance of the three approaches on our dataset for different types

of kernels is presented in Table 5.10. As expected, the fusion approaches outperform the visual

feature-based approach in all cases. For all kernel types used, apart from the linear kernel, the

early fusion approach performs best on our dataset. Only in the case of linear kernel, does the

late fusion approach outperform the early fusion approach. Overall, early fusion results in

slightly higher precision and accuracy, but notably in higher recall. The difference in recall

rates increases with the increased complexity of the kernel. Late fusion approaches give higher

accuracy and precison rates than visual features approaches. However, the recall rates of the

late fusion approaches are the lowest of all three approaches. On average the late fusion recall

rates are 3.78% lower than those of the early fusion recall rates and 1.28 % lower than recall

rates of visual features.

5.3    Discussion and Summary

In this Chapter, we evaluate three approaches to detection of buildings in consumer

photographs, (i) a visual features-based approach, (ii) early fusion and (iii) late fusion

approaches. Based on the experimental evaluation we note the following:

[ The unconstrained, real-world dataset is far more challenging, mainly due to the addition of

ambiguous photographs, hence there is a significant drop in performance of the visual

feature-based method compared to its performance on the ad hoc dataset (outdoor images

only) which is used in Chapter 3. In addition, our single-label approach to annotation,

coupled with the presence of a significant number of ambiguous photos in the dataset that
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belong to multiple semantic categories, present an additional challenge to the method. The

ambiguous images and images that would have been much better described using multiple

labels, were assigned to the closest category. Moreover, we have not separated out close-

ups, although we are aware that this has been done in earlier work as “close-ups do not

contain enough info for the algorithm sometimes even for the human to decide the

category” [40]). Furthermore, we have a rather high image retention rate between the

original collection and the dataset used in the experiments as ambiguous images and close-

ups were retained in our test and training set. The fact that none of these image categories is

uncommon in personal photo collections, makes the detection of buildings in unconstrained

photo collections even more challenging. For instance, we kept 72% of the initial dataset,

while only 39% of the original dataset was used for evaluation in similar work [40].

Table 5.10 Comparison of the classifier performances for each approach for the

same kernel type (the best performing classifiers are highlighted).

Kernel type Approach Accuracy Recall Precision

Linear Visual, j=1.24, BEP=71.1% 69.91 71.83 55.81

Early fusion, j=1.25, BEP=71% 71.16 72.74 57.27

Late fusion, j=0.96, BEP=73% 72.87 70.63 59.11

Poly 2 Visual, j=1, BEP=72.5% 71.34 72.15 57.58

Early fusion, j=1.2, BEP=75% 73.69 75.08 60.29

Late fusion, j=1, BEP=74% 73.55 70.49 60.12

Poly 3 Visual, j=1, BEP=73.3% 71.32 72.93 57.46

Early fusion, j=1.2, BEP=76% 74.33 75.67 61.08

Late fusion, j=1.01, BEP=74.5% 74.1 71.61 60.74

Poly 4 Visual, j=0.98, BEP=73.5% 70.99 72.54 57.09

Early fusion, j=1.21, BEP=76% 74.36 75.67 61.11

Late fusion, j=1.075, BEP=75% 74.1 71.26 60.81

RBF Visual, j=0.91, BEP=72.86% 71.36 72.41 57.58

Early fusion, j=1.1, BEP=76.6% 74.93 75.21 62.02

Late fusion, j=0.9, BEP=76.5% 74 71.47 60.63

\ Our approach to indoor/outdoor detection is most similar to the work of Luo and Savakis

[51]. However, they used a single camera model which reflected significantly on the

characteristics of the image collection. A total of 17 different camera types were used for

capturing images in our collection. The use of a single camera type ensures uniformity in

quality, reliability, and availability of camera metadata across the dataset. Considering the

large number of cameras used, our collection may not be considered a typical personal
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photo collection, although over time and within a family group the number of different

camera models is likely to be more than one or two.

] The metatadata and content-based features complement each other by capturing context and

content based aspects of image relevant information. The outdoor detection experiments

confirm that the selected camera metadata on their own does have sufficient power to

discriminate between outdoor and indoor images. Classification accuracy and recall rates

for outdoor detection in our experiments are above 85.6%, while the precision is above

90%.

