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ABSTRACT

FUSION OF VISUAL AND THERMAL IMAGES USING GENETIC
ALGORITHMS

Sertan Erkanh
Old Dominion University, 2011
Director Dr Zia-ur Rahman (Deceased)

Demands for reliable person identification systems have increased significantly
due to highly securnty risks in our daily life Recently, person identification systems are
built upon the biometrics techniques such as face recogintion Although face recognition
systems have reached a certain level of maturity, therr accomplishments n practical
applications are restricted by some challenges, such as illumilation variations Current
visual face recognition systems perform relatively well under controlled illumination
conditions while thermal face recognition systems are more advantageous for detecting
disguised faces or when there 1s no illumination control A hybnd system utilizing both
visual and thermal 1mages for face recognition will be beneficial

The overall goal of this research 1s to develop computational methods that
improve 1mage quality by fusing visual and thermal face images First, three novel
algorithms were proposed to enhance visual face images In those techniques, specifical
nonlinear mmage transfer functions were developed and parameters associated with the
functions were determined by image statistics, making the algorithms adaptive Second,
methods were developed for registering the enhanced visual images to thewr
corresponding thermal 1images Landmarks 1n the images were first detected and a subset

of those landmarks were selected to compute a transformation matrix for the registration



Finally, A Genetic algorithm was proposed to fuse the registered visual and thermal
images Experimental results showed that image quality can be significantly improved

using the proposed framework
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1. INTRODUCTION

Biometric technologies such as fingerprint, hand geometry, face and s
recognition are widely used to 1dentify a person's identity The face recognition system 1s
currently one of the most important biometric technologies, which 1dentifies a person by
comparing individually acquired face images with a set of pre-stored face templates 1n a
database

Though the human perception system can identify faces relatively easily, face
reorganization using computer techniques 1s challenging and remains an active research
field TIllumination and pose variations are currently the two obstacles limiting
performances of face recognition systems Various techniques have been proposed to
overcome those limitations in recent years For instance, a three dimensional face
recognition system has been investigated to solve the illumination and pose variations
simultaneously [1, 2] The illumination variation problem can also be mitigated by
additional sources such as infrared (IR) images [3] The proposed work in this
dissertation will be focusing on fusing optical and infrared images to further improve the
image quality for mitigating the 1llumination challenges

Thermal face recogmition systems have received little attention in comparison
with recognition 1n visible spectra partially due to the high cost associated with IR
cameras Recent technological advances of IR cameras make 1t practical for face
recognition While thermal face recognition systems are advantageous for detecting
disguised faces or when there 1s no control over illumination, 1t 1s challenging to
recognize faces 1in IR images because 1) 1t 1s difficult to segment faces from background

1in low resolution IR 1mages and 2) intensity values 1n IR images are not consistent due to

The reference model for this work 1s IEEE Transactions on Image Processing



the fact that different body temperatures result 1n different intenstty values in IR images
As a remedy, a system 1s presented for 1mage enhancement by fusing thermal and visual
images The primary objective of this research 1s to provide improved 1mages, which
include more information
1.1 Research Question and Motivation

The main goal of face recognition 1s to identify or verify one or more persons 1n
the scene using a stored database of faces The first step in face recognition 1s to detect
face 1n 1mages Face detection systems usually work well for optical images if
tllumination condition 1s controlled However, the performance degrades significantly if
the lighting 1s dim or 1f 1t 1s not uniformly illuminating the scene Because Thermal IR
imagery 1s 1nvariant to those types of distortions, identifying faces from thermal IR
images becomes an active research area Recent technical advances sigmficantly reduced
the cost 1in the nstrumentation of IR cameras, making face recognition based on IR
1mages possible A combination of visual and thermal face images for face recognition 1s
very promising because it can alleviate the problems caused by the two systems

Fusing optical and IR 1mages requires an 1mage registration step that aligns one
image source to another The registration step consists of finding a transformation that
brings an optical image into the best possible spatial correspondence with its IR
counterpart A common method for registration 1s to treat it as a mathematical
optimization problem, using a similarity measure to quantify the quality of the alignment
between the two image sources A Genetic algorithm 1s also proposed for fusing the

registered 1mages 1n this dissertation



1.2 Research Objective
The overall goal of this research 1s to develop computational methods for
obtaining efficiently improved images The research objective will be accomplished by
integrating enhanced visual 1mages with IR Images through the following steps
1 Enhance optical images,
2 Register the enhanced optical images with IR 1mages,

3 Fuse the optical and IR 1mages

1.3. Thesis Contribution
The contribution of this thesis 1s the development of novel techniques for image
enhancement and 1mage fusion as listed below
1 Two new algorithms that enhance the uniformity of luminance and image
details 1n optical images,
2 A genetic algorithm that fuses the enhanced optical images with IR
1mages

1.4. Thesis Outline

Chapter 2 surveys related work for IR imaging, image enhancement, image
registration and 1mage fusion

Chapter 3 discusses the proposed nonlinear image enhancement methods

Chapter 4 presents the proposed image fusion algorithm

Chapter 5 reports the experimental results of the proposed algorithm

Chapter 6 concludes this dissertation



2. LITERATURE SURVEY

2.1 Introduction

The term “biometrics™ 1s derived from the Greek words bio (ife) and metric or
metry (to measure) and 1s used to describe technologies that include face, fingerprint,
hand geometry, 1iris, vemn and voice recognition systems Interestingly, the term
“biometrics” was not used to describe these technologies until the 1980s, the first
reference being 1n a 1981 article in The New York Times When used for personal
dentification, biometric technologies measure and analyze human biological and
behavioral characteristics Identifying a person’s biological characteristics 1s based on
direct measurement of a part of the body—fingerprints, hand structure, facial features,
iris patterns, and others The corresponding biometric technologies include fingerprint
recognition, hand geometry, facial, and ir1s recognition, among others Face recognition
systems are currently one of the most important biometric technologies Facial
recognition 1s used to identify people by comparing sample images with stored templates,
using mathematical analysis of the groups of acquired data

While face recognition techniques have reached a considerable level of maturty,
the overall problem still poses a significant challenge due to the large variations 1n face
1mages of the same person resulting from the impact of changes in illumination and
different types of cameras In this study, we present a new framework for improving the
quality of fused images, which takes advantages of both visual and thermal 1mages

In this chapter, we will present related work in IR Image technology, nonlinear

image enhancement algorithms, image registration and 1mage fusion



2.2 IR Technology
2.2.1 Introduction

Most face detection and recognition research 1s based on visual images but visual
face recognition-based systems perform poorly under poor illumination conditions An
alternative approach for illumination invariant face detection and recognition tasks 1s to
utilize the thermal infrared (IR) imagery
2.2.2 Theoretical IR Background

Visible light 1s one of the few types of radiation that can penetrate our atmosphere
and be detected on the Earth’s surface Figure 2 1 shows the electromagnetic spectrum
ranging from gamma rays, X rays, ultraviolet, visible, infrared, microwaves to radio
waves with ascending wavelength and descending frequency All of these forms of
radiation travel at the speed of light (186,000 miles or 300,000,000 meters per second 1n a
vacuum) In addition to visible light, radio, some infrared and very small amount of
ultraviolet radiations can also reach the Earth’s surface from space Fortunately, our
atmosphere blocks out the rest, much of which 1s very hazardous, 1f not deadly, for life on
Earth [4]

One type of electromagnetic radiation that has received a lot of attention recently
1s Infrared (IR) radiation IR refers to the region beyond the red end of the visible color
spectrum, a region located between the visible and the microwave regions of the
electromagnetic spectrum [5] Infrared 1s usually divided into three spectral regions
short, medium and long-wave infrared, which are listed below

Short-wave Wavelength between 0 76 to 1 1 microns The infrared light that we

observe 1n this region 1s not thermal Many do not even consider this range as part of



infrared astronomy Beyond about 11 mucrons, infrared emussion 1s primary heat or
thermal radiation

Medium-wave As entering to the medium-wave region of the spectrum, the cool
stars begin to fade out and cooler objects such as planets, comets and asteroids come 1nto
view Planets absorb light from the sun and heat up They then re-radiate the heat energy
as infrared light The emitted infrared light 1s different from the visible light from planets,
which 1s reflected sunlight The planets in our solar system have temperatures ranging
from about 53 to 573 Kelvin degrees Objects 1n this temperature range emit mostly the
medium-wave IR For example, the Earth itself radiates most strongly at about 10
microns wavelength Asteroids also emit most of their light 1n the medium-wave region
making this wavelength band the most efficient for locating dark asteroids Infrared data
can help to determine the surface composition and diameters of asteroids

