4,856 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Comparative study of Image Fusion Methods: A Review

    Full text link
    As the size and cost of sensors decrease, sensor networks are increasingly becoming an attractive method to collect information in a given area. However, one single sensor is not capable of providing all the required information,either because of their design or because of observational constraints. One possible solution to get all the required information about a particular scene or subject is data fusion.. A small number of metrics proposed so far provide only a rough, numerical estimate of fusion performance with limited understanding of the relative merits of different fusion schemes. This paper proposes a method for comprehensive, objective, image fusion performance characterization using a fusion evaluation framework based on gradient information representation. We give the framework of the overallnbsp system and explain its USAge method. The system has many functions: image denoising, image enhancement, image registration, image segmentation, image fusion, and fusion evaluation. This paper presents a literature review on some of the image fusion techniques for image fusion like, Laplace transform, Discrete Wavelet transform based fusion, Principal component analysis (PCA) based fusion etc. Comparison of all the techniques can be the better approach fornbsp future research

    Multi-Sensor Image Fusion Based on Moment Calculation

    Full text link
    An image fusion method based on salient features is proposed in this paper. In this work, we have concentrated on salient features of the image for fusion in order to preserve all relevant information contained in the input images and tried to enhance the contrast in fused image and also suppressed noise to a maximum extent. In our system, first we have applied a mask on two input images in order to conserve the high frequency information along with some low frequency information and stifle noise to a maximum extent. Thereafter, for identification of salience features from sources images, a local moment is computed in the neighborhood of a coefficient. Finally, a decision map is generated based on local moment in order to get the fused image. To verify our proposed algorithm, we have tested it on 120 sensor image pairs collected from Manchester University UK database. The experimental results show that the proposed method can provide superior fused image in terms of several quantitative fusion evaluation index.Comment: 5 pages, International Conferenc

    Fusion of Visual and Thermal Images Using Genetic Algorithms

    Get PDF
    Demands for reliable person identification systems have increased significantly due to highly security risks in our daily life. Recently, person identification systems are built upon the biometrics techniques such as face recognition. Although face recognition systems have reached a certain level of maturity, their accomplishments in practical applications are restricted by some challenges, such as illumination variations. Current visual face recognition systems perform relatively well under controlled illumination conditions while thermal face recognition systems are more advantageous for detecting disguised faces or when there is no illumination control. A hybrid system utilizing both visual and thermal images for face recognition will be beneficial. The overall goal of this research is to develop computational methods that improve image quality by fusing visual and thermal face images. First, three novel algorithms were proposed to enhance visual face images. In those techniques, specifical nonlinear image transfer functions were developed and parameters associated with the functions were determined by image statistics, making the algorithms adaptive. Second, methods were developed for registering the enhanced visual images to their corresponding thermal images. Landmarks in the images were first detected and a subset of those landmarks were selected to compute a transformation matrix for the registration. Finally, A Genetic algorithm was proposed to fuse the registered visual and thermal images. Experimental results showed that image quality can be significantly improved using the proposed framework
    corecore