^ We showed that use of metadata cues improves the accuracy of the building detector by an

average of 2-3%, regardless of the operating point chosen. The performance measures are

approximately 4% below the upper limit of the performance determined using ground truth

information. We also show that for any given kernel type, with the exception of a linear

kernel, the early fusion approach performs best on our dataset.

_ However, the inadequacy of visual features selected appears to be the major obstacle to

further improvement in the performance of the building detector. The major shortcoming of

this approach is the fact that the visual features selected initially (i.e. edge-orientation

based), which have been shown to perform well in a constrained dataset, do not have

sufficient discriminative power to separate buildings from outdoor non-building structures

in genuinely unconstrained photo collections. As our outdoor detection rate is above 85.6%,

we conclude that, to an extent, the metadata resolves the issue of correct classification of

indoor structure images. However, it is clear that additional visual features are required to

disambiguate the outdoor human-made structures from buildings. We believe that the

inclusion of colour features may improve the classification rates to a certain degree, but is

unlikely to completely resolve the issue. We observe that, in general, most buildings are

characterised by muted colours, shades of grey and brown, while on outdoor non-building

structures such as vehicles, bridges, road signs, benches, fences, ships, etc., usually

stronger, brighter colours prevail.
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Chapter 6

Conclusions and Future Work

The purpose of this thesis has been to describe the work on detection of semantic concepts in

digital photographs. In this thesis we detail the work on development of approaches to the

detection of semantic concepts in still images, focusing on the detection of large buildings. The

work also includes an approach to indoor/outdoor discrimination based solely on camera

metadata. In the course of the work leading to this thesis, other related investigations and

developments took place in the area of artificial text detection in video. Although this work is

not directly a part of the main research activity presented here, it is nonetheless related to it.

The work on detection of artificial text in video is presented in Appendix A so as not to

interfere with the presentation of the main research work. This Chapter summarises the work

presented in this thesis, analyses the results and points to directions which we believe may be

worthwhile exploring in possible future extensions of the work.

Objective

The overall rationale for our work is an automatic detection of semantic concepts in digital

visual content with the aim of providing semantic indices to the content. The ultimate objective

of this work is to facilitate the organisation and efficient and user-friendly browsing and

retrieval of visual content from large multimedia databases. 

In this thesis we set out to explore the ways of extracting an appropriate set of features from

both the image content and its context, and ways of integrating these features in order to obtain

high-level semantic labels, i.e. to automatically generate indices to images in large photo
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collections. The primary objective of the work was the identification of the appropriate low-

level and other descriptors that could well capture the semantics of an image category e.g.

buildings. In this thesis, we focus on the task of the detection of large buildings in consumer

photographs by way of exploiting and integrating both the visual and the contextual cues.

Detecting Large Buildings in Natural Images using Visual Cues

In Chapter 3 we describe an investigation of a multi-scale approach to the detection of large

buildings in images based solely on low-level visual features, i.e. edge orientation based

features. In the image of interest, a building is either a single dominant object or one of the

dominant objects. The approach (which assumes the implicit presence of contextual

information in the form of an indoor/outdoor label so that all input images are outdoor) is

validated on an ad hoc dataset of 1720 images collected from various sources. The aim is to

show that the feature representation based on a few simple and physically meaningful low-

level features, combined with the high generalisation ability of the SVM classifier, may be

sufficient to detect some high-level concepts such as buildings. Experimental results on our

dataset of 1720 images show that the performance of our method, with accuracy of 88.22%,

and recall and precision rates of 84.01% and 92.02%, is comparable to that of the existing

approaches on the constrained datasets. However, it has to be emphasised that, in comparison

to the MediAssist dataset that we use for evaluation in subsequent chapters, this dataset can be

considered fairly constrained (all images were clearly categorised as outdoor).

We showed that, for constrained datasets, a simple single-feature representation coupled with

the high generalisation capability of the SVM can be sufficient to detect high-level concepts

such as buildings. However, we realise that the task of detection of buildings in an

unconstrained dataset is a challenging task, given the large variations within the class and

similarities with other classes, most notably with the non-building structures. The low-level

visual features initially selected do not hold sufficient discriminative power to disambiguate

between building and non-building structures. This is not surprising as those two categories

are not easily discriminated even by humans in some instances, unless some contextual

information is available5. Moreover, the overlap between buildings and other human made

structures is reflected in the fact that some researchers actually include structures such as

5 An important value for benchmarking the system performance again human performance is called

interrater reliability. Interrater reliability is the extent to which a human and a system agree in their

decisions.
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bridges etc. into building class [55].