Long-wave In the long-wave region, huge, cold clouds of gas and dust 1n our
galaxy, as well as in nearby galaxies, glow 1n the long-wave hight In some of these
clouds, new stars are just beginning to form In the wavelength region, we can detect
those protostars long before they ‘turn on’ visibly by sensing the heat they radiate
2.2.3 Discussion

The prnimary source of infrared radiation 1s heat or thermal radiation Thus 1s the
radiation produced by the motion of atoms and molecules in an object The higher the
temperature, the more atoms and molecules move and the more 1infrared radiation they
produce Any object having a temperature above absolute zero (0 degrees Kelvin or
273 15 degrees Celsius) radhates infrared Absolute zero 1s the temperature at which all

atomic and molecular motion ceases Even objects that we think as being very cold, such



as an 1ce cube, emit infrared When an object 1s not quite hot enough to radiate visible
light, 1t will emit most of 1ts energy as infrared For example, hot charcoal may not give
off light but 1t does emit radiation that we feel as heat The warmer the object, the more
infrared radiation 1t emuts

Today, infrared technology has many exciting and useful applications In the field
of infrared astronomy, new and fascinating discoveries are being made about the
Universe and medical imaging as a diagnostic tool Infrared cameras are used for police
and security as well 1n fire fighting and 1n the military Infrared satellites have been used
to monitor the Earth’s weather, to study vegetation patterns, and to study geology and
ocean temperatures In addition, Infrared 1maging 1s used to detect heat loss 1n buildings
and 1n testing electronic system [4]

IR sensors have been applied to face detection 1n some applications such as night-
vision, and military applications They can detect warm objects However, IR sensors are
much more expenstve compared to optical cameras with comparable resolutions, making
it less affordable for many applications

Humans, at normal body temperature, radiate most strongly in the infrared, at a
wavelength of about 10 mucrons [4] The area of the skin that 1s directly above a blood
vessel 1s, on average, 0 1 degrees Celsius warmer than the adjacent skin Moreover, the
temperature variation for a typical human face 1s in the range of about 8 degrees Celsius
[7] Recent improvements in IR-sensors making them be enable to capture the

temperature variations with a relatively high sensitivity
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In fact, vanations among 1mages from the same face due to changes in

llumination, viewing direction, facial expresstons, and pose are typically larger

than variations introduced when different faces are considered Thermal IR

1magery 1s 1nvariant to variations introduced by illumination facial expressions

since 1t captures the anatomical information However, thermal imaging has

Iimitations 1n 1dentifying a person wearing glasses because glass 1S a material of

low emussivity, or when the thermal characteristics of a face have changed due to

increased body temperature (e g, physical exercise) [8] Combining the IR and

visual techniques will benefit face detection and recognition



2.3 Nonlinear Image Enhancement Techniques
2.3.1 The Nonlinear Log Transform

The non-linear log transform converts an original 1mage g into an adjusted image
g' by applying the log function to each pixel g[m, n] in the image,

g'lm, n] = klog(g[m, n)), 21

where k=L/log(L) 1s a scaling factor that preserve the dynamic range and L 1s intensity

The log transform (Fig 2 2) 1s typically applied either to dark tmages where the
overall contrast 1s low, or to images that contain specular reflections or ghnts In the
former case, the brightening of the dark pixels leads to an overall increase 1n brightness
In the latter case, the ghints are suppressed thus increasing the effective dynamic range of
the image

The log function as defined 1n equation 2 1 1s not parameterized, 1 e 1t 1s a single
input/output transfer function A modified parameterized function was proposed by

Schreiber 1n [9] as

log(+ag))—logla+D) | | (22)
log(1+aL) - log(a +1)

g'(l)=(L—1){

where, & parameterizes the non-linear transfer function
2.3.2 The Gamma Transform
Most display devices, e g, monitors, and printers, have a non-linear transfer
function This means that the input and output gray levels are not linearly related,
g '[11# agll]+b (23)
where a and b are some constants The relationship between the input and output gray

levels display devices 1s typically defined as the Gamma transform
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Figure 2.2. Log Transform

(DY
g T=(L 1)(L_J 24)

where the value of y 1s display device dependent Figure 2 3 shows the relationship
between mput and output gray level distributions for several values of y=05, 075, 1,
125,175and 2 As ¥ increases from 1 0 to 2 O, the transfer function becomes more and

more like the log function However, the non-lineanty at the dark pixels 1s not as severe

as 1t was 1n the log function These values produce supra-linear responses For values of
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y< 10, the transfer function 1s sub-linear The result 1s to make dark pixels darker
Figure 2 4 shows the enhanced Gamma Image for y=2 0

2.3.3 The Retinex Theory

The problem of enhancing images automatically 1s really twofold In the first
mstance, all the details 1in the image need to be preserved, and 1n the second, all the
details need to be made visible These two problems often require opposing solutions to
preserve all the details, the gray-level distribution needs to be preserved To enhance the
detail 1n the dark, the dark gray level values need to be boosted For automatic
processing, this 1s often done with the application of a gray level transformation such as
histogram equalization, but the results are often severely disappointing, satisfying neither
the first requirement nor the second

The problem stated above can be thought of as the problem of surrounding the
large naturally occurring dynamic range of scenes by limited-dynamic-range digital or
film cameras The range for the former 1s restricted by the analog-to-digital conversion
that occurs when the signal amplitude 1s quantized and for the latter by the linear region
of film response

A new non-linear image-enhancement technique, Retinex, was developed as a
solution to this problem [10, 11] A retinex employs as much of the structure and function
of the retina and cortex as 1s necessary for producing an 1mage 1n terms of a correlate of
reflectance for a band of wavelengths, an image as nearly independent of flux as 1s
biologically possible Land’s theory 1s based on computing the product of the ratios

between a pixel’s values along a set of paths in the image The first and second
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components are the 1llumination /(m,n) and the reflectance component r(m,n) of an image
I(m,n), and [12,13]

The luminance 1s very hard to distinguish and the latter component can be
separated 1f the former component 1s known In this case, 1f the intensity value at a pixel
1s divided by 1ts weighted average value, we get [14,15]

I(m,n) - l(m,n)r(m,n)

R (m,n)= (26)

I(m,n)  L(m,n)r(m,n)
where the bars denote the spahally weighted average value at a pixel Then for
compressing the dynamic range, the logarithm has been applied to each pixel as follows,

enlarging low intensity pixel values with respect to higher intensity pixel values [14],

I{m,n)

- log Lm,myrim, n)

I(m,n) [(m,n)r(m,n)

R (m,n) =log 27

I(m,n)=I1(m,n)r(m,n) 25)

gd@

L
o 0 100 160 200 260
(/]

Figure 2.3. Gamma Transform
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Figure 2.4. Original and Gamma Enhanced Images Left Image Onginal Image, Right

Image Gamma Transformed Image with y=20

The general form of the center/surround retinex system models both the receptive
fields of individual neurons and perceptual processes The only extensions required are 1)
to greatly enlarge and weaken the surround Gaussian (as determined by its space and
amplitude constants) and u) to include a logarithmic function to make subtractive
imnhibition 1nto a shunting inhibition The Gaussian surround form has been chosen as
[14]

R (m,n) =logI (m,n)—log[F(m,n)*I (m,n)] 298
where [ (m,n)1s the image distribution 1n the ith spectral band, “*” represents the

convolution and F(m,n) 1s the surround function Land proposed an inverse square spatial

surround function defined as

F(m,n)z% 29)

where r=+/x’+y’ and can be modified to be dependent on a space constant as
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F(m,n)=——l—2— (2 10)
(1 + 27]
Hulbert investigated the Gaussian form of the surround function as
F(m,n)=exp(—£—§} 211)

The single scale retinex 1s defined by the Equation (2 8) and the surround function of

SSR 1s given by [13]
r2
F(m,n)=Kexp[——2—) (212)
c

c 1s the Gaussian surround space constant and K 1s determined such that
j jF(m,n)dxdyzl (2 13)

The MSR output 1s then simply a weighted sum of the outputs of several different SSR

outputs such that [13]
Ry = Z w,R, (214)

where N 1s the number of scales, R

n

18 the 1th spectral component of the MSR output and

w _ 1s the weight associated with the nth scale The scales have been selected with the

n

help of some experimentation Experimental results showed that equal weighting
w_ =1/3 of the scales was sufficient for most applications

A new set of design 1ssues emerges for the design of the MSR 1n addition to those
for the SSR [14] A series of tests are conducted starting with only two scales and adding
further scales as needed It was performed imtially with a very small value of scale

constant (c<15) and with a very large value of scale constant (c>200) since the small
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scale produced good dynamic range compression and fine details at the expense of poorer
color rendition while the bigger scale produced high global tonal rendition but at the
expense of dynamic range compression By doing this the choice of an intermediate value
¢ = 80 was determined The three scales produced good dynamic range compression and
global tonal rendition [13]

SSR provides dynamic range compression (DRC) and color/lightness constancy
However, SSR can provide either good DRC or good tonal rendition but not both
simultaneously For the conventional 8-bit digital image range, the MSR algorithm
performs well 1n terms of dynamic range compression, but 1t fails to handle all the images
effectively—proposed 1mages possessing notable, and often serious, defects in color
rendition The general effect of retinex processing on images with regional or global
gray-world violations 1s a “graying out” of the image, either globally or 1 specific
regions This desaturation of color can, in some cases, be severe More rarely, the gray-
world violations can simply produce an unexpected color distortion Therefore, a color
restoration scheme 1s considered, which called as the Multi-Scale Retinex with Color
Restoration (MSRCR), that was developed for providing good color rendition for images
that contain gray-world violations The starting point 1s analogous to the computation of
chromaticity coordinates [13]

I (m,n)

S

le (m,n)

I, '(m,n)= (215)
For the i1th color band, and S 1s the number of spectral channels Generally, S = 3 of the
RGB color space The modified MSR 1s mathematically represented as [13]

Rysrcr = C.(m,m)Ryg, (m, 1) (2 16)
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where
C,(m,n)= f[1,(m,n)] 217)
1s the ith band of the color restoration function (CRF) in the chromaticity space and

Ry rer 15 the 1th spectral band of the multiscale retinex with color restoration The

nonlinear color restoration function that provided the best color restoration 1s defined as

(13}

C (m,n)= ﬂ{log[al, (m,n)]—log[i 1 (m,n)]} (2 18)

=]
where B 1s a gain constant and o 1s a constant that controls the strength of the

nonlinearity The final MSRCR output 1s obtained by using a “canonical” gain constant
and gain/offset adjustment to transition from the logarithmic domain to the display
domain The canonical gain/offset values are independent of spectral channels and 1mage

content The final version of the MSRCR can be written as [13]
RMSRCR, =G[C (m, n){logl (m,n)—log[F(m,n)*I (m,n)] +b} (2 19)

where G 1s the final gain value and b 1s the final offset value The chromatics of the
original 1mage are used to restore the color which stands 1n direct contrast to the color
constancy objectives of the retinex It 1s observed that the stronger the color restoration,
the weaker the color constancy, and the MSRCR produces far more visual information
and 1s more “true-to-life” than the unprocessed 1image as shown in Figure 2 5
2.3.4 Adaptive and Integrated Neighborhood-Dependent Approach for Nonlinear
Enhancement (AINDANE)

There are two parts of AINDANE algorithm, which are adaptive luminance

enhancement and adaptive contrast enhancement [16] In the luminance enhancement
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part, intensity values are transformed by a nonlinear transfer function and in the second
part 1mage contrast 1s enhanced based on the local statistics of the image, tuning the
mntensity of each pixel based on 1its relative magnitude with respect to the neighboring
pixels Furst, the color image 1s converted as follows [16]
I(m,n)=(76 245R +149 6851G +29 07B)/ 255 (220)
where R, G and B are the values of the red, green and blue color band of a pixel
After converting the color image into intensity image, the image intensity 1s
normalized as
I, (mn)=1(m,n)/255 22D

Then, the dynamic range compression (DRC) has been done with a specially

determined nonlinear transfer function for enhancing the dark region 1n the 1mage [16]

I (m,n):{l (m,n) 7™ L (1-1  (m,n)04(1-2)+1 (m,n)“‘”}/z (222)

nor nor nor nor

where z provides the transfer function’s curve and 1s related to the image histogram

defined as
0 for L<50
z=3(L-50)/100 for 50< L <150 (223)
1 for L>150

where L 1s the intensity level corresponding to a cumulative distribution function (CDF)
of 01 L 1s used as an indication to determine how dark the 10% of pixels 1n an 1mage
are If the z value 1s O, the pixel will be a maximally enhanced level and 1if the z value 1s

1, no pixel will be enhanced
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Figure 2.5. Oniginal and Enhanced Image with Retinex Left Image Orniginal Image,

Right Image Enhanced Image with Retinex

Once the darker region has been enhanced, the second part of AINDANE
algorithm 1s apphed to achieve sufficient contrast for the image The luminance
information of surrounding pixels 1s obtained by using the 2D discrete spatial convolution
of the image with a Gaussian kernel, where the Gaussian function G(m,n) 1s defined as

—(m2 +n2)]

G(m,n) = Ke[ ¢ (2 24)

and K 1s given by
—(mz+n2)

f Ke(c—7jdxdy -1 (2 25)

where c 1s the Gaussian surround space constant The 2D discrete convolution 1s carried

out on the original intensity image I(m,n) of size MxN as

U-tv-1

I, (m,n)=>">"Iu,v)Gu+m,v+n) (2 26)

u=0 v=0
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Finally, the center-surround contrast enhancement 1s carried out as defined 1n the
following equation

S(m,n)= 2551"(m,n)5('" " 227

The AINDANE algorithm performs the adaptive contrast enhancement by using a

power function with a parameter P as

E(m,n) = {1172"—1”)”—)} (2 28)

where the parameter P 1s related to the global standard deviation of the input intensity

image, I(m,n), and can be determined as

3 for o©0<3
P=527-20)!/7 for 3<0<10 (229)
1 for o©>10

where o 1s the indication of the contrast level of the original intensity image If ¢ 1s less
than 3, the image has poor contrast and the contrast of the image will be increased If ¢
1s more than 10, the image has sufficient contrast and the contrast will not be changed
Finally, the enhanced image as shown 1n Figure 2 6 can be obtained by a linear color
restoration based on chromatic information contained in the original image

S (mm) = S(m,m) 22" 4 (230)
10m,n)

where j represents the RGB spectral band and A 1s a parameter, which adjusts the color

hue
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2.3.5 An llluminance-Reflectance Model for Nonlinear Enhancement of Color
Images (IRME)

The IRME algorithm consists of four steps, which are illuminance estimation and
reflectance extraction, adaptive dynamic range compression of illuminance, adaptive
mid-tone frequency components enhancement and image restoration by combining

dluminance and reflectance to recover the intensity image and then performing color

recovery [17]

Figure 2.6. Oniginal and Enhanced Image with AINDANE Left Image Original Image,

Right Image Enhanced Image with AINDANE

For color 1mages, the intensity image I(m,n) can be obtained using either one of

the following two methods
I(m,n) = max[r(m,n), g(m,n),b(m,n)] (231)
The latter method 1s used 1n this algorithm Then, the image intensity I(m,n)is

formulated with following equation
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I(m,n)= L(m,n)R(m,n) (2 32)
where L(m,n) 1s the illuminance and R(m,n) 1s the reflectance at each point (m,n) The
luminance 1s supposed to contain low frequency component and reflectance includes the
high frequency component of the image Afterwards, the illuminance estimation 1s the
low-pass filtered result of intensity image through a Gaussian filter described 1n Equation
2 24 The 2D discrete convolution 1s carried out on the original intensity image I(m,n) of

size MxN as

Limm) =SS 1, )G+ m,v-+ n) (2 33)

u v

<

Il
(=4

and the 1lluminance 1s normalized as
L (m,n)=L(m,n)/255 (234)
It 1s observed that the determuned illumination 1s composed of not only the real
illuminance but also the mid-tone and low-frequency components of reflectance
Afterwards, the windowed Inverse Sigmoid function 1s used for enhancing the
dark region of the image as
fw)y=1/1+e™ (2 35)

This function can also used by performing the computational step described by Equation

236

L =LIf(V) = f o)+ () (236)
L= (%)((/L )—1) 237)

— (Ln ~Viun )
Ln enk B %max - vmln) (2 38)
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where Equation 2 37 1s the inverse sigmoid function and Equation 2 36 1s used for
linearity mapping normalized illuminance defined in Equation 2 34 to the input range
[0 1] Here the sigmoid function can be used to pull down the intensity of the overly

highted pixels The value for v__ 1s always set to 3 for all images and v, , depending on

min

the global mean of the intensity 1mage, 1s defined by

-6 for I <70
Voax =1((27=70)/80)x3-6 for 3<1 <10 (239)
-3 for 1,210

The above steps will introduce a degradation for dynamic compression because
the illuminance includes low frequency and mid tone components To overcome this

degradation, a center-surround type of contrast enhancement method 1s applied as

Ln enh (m’ n) =Ln enh (m,n)E(’" " (2 40)
I P
E(m,n) = R(m,n)" = [——(@} (2 41)
I(m,n)

where L, (m,n)1s the illuminance after mid-tone frequencies enhancement and R(m,n)