Detecting Large Buildings in Natural Images – Fusion-based Approaches

In Chapters 4 and 5 we take a closer look at a photograph's contextual information, focusing

on camera metadata in particular, and examine the ways of exploiting it towards an improved

building detection in genuine, unconstrained and broad topic consumer photo collections. The

purpose of using camera metadata is primarily to facilitate discrimination between indoor and

outdoor photographs, and thus reduce the misclassification into buildings of indoor

photographs that contain human-made structures. The discriminative power of a selected

subset of camera metadata for the task of indoor/outdoor classification was examined. Our

experiments on indoor/outdoor classification, based on camera metadata only, confirmed that

the metadata alone has a sufficient discriminatory ability for the task. The accuracy of outdoor

detection, using different number of metadata features and different training set sizes, ranged

from 85.6-91.5 %.

Early and late fusion approaches to fusion of the existing low-level visual features with

selected camera metadata are explored. In both cases we use SVM as integration device. The

performance comparisons of the best performing classifiers for visual features only, early

fusion and late fusion approaches show that the early fusion method, which combines 24 visual

and 5 camera metadata features performs best on our dataset, with an accuracy of 74.93%, and

recall and precision rates of 75.21% and 61.11% respectively.

We show that the introduction of metadata cues improves the classification accuracy of

building detector by an average of 2-3% regardless of the operating point chosen. The

performance measures are approximately 4% below the upper limit of performance determined

using ground truth information. The early fusion approaches performed best on our dataset. 

Integration of features from different modalities, i.e. a combination of complementary content-

based and contextual information, does improve the classification performance as expected.

The contextual information in the form of camera metadata is cheap and easily obtainable.

However, different manufacturers support different sets of metadata tags, thus their availability

and the degree of reliability varies.

102



Future Work

As regards the possible future work on the task of building detection in consumer photographs,

the following directions may be worthwhile exploring:

` The inclusion of colour features is expected to bring further improvement in performance.

Colour descriptors such as dominant colour, colour layout, and even heavily quantised

histograms may be useful. The colour features are expected to aid the discrimination

between the buildings and outdoor non-building structures.

` It is believed by the author, based on experiments, that for the late fusion approach, an

introduction of additional visual cue-based classifiers trained on either different training

sets or with different classifier settings, may be beneficial (i.e. to reduce the influence of the

outdoor detector). This is because it appears that unweighted one-to-one approach may not

be the most adequate. Also, further experimentation with the choice of SVM kernels and

their parameters should be explored as the work presented here has dealt only with simple

kernels using default values of most parameters.

` Extensive evaluation of the approach following the removal of ambiguous photos from the

dataset in required in order to be able to compare the results with similar work. As an

alternative, a multi-label approach to classification should be considered since the current

single-label approach to photos that may belong to more than one class penalises the

performance. 

` The artificial text detection method in video may be adapted for detection of scene text in

natural images. Text occurrences detected in natural scenes, such as road signs, names of

streets, buildings are all useful pieces of information that could either help refine the results

of the analysis of low-level cues on their own or provide an extra index themselves. At the

very least, the presence of text indicates that a photo was captured in an urban(ised)

location.
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Appendix A

Artificial Text Detection in Digital Video

In this appendix we present the work [54], as published in WIAMIS'04, on developing an

approach for detecting the artificial or overlay text in the MPEG-1 coded video, segmenting

the text and enhancing it for further processing by the OCR (Optical Character Recognition)

software. Unlike the work presented in the main body of the thesis, which deals with the

detection of semantic concepts such as buildings in still images, here we present our work on

detection of artificial text in video. The appendix is organised as follows. In section A.1 we

introduce the problem. In section A.2, approaches upon which our work is based are

summarised, and in section A.3 we give a brief overview of relevant compression standards.

Section A.4 presents the algorithmic details of our approach for detection, localisation,

enhancement and character segmentation. Section A.5 details the evaluation procedure and

summarises the results obtained. Finally, section A.6 provides a conclusion.