1s the ratio of I(m,n) to 1ts low-pass version I (m,n) computed through the same

conv

operations as in Equations 2 24, 2 25 and 2 33 P 1s determined by the global standard
deviation of the input intensity image I(m,n) as

2 for o©0<30
P={-0030+29 for 30<o<80 (242)
1/2 for o©0>80

Following the dynamic range compression and contrast enhancement, the final

tllumimance L, ,,(m,n) and reflectance R are combined using Equation 2 32 to produce

n enh

an intensity image I’ with compressed dynamic range For color images, a color
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restoration process based on the chromatic information of the original image 1s applied to
I’ to recover the RGB color as

I I' I
= = b'=—b 243
r Ir g Ig 7 (243)

such that the color information (hue and saturation) 1n the original 1mage 1s preserved n

the enhanced image as shown 1n Figure 2 7

2.4 Registration
2.4.1 Introduction
Image registration 1s a basic task in image processing to align two or more
1mages, usually refereed as a reference, and a sensed image [18] Registration 1s typically
a required process in remote sensing [19], medicine [20, 21] and computer vision
Registration can be classified into four main categories according to the manner how the
1mage 1s obtained [22]
e Dafferent viewpoints Images of the same scene taken from different viewpoints
e Different tmes Images of the same scene taken at different times
o Dafferent sensors Images of the same scene taken by different sensors
e Scene to model registration Images of a scene taken by sensors and 1mages of the
same scene but from a model (digital elevation model)
It 1s impossible to implement a comprehensive method useable to all registration
tasks and there are many different registration algorithms The focus 1s on the feature
based registration techniques 1n the dissertation and they usually consist of the following

three steps [22]
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e Feature detection The step tries to locate a set of control points such as edges,
line intersections and corners in the image They could be manually or
automatically detected

e Feature matching The second step 1s to establish the correspondence between the
features detected 1n the sensed image and those detected 1n the reference image

e Transform model estimation, Image resampling and Geometric transformation
The sensed 1mage 1s transformed and resampled to match the reference image by
proper interpolation techniques [22]

Each registration step has 1ts specific problems In the first step, features that can
be used for registration must spread over the images and be easily detectable The
determined feature sets in the reference and sensed images must have enough common
elements, even though the both images do not cover exactly the same scene Ideally, the
algorithm should be able to detect the same features [22]

In the second step, known as feature matching, physically corresponded features
can be dissimilar because of the different imaging conditions and/or the different spectral
sensitivities of the sensors The choice of the feature description and measuring of
stmularity has to take mnto account of these factors The feature descriptors should be
efficient and invariant to the assumed degradations The matching algorithm should be
robust and efficient Single features without corresponding counterparts in the other
1mage should not affect 1ts performance [22]

In the last step, the selection of an appropriate resampling technique 1s restricted

by the trade-off between the interpolation accuracy and the computational complexity In
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the literature, there are popular techniques such as the nearest-neighbor and bilinear

interpolation [22]

Figure 2.7. Original and Enhanced Image with IRME Left Image Original Image, Right

Image Enhanced Image with IRME

2.4.2 The Steps of Image Registration

The three steps of image registration are defined as follows and shown 1n Figure
2 8 and Figure 2 9
2 4 2 1 Feature detection

An expert selects manually the features in the objects There are two main
approaches of feature detection
2421 1 Area-based methods

In these approaches, the first step of 1mage registration 1s omitted because there 1s
no need to detect features [22]

In the second approach, points (region corners, line intersections, points on curves

with high curvature), lines (region boundaries, coastlines, roads, rivers) or significant
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regions (forests, lakes, and fields) are classified as features The features should be
unique, spread all over the rmages and efficiently detectable 1n sensed and reference
itmages They are expected to be steady in time [22]
2 4 2 2 Feature matching

The detected features 1n both 1mages can be matched with the help of the image
intensity values 1n their neighborhoods, the feature spatial distributton Two main
approaches to feature matching have been formed [23]
24221 Area-based methods
24221 1 Cross-correlation

Without any structural analysis, classical area-based methods like cross-
correlation (CC) depend on matching directly 1mage intensities As a result, they are
sensitive to the intensity changes, introduced for example by using different sensor types
and/or by noise, varying illumination This method 1s based on a statistical similarity
First, the windows pairs are established based on simularity, which 1s computed for

window pairs from both images as follows,

ZW(W_E(W))(IU » ~EU, )

\/zw (W —EW))y’ [Zl(, » (,,—EU, !)))2

Then, equation’s maximum 1s searched and the window pairs for which the maximum 1s

CcC@, ) (244)

achieved are set as the corresponding ones [22, 23, 24]
24221 2 Optimization methods

The aim of this method 1s to find the maximum or mimimum of a similarity
measure between the reference and sensor images, generally involving the geometrical

transformation = Therefore, the problem of registraion 1s converted 1nto a
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multidimensional optimization problem where the number of dimensions corresponds to
the degrees of freedom of the expected geometrical transformation The only method for
finding global solution 1s an exhaustive search over the entire 1mage Although 1t 1s
computationally demanding, 1t 1s often used 1f only translations are to be estimated [22,

25]

) £ & K B, FRE
)

ulx y) vix y)

Figure 2.8. Three Steps of Image Registration Top row—feature detection, Middle
row—feature matching by invanant descriptors, Bottom left—transforms model
estimation exploiting the established correspondence Bottom right—image resampling

and transformation uses appropriate interpolation technique [22]

2422 1 3 Fourier methods

If ttme 1s a significant factor and an acceleration of the computational speed 1s
needed, Fourier methods are preferred rather than correlation methods [22, 26] This step
can also be achieved by the feature-based method, which aims to find the correspondence

between the two 1mages to be registered [22]
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!

Figure 2.9. Registration top row — Ormnginal Visual and IR Images, Second Row —

Registered Image

2423 Transform Model Estimation, Image Resampling and Geometric Spatial
Transformation

After the feature correspondence has been determined, a mapping function 1s
constructed and 1s used to transform the sensed image to match the reference image
Several useful transformations, including image resizing, rotation, cropping, stretching,

shearing, and 1mage projections, could be utilized There are three interpolation methods
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popularly used 1n 1mage registration and they differ primarily i1n how many neighbors are
considered [18]

The simplest interpolation method 1s the nearest neighbor method 1in which the
output pixel 1s assigned the value of the closest pixel in the transformed image In the
bilinear interpolation method, the output pixel 1s the weighted average of transformed
pixels 1n the nearest 2x2 neighborhood, and 1n bicubic interpolation, the weighted
average 1s taken over a 4x4 neighborhood [18]

Computational accuracy and complexity increase with the number of pixels under
consideration For most cases, the nearest neighbor interpolation method 1s sufficient
The method 1s also the most appropriate for binary images For RGB and intensity image
types, the bilinear or brcubic interpolation method 1s recommended [18]

Two types of transformation can be defined the affine transformation and the
projective transformation In affine transformations, straight lines remain straight and
parallel lines remain parallel but rectangles may become parallelograms In projective
translations, straight lines still remain straight but parallel lines often converge toward
vanishing points [18]

Suppose an 1mage, f, defined over a (w,z) coordinate system undergoes
geometric distortion to produce an image, g, defined over a (x, y) coordinate system, the
affine transform can be expressed as

(x,y)=T{(w,2)} (2 45)

or in matrix form as [15]



30

tll tlZ O
[xyl=[wz T =[wz1]s,1,0 (2 46)

t?l t32 1

This transformation can scale, rotate, translate, or shear a set of points, depending
on the values chosen for the parameters as shown in Table 2 1 The forward mapping
functions are 18]

x=t w+t, z+1
1 21 3 (2 47)
y=towtizti,

2.5 Genetic Algorithm
2.5.1 Introduction

Optimization can be distinguished by either discrete or continuous variables
Discrete vaniables have only a finite number of possible values, whereas continuous
variables have an infinite number of possible ones Discrete variable optimization 1s also
known as combinatorial optimization, because the optimum solution consists of a certain
combination of variables from the finite pool of all possible variables However, when
trying to find the mimimum value of f{x) on a number line, 1t 1s more appropriate to view
the problem as continuous [27,28,29,30]

Genetic algorithms manipulate a population of potential soluttons for the problem
to be solved Usually, each solution 1s coded as a binary string, equivalent to the genetic
material of individuals in nature Each solution 1s associated with a fitness value that
reflects how good 1t 1s, compared with other solutions 1n the population The higher the
fitness value of an individual, the higher 1ts chances of survival and reproduction 1n the
subsequent generation Recombination of genetic material 1in genetic algorithms 1s

stmulated through a crossover mechanism that exchanges portions between strings
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Type Affine matrix Coordinate Equations
Identity (1 00 r=w
010 —¢
1001
Scaling [s. 00 x=sw
0s O y=s2z
1001
Rotation [cos® smd 0 x=wcos@—zsmnb
—sinf cosf 0 y=wsiné+zcosé
0 0 1
Shear(Horizontal) 1 00] x=w+az
10 y=z
1001
Shear(Vertical) 1 0] xX=w
010 y=Pwz
100 1]
Translation 1 00 x=w+0,
010 y=2+0,
0.6, 1

Another operation, called mutation, causes sporadic and random alteration of the

bits 1n strings Mutation has a direct analogy 1n nature and plays the role of regenerating

lost genetic material [31] GAs have found applications 1n many fields including 1mage

processing [32,33,34]
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2.5.2 Continuous Genetic Algorithm (CGA):

GAs typically represent solution as binary strings For many applications, 1t 1s
more convenient to denote solutions as real numbers known as continuous Genetic
algorithms (CGA) CGAs have the advantage of requiring less storage and are faster than
the binary counterparts Figure 2 10 shows the flowchart of simple CGA [35]

2 52 1 Components of a Continuous Genetic Algorithm

The various elements 1n the flowchart are described below [36]
2521 1 Cost Function

The goal of GAs 1s to solve an optimization problem defined as a cost function
with a set of parameters involved In CCA, the parameters are orgamzed as a vector

known as a chromosome If the chromosome has N,  variables (an N-dimensional

optimuzation problem) given by p,, p,, p;, ., py_, then the chromosome 1s written as an

array with 1x N _elements as [27]
chromosome =[ p,, p,,p;» .p N, ] (248)

In this case, the variable values are represented as floating-point numbers Each

chromosome has a cost found by evaluating the cost function f at the variables
Py P2 P3s 5Py,

cost = f (chromosome) =f ( p,, p,, P3» Pw,, ) 249)
Equations (2 48) and (2 49) along with applicable constraints constitute the problem to be
solved Since the GA 1s a search techmque, 1t must be limited to exploring a reasonable

region of variable space Sometimes this 1s done by imposing a constraint on the problem

If one does not know the imtial search region, there must be enough diversity in the
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mitial population to explore a reasonably sized variable space before focusing on the
most promising regions
252 1 2 Initial Population

To begin the CGA process, an 1mtial population of N must be defined, a

pop

matrix represents the population, with each row bemng a 1xN , chromosome of

continuous values [36] Given an nitial population of N pop chromosomes, the full matrix
of N,,xN,, random values 1s generated by

pop=rand(N, ,N,.) (2 50)

pop?
All varnables are normalized to have values between O and 1 If the range of

values 1s between p, and p, , then the normalized values are given by

P =Py = Pio) Puorm + Pio (251)
where
DL = highest number 1n the variable range
P = lowest number 1n the variable range

P = normahized value of varnable

This society of chromosomes 1s not a democracy the individual chromosomes are
not all created equal Each one’s worth 1s assessed by the cost function So at this point,
the chromosomes are passed to the cost function for evaluation [35]

252 1 3 Natural Selection

Now 1s the time to decide which chromosomes 1n the initial population are good

enough to survive and possibly reproduce offspring in the next generation As done for

the binary version of the algonthm, the N pop COSLS and associated chromosomes are
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ranked from lowest cost to highest cost This process of natural selection occurs 1n each

iteration to allow the population of chromosomes to evolve Of the N, chromosomes in

a given generation, only the top N, are kept for mating and the rest are discarded to

keep

make room for the new offspring [35]

Define cost function vartables

2

Generate 1nitial population
\ 4

Find cost for each chromosome

v

Select mates

v

Mating

v

Mutation

2
Converge Check

v
done

Figure 2.10. Flowchart of CGA

25214 Pairing

A set of eligible chromosomes 1s randomly selected as parents to generate next
generation Each pair produces two offspring that contain traits from each parent The
more simular the two parents, the more likely are the offspring to carry the traits of the
parents [35]
25215 Mating

As for the binary algorithm, two parents are chosen to produce offsprings Many

different approaches have been tried for crossing over 1n continuous GAs The simplest
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method 1s to mark a crossover points first, then parents exchange their elements between
the marked crossover points 1n the chromosomes Consider two parents

parent, =[p,., s Pun ‘] (2 52)
parent, =[p,, Py ]

two offspring's might be produced as

offsprlngl :[plnl’me’pd?’ Puis>Puss> Pus> ’IJmN ] (2 53)
offspring, =1Psi> Puzs Purs Puas Pas»> Pas Ny . ]

The extreme case 1s selecting N pomnts and randomly choosing which of the

two parents will contribute its variable at each position Thus one goes down the line of
the chromosomes and, at each variable, randomly chooses whether or not to swap
information between the two parents This method 1s called uniform crossover [35]

offspring, =[Pui» Paz> Pars Pasr Pass Pus» > Pav ] (2 54)
OffsprlngZ=[pd]’me’pm?’pm“’pmi’pd()’ ’PmN ]

The problem with these point crossover methods 1s that no new information 1s
mtroduced each continuous value that was randomly initiated 1n the 1mtial population 1s
propagated to the next generation, only 1n different combinations Although this strategy
worked fine for binary representations, 1n case of continuous variables, we are merely
mterchanging two data points These approaches totally rely on mutation to introduce
new genetic material The blending methods remedy this problem by finding ways to
combine variable values from the two parents into new variable values 1n the offspring
[35] A single offspring variable value, pnew, comes from a combination of the two

corresponding offspring variable values
pnew=fp_+Q1-)p,, (2 55)

where
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B = random number 1n the interval [0, 1]
P.. = the nth vanable in the mother chromosome
p,, = the nth vaniable 1n the father chromosome

The same variable of the second offspring 1s merely the complement of the first

(te,replacing f by 1 - ) If B =1, then p,, propagates in its entirety and p, dies
In contrast, if f =0, then p, propagates in 1ts entirety and p, dies When f =035, the

result 1s an average of the variables of the two parents This method 1s demonstrated to
work well on several interesting problems 1n [35]

Choosing which variables to blend 1s the next issue to be solved Sometimes, this
linear combination process 1s done for all variables to the right or to the left of some

crossover point Any number of points can be chosen to blend, up to N values where

all variables are linear combinations of those of the two parents The vanables can be
blended by using the same 8 for each variable or by choosing different 8°s for each
vartable These blending methods effectively combine the information from the two
parents and choose values of the variables between the values bracketed by the parents,
however, they do not allow introduction of values beyond the extremes already
represented 1n the population The simplest way 1s the linear crossover [35], where three
offspring are generated from two parents by

pnew,=05p, +05p,
pnew,=15p, —05p,, (2 56)
pnew,=-05p, +15p,

Any variable outside the bounds 1s discarded Then the best two offspring are

chosen to propagate Of course, the factor 0 5 1s not the only one that can be used 1n such
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a method Heunstic crossover [35] 1s a variation where some random number, 3, 1s
chosen on the interval [0, 1] and the variables of the offspring are formed by

pnew=fB(p, —P,)+ D, 257
Variations on this theme include choosing any number of variables to modify and

generate different f for each variable This method also allows generations of offspring

outside the value ranges of the two parent vanables If this happens, the offspring 1s
discarded and the algorithm tries to use another b The blend crossover (BLX- ¢ ) method
[35] begins by choosing some parameters that determine the distance outside the bounds
of the two parent variables that the offspring variable may lay This method allows new
values outside of the range of the parents without letting the algornthm stray too far

The algorithm 1s a combination of an extrapolation method with a crossover
method The goal was to find a way to closely mumic the advantages of the binary GA
mating scheme It begins by randomly selecting a variable 1n the first pair of parents to be
the crossover point

a = roundup{random*N } (2 58)

Let

parentl = [p",19 sPuar » Pun a ] (2 59)
parent2=[pd,’ s Puas ’p(INa]

where the m and d subscripts discriminate between the mom and the dad parent Then the
selected variables are combined to form new variables that will appear in the children
[35]

pnew, =p,, —ﬂ[Pma —Rla]

(2 60)
pnew, = p,, +ﬁ[Pma _Pda]
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where f1s a random value between 0 and 1 The final step 1s to complete the crossover

with the rest of chromosome

Offsprlngl = [pml’ Puz> Prenr ’1)dN‘1 ] (2 61)

r

Offsprln82=[pdl’pd2’ pnewZ ’RnN ]
where [ 1s also a random value between 0 and 1 The final 1s to complete the crossover

with the rest of the chromosome as before

If the first variable of the chromosomes 1s selected, then only the variables to the
right of the selected variable are swapped If the last variable of the chromosomes 1s
selected, then only the variables to the left of the selected variable are swapped This

method does not allow offspring variables outside the bounds set by the parent unless

p>1
2521 6 Mutation

If care 1s not taken, the GA can converge too quickly into one region on the cost
surface If this area 1s 1n the region of the global minimum, there 1s no problem However,
some functions have many local mmmma To avoid overly fast convergence, other areas
on the cost surface must be explored by randomly introducing changes, or mutations, 1n
some of the variables Random numbers are used to select the row and columns of the
variables that are to be mutated [35]
2 52 17 Next Generation