A.1    Introduction

A significant challenge in large multimedia databases is the provision of efficient means for

semantic indexing and retrieval of visual information. The need to handle large volumes of

digital video data highlights the importance of the provision of efficient means for automated

content-based indexing as the real value of the information stored in a large digital video

archive is dependent on its accessibility.

Text appearing in digital video can be broadly categorised into two classes: scene text and

artificial text. Scene text appears naturally as a part of the scene being recorded and is an
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integral part of the image. Due to the accidental nature of its occurrence, scene text rarely

carries significant information as for example a picture of a roadside sign containing a name of

a town. Scene text may appear in almost any size, shape, colour and orientation, and as such it

is often difficult to detect. On the other hand, artificial text (i.e. open caption or non-scene text)

appearing in video is usually closely related to the visual content and is a strong candidate for

high-level semantic indexing, thus offering an alternative or complementary approach to

indexing based on low-level features extracted from the video or audio signal. The artificial

text embedded in video frames frequently includes the most valuable information about the

content of the video, such as scene location names, names of people, topics covered, sports

scores, movie credits, etc. An index built by detecting, extracting and recognising the artificial

text contained in a video sequence enables keyword-based queries in a manner similar to text-

based retrieval.

Our approach for detecting and extracting artificial text regions in uncompressed video frames

is essentially texture-based. We exploit the fact that text regions have different texture

properties to the surrounding areas, such as alignment of edges along particular directions.

Thus we localise all regions featuring a high concentration of short vertical edges that are

horizontally aligned. Text regions are enhanced by smoothing and bi-linear interpolation, and

are subsequently binarised by local thresholding in order to retain only pixels that exhibit high

local contrast relative to the maximum contrast of the image, which is typical of pixels that

form characters. In order to restore character fragments lost in the process of character

segmentation, morphological processing is applied.

Figure A.1   Examples of (a) artificial text, (b) combination of artificial and scene text and (c) 

                    scene text in video frames.
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A.2    Literature review

The vast majority of algorithms for text detection and extraction make use of typical

characteristics of artificial text appearing in digital video, such as high contrast to the

background, high density of short edges of varying orientation, horizontal alignment, various

geometrical properties and temporal stability [92,93]. The first algorithms for

detection/extraction of text from images were developed for still images. The methods used for

still images had to be adapted for use with video given factors such as the considerable

difference in quality, the low resolution of video frames, the presence of noise, the possibility

of characters touching and complex backgrounds. Additional challenges to be addressed are

the diversity of fonts, styles, colours, size and orientations that text occurring in video can

exhibit.

Lienhart and Effelsberg in [42] used colour segmentation in the RGB colour space combined

with edge analysis and empirically determined geometrical restrictions without making any

assumptions about the text alignment (they calculated the direction of word's main axis in

order to determine the writing direction). Temporal redundancy of text in video was exploited

to eliminate non-text regions. Although they did not implement it in their approach in [42], the

authors believe that temporal redundancy may be further exploited so as to improve the

recognition results by means of a combination of recognition results pertaining to adjacent

frames. The drawback of their approach is that it appears to work for large fonts only.

The approach of Lienhart and Wernicke [91], which used the properties of high contrast and

high frequency to detect and localise the occurrences of artificial text, is capable of handling

text sizes ranging from 8 pixels to half the frame, as well as estimating the text colour by

colour quantization and comparison of colour histograms. Temporal redundancy was exploited

to determine the colour, size and position of a particular text occurrence through comparison of

colour, size and position of text located in adjacent frames. 

Miene et al [63] adopted an approach based on region-growing methods in a colour-segmented

image, followed by segmentation of characters from the background based on size (i.e. height,

width and height-to-width ratio) and alignment constraints. Character candidates were

clustered into word candidates by clustering regions of similar colour and height whose length
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does not exceed a certain maximum value. The approach also includes a method aimed at

restoring small character fragments which were lost during the segmentation step, thus

improving the input for the OCR.