After all these steps, the chromosomes in the starting population are ranked and
the bottom ranked chromosomes are replaced by offspring from the top ranked parents to

produce the next generation Some random variables are selected for mutation from the
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bottom ranked chromosomes The chromosomes are then ranked from lowest cost to
highest cost The process 1s iterated until a global solution 1s achieved
2.6 Image Fusion

In last decades, the rapid developments of image sensing technologies make
multisensory systems popular in many applications Researchers have begun to work on
the fields of these systems such as medical imaging, remote sensing and the military
applications [36, 37, 38, 39] The outcome of using these techniques 1s a great increase of
the amount of diversity data available Multi-sensor 1mage data often present
complementary information about the region surveyed so that image fusion provides an
effective method to enable comparison and analysts of such data [40] Image fusion 1s
defined as the process of combining information 1n two or more 1mages of a scene to
enhance viewing or understanding of the scene The fusion process must preserve all
relevant information 1n the fused image [41, 42]

Image fusion can be done at pixel, feature and decision levels [43] Out of these,
the pixel level fusion method 1s the simplest technique, where average/weighted averages
of individual pixel intensities are taken to construct a fused 1mage [44, 45] Despite their
simplicity, these methods are not used nowadays because of some serious disadvantages
they possess For instance, the contrast of the fused information 1s reduced and also
redundant information 1s introduced 1n the fused image, which may mask the useful
information These disadvantages are overcomed by feature level and decision level
fusion methods Feature and decision level fusion methods are based on human vision
system Decision level fusion combines the results from multiple algorithms to yield a

final fused image Several pyramid transform methods for feature level fusion have been
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suggested [45] Recently, developed methods based on the wavelet transform become
popular [45] In the method source images are decomposed 1nto subimages of different
resolutions and 1n each subimage different features become prominent To fuse the
ongimnal source images, the corresponding subimages of different source images are
combined based some criteria to form composite subimages Inverse pyramud transform

of composite transform gives the final fused image
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3. ENHANCING POOR VISIBILITY IMAGES

3.1 Introduction

The human visual system (HVS) allows individuals to assimilate information
from their environment The act of seeing starts when the lens of the eye focuses an
image of 1ts surroundings onto a light-sensitive membrane 1n the back of the eye, called
the retina All vertebrate retina contain at least two types of photoreceptors—rods and
cones Rods are generally used for low-light vision and cones for daylight and color
viston The photoreceptive cells of the retina produce neural impulses 1n response to
photons These signals are processed 1n a hierarchical fashion by different parts of the
brain for further processing and visual perception [46,47]

The HVS perceives colors and detail across a wide range of photometric intensity
levels much better than electronic cameras The percetved color of an object,
additionally, 1s almost independent of the type of illumination, 1e, the HVS 1s color
constant Electronic cameras suffer, by comparison, from limited dynamic range and the
lack of color constancy and current 1maging and display devices such as CRT monitors

and printers have limited dynamic range of about two orders of magnitude, while the best

photographic prints can provide contrast up to 10’ 1 However, real world scenes can
have a dynamuc range of six orders of magnitude [48,49] This can result in overexposure
that causes saturation in high contrast images, or underexposure 1n dark 1mages
[50,51,52,53] The 1dea behind enhancement techniques are to bring out details 1n 1mages
that are otherwise too dim to be perceived either due to insufficient brightness or
wnsufficient contrast [54,55,56] A large number of image enhancement methods have

been developed, like log transformations, power law transformations, piecewise-linear
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transformations and histogram equalization However these enhancement techniques are
based on global processing which results 1n a single mapping between the input and the
output intensity space These techmiques are thus not sufficiently powerful to handle
images that have both very bright and very dark regions Other 1image enhancement
techniques are local 1n nature, 1€, the output value depends not only on the input pixel
value but also on pixel values 1n the neighborhood of the pixel These techniques are able
to improve local contrast under various 1llumination conditions

Single-Scale Retinex (SSR) [50,57], 1s a modification of the Retinex algorithm
introduced by Edwin Land [58,59] It provides dynamic range compression (DRC), color
constancy, and tonal rendition SSR gives good results for DRC or tonal rendition but
does not provide both simultaneously [54] Therefore, the Multi-Scale Retinex (MSR)
was developed by Rahman et al [52,54] The MSR combines several SSR outputs with
different scale constants to produce a single output image, which has good DRC, color
constancy and good tonal rendition The outputs of MSR display most of the detail in the
dark pixels but at the cost of enhancing the noise in these pixels and the tonal rendition 1s
poor 1n large regions of slowly changing intensity As a result, Multi-Scale Retinex with
Color Restoration (MSRCR) was developed by Jobson et al [54], for synthesizing local
contrast improvement, color constancy and lightness/color rendition Other non-linear
enhancement models include the Illuminance Reflectance Model for Enhancement
(IRME) proposed by Tao et al [51], and the Adaptive and Integrated Neighborhood-
Dependent Approach for Nonlinear Enhancement (AINDANE) described by Tao [60]
Both use a nonlinear function for luminance enhancement and tune the intensity of each

pixel based on 1its relative magnitude with respect to the neighboring pixels
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In this section, a two new 1mage enhancement approach 1s described
Enhancement Technique for Nonuniform and Uniform-Dark Images (ETNUD) and a
Wavelet Based Enhancement Techmque for Non-Uniform and Uniform-Dark Images
(WBNUDE) The details of the new algorithms are given 1in Section 3 2 and 1in Section
3 3, respectively Sections 32 and 3 3 describe experimental results and compare our
results with other techniques for 1image enhancement Finally in Section 3 4, conclusions
are presented
3.2 Enhancement Technique for Nonuniform and Uniform-Dark Images (ETNUD)

The major mnovation in ETNUD 1s in the selection of the transformation
parameters for DRC, and the surround scale and color restoration parameters The
following sections describe the selection mechanisms
3.2.1 Selection of transformation parameters for DRC

The 1ntensity I of the color image I can be determined by
1(rm,n) =02989r(m, n)+0 587 g(m, 1) +0 114b(rm, n) 31
where r, g, b are the red, green, and blue components of I respectively, and m and n are
the row and column pixel locations respectively Assumung I to be 8-bits per pixel, I 1s
the normalized verston of I, such that
I, (m,n)=1(m,n)/255 (32)

Using linear mput-output intensity relationships typically does not produce a good
visual representation compared with direct viewing of the scene [54] Therefore,
nonlinear transformation for DRC 1s used, which 1s based on some information extracted
from the image histogram To do this, the histogram of the intensity images 1s subdivided

into four ranges
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r =0-63, r= 64127, , = 128-191 and r, = 192-255 I, 1s mapped to I? using the
following

1) +a O<x<l
T g (33)
O5+05I))+a x>1
The first mapping pulls out the details in the dark regions, and the second

suppresses the bright overshoots The value of x 1s given by

02, of (fi+n)2f(n+r) A(f(r)2f(r)

05, f (f(h+n)2f(n+r) A(f(R)<f(r)
X = 34

30, o (f(hr+n)<f(r+n)) A(f(r)2f(n)
50, f (f(r+n)<f(r+r)) A(f(r)<fr)

where f(a)refers to number of pixels between the range (a), f(q, +a,) = f(a,)+ f(a,),

and A 1s the logical AND operator « 1s the offset parameter, helping to adjust the
brightness of image The curves for the two ranges of x are shown 1n Figures 3 1 and 3 2
The determination of the x values and their association with the range-relationships as
given 1n Equation 3 4 was done experimentally using a large number of non-uniform and
uniform dark 1mages and x value can be also determined manually

The DRC mapping of the intensity 1mage performs a visually dramatic
transformation However, 1t tends to have poor contrast, so a local, pixel dependent
contrast enhancement method 1s used to improve the contrast
3.2.2 Selection of surround parameter and color restoration

Many local enhancement methods rely on center/surround ratios [S0], [60]
Hurlbert [61] investigated the Gaussian as the optimal surround function Other surround
functions proposed by Land [59] were compared with the performance of the Gaussian

proposed by Jobson et al [50] Both investigations determined that the Gaussian form
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produced good dynamic range compression over a range of space constants Therefore,
the luminance information of surrounding pixels 1s obtained by using 2D discrete spatial

convolution with a Gaussian kernel, G(m, n) defined as

(In(x,y))x ,0<x<10

0 (xy)

0ey)

|drc

U*!i/ 1 A1 1 1 1 1 1 | 1
0 01 02 03 04 05 06 07 08 09 1

l,(x.y)

Figure 3.1. 1/ for Different Ranges r

3

2 2
G(m,n) = Kexp(—mo_#) 35)

where o, 1s the surround space constant equal to the standard deviation of G(m, n), and

K 1s determined under the constraint that Zm i G(m,n)=1
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The center-surround contrast enhancement 1s defined as
L, (m,n)=255%¢ (m,n))"""
enh » n 3

where, E(m, n) 1s given by

E(m,n) ={——Iﬁ" (m,n)}

I(m,n)

where,

1, (m,n)=I(m,n)*G(m,n)

(36)

37

(38)

S 1s an adaptive contrast enhancement parameter related to the global standard deviation

of the input intensity image, I(m, n), and ‘*’ 1s the convolution operator, I(m, n) is

defined by
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3 for o<7
S=415 for 7<0<20 39
1 for 00220

G 1s the contrast—standard deviation—of the original intensity image If ¢ < 7, the
1mage has poor contrast and the contrast of the tmage will be increased If o =20, the
1mage has sufficient contrast and the contrast will not be changed Finally, the enhanced
image can be obtamned by linear color restoration based on chromatic information

contained 1n the original image as

A (3 10)

where ;e {r, g,b} represents the RGB spectral band and A, 1s a parameter which adjusts

the color hue
3.2.3 Evaluation Criteria
In this work, following evaluation criteria was used
3231 A new metric
There are some metrics such as brightness and contrast to characterize an image
Another such metric 1s sharpness Sharpness 1s directly proportional to the high-

frequency content of an image So the new metric 1s defined as [62]

My -1 My=1 |, A
S=[r@1 = > iy, v, v, v,

w=0 v,=0

(311)

where h 1s a hugh-pass filter, periodic with period 47 x4/ ,and h 1s 1ts direct Discrete

Fourier Transform (DFT) 11s also DFT of Image I The role of % (or h) 1s to weight the

energy at the high frequencies relative to the low frequencies, thereby emphasizing the
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contribution of the high frequencies to S The larger the value of S, the greater the

sharpness of I and conversely

Equation 3 11 defines how the sharpness should be computed and defined as

R 2, .2
h[vl,v2]=l—exp(— V';VZJ 3 12)

where o 1s the parameter at which the attenuation coefficient=10—¢"' =2/3 A smaller
value of o implies that fewer frequencies are attenuated and vice versa For this
dissertation o =0 15
32 3 2 Image Quality Assessment

The overall quality of 1mages can be measured by using the brightness z, contrast
o and sharpness S, where brightness and contrast are assumed to be the mean and the
standard deviation However, instead of using global statistics, 1t 1s used regional
statistics In order to do this [62]

1) Divide the M, xM,image I into (M,/10)x(M,/10) non-overlapping blocks,
I,1=1, ,100, such that I = u,’i I, (Total Number of Regions are 100)

2) For each block compute the measures, 4, o and S,
3) Classify the block as either GOOD or POOR based on the computed measure
(will be discussed with the following)
4) Classify the 1image as a whole as GOOD or POOR based upon the classification
of regions (w1ll be discussed with the following)

The following criteria are used for brightness, contrast and sharpness [62]

1) Let z, be normalized brightness parameter, such that
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/255 <154
=17 ; (3 13)
1—u/7255 otherwise
A region 1s considered to have sufficient brightness when 04< 1 <06
2) Let o, be normalized contrast parameter, such that
o/128 <64
= a (314)
1-0/128 otherwise

A region 1s considered to have sufficient contrast when 025<0c, <05 When
o, <025, the region has poor contrast, and when &, >05, the region has too
much contrast
3) Let S, be normalized sharpness parameter, such that § =min(2 0,5/100) When
S, >0 8, the region has sufficient sharpness Image Quality 1s evaluated using by
0=05u,+0,+01S, (315)
where 0< Q<1 0i1s the quality factor A region 1s classified as good when
0 >0355, and poor when 0, <05 An 1mage 1s classified as GOOD when the
total number of regions classified as GOOD, N, >0 6N

3.2.4 Experimental Result

The 1mage samples for ETNUD were selected to be as diverse as possible so that
the result would be as general as possible MATLAB was used for AINDANE and IRME
algorithms and their codes were developed by the author and research team MSRCR
enhancement was done with commercial software, Photo Flair From visual expenence,

the following statements are made about the proposed algorithm
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In the Luminance enhancement part 1t has been shown that ETNUD works well

for darker 1mages and the technique adjusts 1tself to the image (Figure 3 3)

2) In the contrast enhancement part 1t 1s clear that unseen or barely seen features of
low contrast 1mages are made visible
3) In Fagure 34 and 3 5 Gamma Correction with ¥ = 14 does not provide good
visual enhancement IRME and MSRCR bring out the details 1n the dark but have
some enhancement of noise 1n the dark regions, which can be considered
objectionable AINDANE does not bring out the finer details of the images
including the regions 1n the face and in the sign The ETNUD algorithm gives
good result (1n Table 3 1) and outperforms the other algorithms 1f the results are
compared (in Table 32 and Table 3 3) due to the Evaluation Criteria The
ETNUD provides better visibility enhancement the best sharpness can be adjusted
by the ¢ parameter in Equation 3 3
Table 3.1. The Results of Evaluation Criteria for Figure 3 3
ORIGINAL IMAGE ETNUD
Figure 3 3 NUMBER OF REGIONS | NUMBER OF REGIONS
GOOD POOR GOOD POOR
TOP ROW IMAGE 60 40 100 -
SECOND ROW IMAGE 49 51 84 16
THIRD ROW IMAGE 36 64 72 28
LAST ROW IMAGE 32 68 99 1
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Figure 3.3. The Results of Enhancement Left Column Original Images, Right Columns

Enhanced Images
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Figure 3.4. Comparisons of Enhancement Techmiques (top-left) Original, (top-right)
IRME, (middle-left) Gamma correction, ¥ = 14, (mddle-right) MSR, (bottom-left)

AINDANE, (bottom-right) ETNUD



Table 3.2. The Results of Evaluation Criteria for Figure 3 4
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Figure 3 4 Original Image | Gamma | Irme | Aindane | Msr | Etnud
Number of Good Regions 51 64 93 72 89 98
Numberof Poor Regions 49 36 7 28 11 2

Figure 3.5. Comparisons of Enhancement Techniques (top-left) Original, (top-right)

IRME, (mddle-left) Gamma correction, g = 14, (middle-nght) MSR, (bottom-left)

AINDANE,(bottom-right) ETNUD
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Table 3.3. The Results of Evaluation Criteria for Figure 3 5

Figure 3 5 Ornginal Image | Gamma | Irme | Aindane | Msr | Etnud
Number of Good
32 52 95 90 90 99
Regions
Number of Poor
68 48 5 10 10 |

Regions

3.3 A Wavelet Based Enhancement Techmque for Non-Uniform and Uniform-Dark
Images (WBNUDE):

A new wavelet based image enhancement technique 1s proposed for non-uniform
and uniform-dark image enhancement technique (WBNUDE) based on the principles of
MSRCR, IRME and AINDANE In this proposed techmque, the discrete wavelet
transform (DWT) 1s used for dimension reduction and the DRC and contrast
enhancement algorithms are applied to the approximation coefficients The detail
coefficients are multiplied with a constant After the inverse DWT (IDWT), the enhanced
image 1s obtained by linear color restoration such that 1t tunes the intensity of each pixel
magnitude based on its surrounding pixels By using the process described above,
WBNUDE can compress the bright regions and enhance the dark regions at the same
fime