The approach of Wu et al [94] is a texture-based one: the text is treated as a distinctive texture

which is characterised by certain frequency and orientation information. This feature was used

so as to identify and segment initial text regions from the image. Furthermore, text also

exhibits spatial cohesion: geometrical constraints, such as height similarity, spacing and

alignment were applied to the segmented text regions in order to draw tighter rectangular

bounding boxes around the text strings. In order to be able to detect text over a range of font

sizes, a multi-scale approach was adopted: a pyramid of images was formed for each image

and the detection algorithm was applied at each resolution. Subsequently, detection results at

all resolutions were fused at the original resolution. 

The approach of Li at al [40] is texture-based. The observation that text regions have different

texture properties (i.e. similar frequency and orientation) than non-text regions forms the basis

of their method. In [40], they view the problem of text detection and tracking in digital video

as a multi-target detection and tracking problem: multiple text regions can occur in a frame and

can move in different directions. Making use of the fact that the same text remains in the scene

for a number of consecutive frames they performed the text detection only periodically whilst

placing emphasis on the tracking process. As in [94], detection of different text sizes is

facilitated using a three-level pyramid approach. Each instance of detected text kicks off the

tracking module. Haar wavelets were used to detect the text regions characterised by line

segments, and the results of text classification at all levels were integrated using a Neural

Network.

Wolf and Jolion [92,93] applied a detection algorithm to each frame of the video sequence. All

processing was performed on grey-scale images. Their approach makes use of the following

properties of text in video: (i) grey level properties (high contrast in given directions), (ii)

morphological properties (spatial distribution and shape), (iii) geometrical properties (height,

width, height-to-width ratio) and (iv) temporal properties (stability). The main assumption that

the method is based upon, is that artificial text regions are characterised by a high density of

vertical edges which are horizontally aligned. In both, [92] and [93], temporal redundancy was

107



exploited to determine the final text bounding boxes and to obtain an enhanced image which is

then binarised and passed to OCR for recognition. A combination of morphological processing

and imposition of geometrical constraints was used to remove non-text regions. Segmentation

was performed using a modified Niblack algorithm [92,93], which uses local thresholding.

The conclusions drawn from the aforelisted approaches can be summarised as follows:

a Overall, the approaches to text detection, both in still images and digital video, can be

divided into two groups: connected component based and texture based. The connected

component based methods [42,63] rely on the assumption that text pixels are characterised

by similar colour or intensity, so they start with clustering of regions of similar colour that

exhibit high contrast to their surrounding and then proceed to verify that those regions or

components satisfy certain geometrical constraints, such as height, length, height-to-length

ratio, etc. One of the drawbacks of connected component based approach lies in its inability

to effectively handle text embedded in complex backgrounds.

a The texture methods [40,91,92,94], on the other hand, make use of the fact that text regions

are characterised by their distinctive texture: i.e. particular frequencies and orientations, as

well as their spatial cohesion. Various texture analysis methods, such as Gaussian filters,

wavelets or simple edge detection filters, are used in order to locate text regions. In texture-

based methods, imposition of geometrical constraints on initially detected regions is used as

well in order to refine the detection results. 

a Most approaches, unlike [42] which calculates the direction of word's main axis in order to

determine the writing direction, assume horizontal alignment of artificial text.

a The temporal redundancy of video is exploited in different ways: to determine the colour,

size and position of a particular text appearance through comparisons of text appearances in

adjacent frames [91], to improve recognition results by combining recognition results in

adjacent frames [42], to refine the results of text detection/localisation as in [92, 93] or

simply to reduce computational demand by applying the text detection method only

periodically as in [40].

a In order to facilitate the detection of text over a wide range of sizes, most methods adopt a

multi-scale approach: the original image is decomposed into a number of images at

different resolutions so as to form a pyramid of images. Detection of text of different sizes
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is then achieved by applying the detection method to each of the decomposed images and

eventually mapping and merging the detection results at different pyramid levels to the

original image. 

Our approach is closest in spirit to Wolf-Jolion approach. The principal differences between

our approach and that of [92,93] are that our detection method is applied to every I-frame only,

that we use the magnitude of the symmetrical horizontal difference as a measure of probability

that a pixel belongs to a text region, that all text regions in frame are bounded by a single box,

and that text segmentation is performed twice.

A.3    Relevant compression standards

The objective of compression is to reduce redundancy in data so as to facilitate more efficient

storage and transmission of the data. Digital video is among the most information-intensive

modes of communication and as such places huge demand on storage space and transmission

bandwidth. As an illustration, a single frame decompressed from a 352x288 MPEG-1 stream

into an RGB image takes 297 KB of storage space (i.e. 3 bytes for each pixel). With a frame

rate of 25 frames per second, storing a single second worth of uncompressed video thus

requires over 7 MB of storage space. In order to deal with the issue of storage and

transmission, different compression standards for still images and digital video were

developed, among others: MPEG-1, which is used for compression of digital video, and JPEG,

used for compression of still images.

JPEG 

JPEG stands for Joint Pictures Experts Group. JPEG is a standard for coding still images in a

compressed format by means of exploiting the spatial redundancy in the image and limitations

of the human eye (which is more sensitive to relative luminance changes than relative colour

differences). JPEG is well suited for compressing full-colour or gray-scale images of natural

scenes and is less suited for compressing synthetic (i.e. human-made or human-generated

images). It is not suited for compression of black and white images such as line drawings,

comics, etc. In general, images with abrupt changes in colour do not compress well with JPEG.

JPEG is a block-based scheme that works on blocks of 8x8 pixels, on images in chrominance-
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luminance colour space (YCrCb colour space), using discrete cosine transform to transform

from spatial domain into frequency domain.

MPEG-1

MPEG stands for Moving Pictures Experts Group. MPEG is a family of standards used to code

audio-visual information in a digital compressed format. In MPEG-1, video consists of a

sequence of still images, each of which corresponds to a two-dimensional array of pixels. Each

pixel in an array has three colour components: red, blue and green. MPEG is a block-based

coding scheme which operates on images in YCrCb colour space (Luminance, Chrominance

Red, Chrominance Blue) and exploits both the spatial, or intra-frame redundancy (discrete

cosine transform coded 16x16 macroblocks), and temporal, or inter-frame redundancy (motion

vector), of data in digital video.

The MPEG-1 sequence consists of three types of coded frames: I (intra frames), P (predicted

frames) and B (backward predicted frames). The I-frames are coded as still images, i.e. As

effectively equivalent to JPEGs (only the spatial redundancy is reduced), and thus contain all

the data necessary to fully describe a particular frame. Therefore, an I-frame can be decoded

independently of the other frames in the stream. The P frames are coded as differences

between the given frame and previous I or P-frame. The B-frames are described as difference

between the previous and the following reference frames in the sequence (i.e. I or P-frame). In

oder to reconstruct a P-frame at the decoder end, the most recently reconstructed I or P frame

is used. Decoding a B-frame requires the two closest I or P-frames, the immediate predecessor

and immediate successor of the B-frame being decoded. 

The main advantage of the MPEG-1 compression standard over other compression standards

lies in the fact that, for the same picture quality, MPEG files are much smaller (higher

compression ratio). The MPEG-1 video sequences used in this work have frame sizes of

352x288 and play at the rate of 25 frames per second.

A.4    Our approach

A functional diagram of the system is presented in Figure A.2. The detection algorithm, which

operates in the uncompressed domain, is applied to every I-frame of the MPEG-1 video
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sequence only, thus exploiting the temporal stability of artificial text over a number of frames. 

A single rectangular box that bounds all candidate text regions is defined for each I-frame.

Following image enhancement and morphological processing these rectangular boxes are

cropped and binarised, and subsequently passed to the OCR module. These steps are described

in more detail in the following.

                                                                                                               

Figure A.2   System block diagram.

A.4.1   Detection and localisation of artificial text

Our detection method is based on texture analysis, relying on the property of Latin script to

form a texture characterised by a high density of vertical edges aligned horizontally. The

method operates on an uncompressed video frame in a YUV colour space (luminance,

chrominance red, chrominance blue). Temporal stability of text in video is taken into account

through an assumption that a particular text appearance has to remain visible for a certain

minimum duration (i.e. approx. 1 second) in order to be readable. It is therefore sufficient that

only I-frames be examined and analysed for the presence of text that appears over a number of

consecutive frames.

Edge detection and processing 

The magnitude of the symmetrical horizontal difference is calculated for each pixel in the

luminance component of the frame. Each pixel value in the resulting image is a measure of the

111



probability that it belongs to a text region. Pre-processing prepares the edge map for

binarisation by joining the vertical edges horizontally into clusters corresponding to words and

text lines. The edge map is first smoothed using a 3x3 binomial filter, which is followed by

blurring horizontal using a 3x1 mask. A small blurring mask is used in order to avoid

connecting noisy areas to areas containing text. Erosion by a cross mask is then carried out to

clear the top intensity layer in the greyscale image [4]. As a result, bright text areas slightly

shrink in size, but so do the noisy edges in the background. Subsequent smoothing increases

the size of text regions as does a final 3x3 dilation. Figure A.3 illustrates the effects of some of

these processing steps.

Binarisation

Binarisation of the edge map is performed in order to separate text-containing regions from the

rest of the frame using Otsu's global thresholding method as described in [92,93]. An optimal

threshold is calculated based on the grey level histogram by assuming Gaussian distributions

of text pixels and non-text pixels. The method aims to maximise the interclass variance. The

optimal threshold is calculated using the following formula [92,93]:

t b arg max t c 0 c 1 d 1 efd 0

2
(11)

where g 0�is the normalised mass of class 0 (i.e. the number of pixels in the class divided by

the total number of pixels in the image),�g 1 is the normalised mass of class 1, and�h 1 and h 0

are mean grey levels for each of the classes. Unlike [92,93], in this system thresholding is

implemented based on a 64-bin histogram using a single threshold. Ideally, this step results in

an image featuring clusters of white pixels in areas corresponding to the text regions. In

practice, small clusters of white pixels may appear elsewhere in the frame. Binarisation is

followed by post processing to remove these noisy areas. Figure A.3 also shows the result of

the edge map binarisation before and after morphological processing.

Fitting bounding boxes

The aim of this step is to fit a single bounding box that encloses all text areas in the frame.

This requires that as much noise as possible be removed beforehand, otherwise there is a risk

that the bounding box may potentially grow to reach the size of the frame. As can be seen from

Figure A.3, the binarised edge map contains some noise pixels. In order to remove these,
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several steps are taken. The first step is to use a 3x3 median filter that deals well with the noise

spikes whilst preserving the edges. In the sample frame the benefit of median filtering in

removing noise is not obvious as the noise spot is not a single pixel. However, its averaging

effect is clear as the tiny black spots were removed from the white regions. The next step is a

3x1 dilation followed by a 5x5 opening. As can be seen in Figure A.3, a 5x5 erosion succeeds

in removing the noisy spot while the subsequent dilation with the same size structuring

element restores the desired white clusters to their initial size. 

]

Figure A.3   (a) Input image, (b) horizontal difference magnitude, (c) (d) binarised edge map 

                     before and after morphological processing.

Finally, a dilation in the horizontal direction using a 7x1 structuring element connects text

pixels into text lines. In order to compensate for any damage to text regions during the

previous processing, the text box size is adjusted by growing it by 5 pixels in all four

directions. Ideally the adjustment should be proportional to the bounding box dimensions.

Geometrical constraints are imposed on bounding boxes and those failing to satisfy minimum

area and width criteria are discarded. In Figure A.4, the cropped text region identified from

Figure A.3 is presented. Another, enlarged, cropped text image is shown in Figure A.5

illustrates the intensity variations across both character as well as background pixels.

Figure A.4   Cropped text image.

Figure A.5   Intensity variations across character and background pixesls.
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A.4.2   Segmentation of characters

The purpose of the segmentation stage is to separate the character pixels from the background

pixels and to form an image that contains only black character pixels on a white background,

which is a suitable input for the recognition stage. Segmentation by local thresholding is

performed based on the assumptions that (i) characters have high contrast to the background

and (ii) characters are monochromatic regions. Some segmentation results are shown in Figure

A.6.

Pre-processing of cropped image

In order to meet the high-resolution requirement imposed by OCR, the cropped image is bi-

linearly interpolated by a factor of 4. This ratio is chosen so as to ensure that the smallest size

font that occurs in video, such as movie subtitles, is enlarged sufficiently to constitute a

suitable input to the OCR stage. This decision is based on a comparison of the movie subtitles

font size in a test video and the suggested character size supplied with the OCR package we

use. A last pre-binarisation step involves filtering using a 3x3 median filter in order to remove

noise spikes.

Binarisation of cropped image

Separation of character pixels from non-character or background pixels is based on local

thresholding using a modified Niblack algorithm as presented in [92,93]. The binarisation

decision is made using a rectangular 5x5 window that is shifted across the image using the

mean and standard deviation ([92,93] use variance) of grey levels in a window. 
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Figure A.6  Some text segmentation results.

Only those pixels that exhibit a high local contrast relative to the maximum contrast in the

image and the contrast of the window are retained. The following equation is used for the

calculation of the threshold value [92]:

(12)

where m is the mean grey level value in a window, s is the standard deviation of grey values in

the window, M is the minimum grey level value for the whole image, R is maximum standard

deviation for all windows. It is suggested in [92,93] that the parameter a be set to 0.5.

However, as character strokes of segmented text appeared to be too thin and fragmented with

parameter a set to 0.5, different values were investigated and 0.1 was determined to be the

most suitable for our purposes. Our experiments also showed that using maximum standard

deviation rather than maximum variance as used in [92,93], resulted in more accurate

segmentation. Following the smoothing step after the first segmentation, the second

segmentation is performed as we noticed that it improves the quality of the segmented

characters.

A.4.3   Recognition 

Recognition is performed using freely available optical character recognition software known

as Clara OCR [14]. This OCR package does not have in-built fonts and thus requires training.

A considerable amount of effort has to be put into training so as to build a sufficiently large

database of character patterns in order to enable Clara OCR to deal successfully with a variety

of sizes, fonts and the varying degree of character fragmentation that occurs in the

segmentation process. It is clear from our experiments that overall recognition results critically

depend on the quality of the input provided by the segmentation stage. Any fragmentation or

damage to the characters due to the presence of noise in video is likely to considerably disrupt

the character recognition process. 

115

T i 1 j a m k aM l a
s

R
m m M



A.5    Experimental evaluation 

A.5.1   Dataset

In order to evaluate the performance of the system, testing was carried out on two MPEG-1

encoded CIF video sequences from our own video database. The first video sequence

contained 1000 frames with 26 frames containing the appearance of artificial text. The second

sequence contained 30000 frames, 795 of which contained artificial text. The ground truth

used for evaluation was created by manually transcribing the sequences. Figure A.7 shows

examples of the video frames used.

Figure A.7   Examples of video frames from our database.

A.5.2   Results of text detection

Text detection performance was evaluated manually against the ground truth by determining

the percentage of characters in a frame that have been successfully located and enclosed by a

bounding box. Detection recall was defined as the ratio between the number of characters

enclosed and the total number of characters that appear in a frame. For each new appearance of

text on screen, the best detection result was manually chosen. Automating this process using

temporal information will be the basis for our future work in this area. Analysis of the
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accuracy of detection within a frame over the entire test corpus showed the following. The

best-candidate detection recall for the first sequence was 95%, and 83 % for the second

sequence, giving an average overall detection recall of 83.2%. 

Table A.1   Text detection results.

# frames  Recall 

(best candidate) 

Sequence 1 1000 95%

Sequence 2 30000 83%

Overall 31000 83.20%

A.5.3   Results of recognition

Since the main focus of our work is on segmentation and not OCR, and given the significant

effort required to train the OCR package using segmentation results, we have only evaluated

recognition performance for sequence 1. Recognition performance was evaluated through

comparison of the OCR recognition results with the manually generated ground-truth.

Character-based recognition recall ranged from 81-84% while the recognition precision was

within the range 66-74%.

A.6    Conclusions

In this appendix we present a method to detect, localise and segment artificial text from video.

The evaluation of the method on 31000 video frames showed moderately good detection

recall. However, currently the evaluation is based upon manual selection of the best detection

results for the appearance of a given piece of text. Further research is required in order to

utilise temporal information so as to automate this process, e.g. by accumulating segmentation

results over a number of frames. Further work on training the OCR package for recognition

using segmentation results across different sequences is also required. Furthermore, from the

Figure A.8 we can draw a conclusion that multiple-bounding-boxes approach, where a line of

text is tightly bound by its own bounding box, as opposed to our one-bounding-box per frame,

would be more effective and would both ease the the task of the segmentation module and
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facilitate the improved character segmentation.

Figure A.8 (a) Input image, (b) horizontal difference magnitude, (c) and (d) binarised edge

map before and after morphological processing, (e) cropped text image, and (f)

segmented text.
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