The new 1mage enhancement algorithm 1s composed of four major parts DWT,
DRC, Contrast enhancement, and Color restoration The DRC and the contrast
enhancement are both applied in the DWT domain The major innovation 1s in the

selection of the transformation functions for DRC, and the selection of the surround scale
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for contrast enhancement and color restoration The algorithm 1s described 1n the
following sections
3.3.1 Discrete Wavelet Transform
The DWT has been widely used in image processing [63,64,65] for myriad
applications The DWT decomposes the luminance into approximation and detail
coefficients The WBNUDE 1s applied for gray-level images to these coefficients and the
image 1s reconstructed by applying the inverse DWT The WBNUDE process can be
summarized as follows
e Apply DWT decomposition for J levels and find the approximation coefficients,
A, and detail coefficients H, V, and D
e Normalize A to get A, 1n the range [0-1]
e Apply the non-linear DRC transfer function to A, to produce modified coefficient
A, This provides DRC and neighborhood dependent contrast enhancement
¢ De-normalize A, *
e Perform the IDWT
Haar filters were used for the DWT Each pass of the DWT decomposes the input nto
the four lower resolution approximation, horizontal, vertical and diagonal detail
coefficients respectively (Step 1), so that
I (m ")=Z,€ A, @ o (m o n)+ Y Y dr vt (mon)+ (316)

j2J & le
+ 2
72

Sodl ¥t m oy s Y Y 4l Y (mon)
le ie

7ok FE AN

where A , are the approximation coefficients at scale y with the corresponding scaling

functions @, ,(m,n) And d,,, are the vertical, horizontal and diagonal detail coefficients
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at scale j with the corresponding wavelet functions¥ ,,(m,n) The normalized
coefficients 1n Step 2 are obtained by
A (mn)y=A,, ,(m,n)/255 317
In the third step, the two transfer functions are apphled, as described in Section 3 2 3 2 to
A (m,n)
3.3.2 The Placement of Function for DRC:
RGB color images/ (mn) can be converted to intensity images I(m,n) using

Equation 3 1 The DWT 1s apphied to the intensity image rather than to each component
of the color image The transfer functions for DRC and local contrast enhancement are

based on some information extracted from the histogram of I(m,n) To do this, the

histogram 1s divided into four ranges 5 =0-63, r= 64-127, 5 = 128-191 and

r,=192-255 A 1s mapped to A“* using the following relationships

AR =lay* o< x 3 18)

01, f(flh+n)2f(r+r) A (f(n)2f(R)

_J03, f(f(r+n)2 fn+n) A (f(r)<f(n) (3 19)
3, y(f(ntn)<fln+r) ~ (f(rn)2f(r)
5, Y(f(r+n)<f(rn+r) A (f(n)<f(r)

f(r+n)=f(r)+ f(r,yand A 1s the logical AND operator The first transformation pulls out
the detauls 1n the dark regions for x < 1, where the values of x are obtained from Equation
319 The curves for the ranges are shown in Figure 3 6 The determination of the x

values 1n Equation 3 19 was done experimentally using a large number of non-uniform
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and uniform dark 1mages but 1t can be also determined manually based on the image

information
(An(x,y))x , O<x<=10
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Figure 3.6. A” for Different Ranges r,

The second transfer function 1s used for mapping A“ to A’ using the following process

First, A”*1s mapped to T (m,n) using

drc drc
T(m, ) = log o)~ 04, ()~} (3 20)
max(An’C (m,n))+1- Anrc (m,n)
Then T (m,n) 1s normalized
T (m,n) = T (m,n)—mun(T (m,n)) 321)

max(T' (m,n)) —mn(T (m,n))
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T (m,n) 1s mapped to Ajnrc, the new enhanced approximation coefficients, using the

following equation

AL =(T,(mn)(a-B)+B)

(e £)+ ) 5
o= max(A,‘f"), p= mm(A,‘ll")

where r 1s the curvature parameter for adjusting the shape of the transfer function With

this transformation, the details can be pulled out 1n the dark regions while suppressing the

bright overshoots The curve can be adjusted with r as shown 1n Figure 3 7
The fourth step 1s AZ:C 1s de-normalized by multiplying 1t with 255 Then, 1n the
last step, the 1mage 1s reconstructed from the de-normalized approximation coefficients

4% by applying the IDWT The DRC enhancements were experimentally determined

€n

alone result 1n an 1mage that typically has poor contrast So a local, neighborhood
dependent, contrast enhancement method was applied to improve the contrast before the
1mage 1s reconstructed
3.3.3 Selection of surround parameter for contrast enhancement

A center/surround ratio was proposed, proposed by Hulbert [61], who showed that
the Gaussian 1s the optimal surround for center-surround natural vision operations The
surround for the approximation coefficient 1s obtained by using a 2D discrete convolution
with a Gaussian kernel, G(m,n) defined as in Equation 35 The kernels for improved
rendition use o; = 15, 80 and 220 for the surround space constant The center-surround
contrast enhancement 1s carried out as shown below and the approximation coefficients

497 are replaced with coefficients A , using
en en
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Ay (m,n) = 25547 (m,n) """ (323)
where, E(m, n) 1s obtained by the same Equations between 3 7-3 9 such as
E(m,n)= [Ai(ﬁ”—)}s (3 24)
A(m,n)
Aﬁ,,(m,n)=A(m,n)*G(m,n) (3 25)

‘*’ 15 the convolution operator, and S 1s the adaptive contrast enhancement parameter S 1s
related to the global standard deviation and same procedure has been apphed here as 1n

Section 322 The approximation coefficients A ,,(m,n) are replaced with the enhanced
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coefficients A (m,n), before reconstruction Additionally, the detail coefficients are

enh
multiplied with a constant before applying the IDWT
3.3.4 Color restoration

Finally, the enhanced 1mage can be obtained by the same procedure, applied 1n
Section 32 2 Linear color restoration based on chromatic information contained 1n the

original 1mage as
I, {m,
S (mn)=A,, (m,n)lf—(m—"—),i (3 26)

3.3.5 Evaluation Criteria
In this work, the same evaluation criteria were used as discussed 1n Section 32 3

3.3.6 Experimental Result

The proposed algorithm was tested with many non-uniform and uniform-dark
images MATLAB codes for AINDANE and IRME were used that were developed by
research team MSRCR enhancements were done with the commercial software, Photo
Flair Figure 3 8 shows the original and the enhanced images by WBNUDE Figure 3 9
shows original enhanced 1mages by Gamma Correction, MSRCR, AINDANE, IRME and
WBNUDE From our own visual experience, the following statements can be made about
the proposed algorithm

1) WBNUDE works well for non-uniform and umiform dark images for the

luminance enhancement, bringing out the details 1n the dark regions (Figure 3 8)

2) WBNUDE algornithm gives good results for contrast enhancement The number

of good regions 1n the 1mages 1n creased with the application of WBNUDE (Table

34)
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3) In Figure 3 9 Gamma Correction (middle-left) does not provide good visual

enhancement IRME (top-right), AINDANE

(bottom-left) and

MSRCR

(middle-right) bring out the details 1n the dark regions but also enhance noise,

which can be considered objectionable The WBNUDE algorithm outperforms the

other algorithms and if the results are compared 1n Table 3 5 WBNUDE provides

better visibility enhancement but does not necessarily provide the best sharpness

Table 3.4. The Results of Evaluation Criteria for Figure 3 8

ORIGINAL IMAGE WBNUDE
Figure 3 8
NUMBER OF REGIONS NUMBER OF REGIONS
GOOD POOR GOOD POOR
TOP ROW IMAGE 60 40 100 -
SECOND ROW IMAGE 49 51 98 2
THIRD ROW IMAGE 100 - 100 -
LAST ROW IMAGE 100 - 100 -
TABLE 3.5. The Results of Evaluation Criteria for Figure 3 9
Figure 3 9 ORIGINAL | GAMMA | IRME | AINDANE | MSR | WBNUDE
IMAGE

Number of

Good 60 60 98 99 82 100

Regions

Number of 40 40 2 ! 18 :

Poor Regions
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Figure 3.8. The Results of Enhancement Left Column Original Images, Right Columns

Enhanced Images (WBNUDE)



Figure 3.9. Comparisons of Enhancement Techniques (top-left) Original, (top-right)
IRME, (middle-left) Gamma correction, g = 1 4, (middle-right) MSRCR, (bottom-left)

AINDANE, (bottom-right) WBNUDE
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3.4 Conclusion
The ETNUD and WBNUDE 1mage enhancement algorithms provide high color

accuracy and better balance between the luminance and contrast 1n 1mages
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4. ENTROPY-BASED IMAGE FUSION WITH A CONTINUOUS GENETIC
ALGORITHM
4.1 Introduction

Image fusion 1s defined as the process of combining information from two or
more 1mages of a scene to enhance the viewing or understanding of that scene [66] The
umages that are to be fused can come from different sensors, or have been acquired at
different times, or from different locations Hence, the first step 1n any image fusion
process 1s the accurate registration of the image data Thus 1s relatively straightforward 1f
parameters such as the instantaneous field-of-view (IFOV), and locations and orientations
from which the images are acquired are known, especially when the sensor modalities
produce 1mages that use the same coordinate space This 1s more of a challenge when
sensor modalities differ significantly and registration can only be accomplished at the
mformation level Hence, the goal of the fusion process 1s to preserve all relevant
information 1n the component 1mages and place 1t 1n the fused 1mage (FI) This requires
that the process minimize the noise and other artifacts in the FI Because of this, the
fusion process can be also regarded as an optimization problem [44] In recent years,
1mage fusion has been apphed to a number of diverse areas such as remote sensing [67,
68], medical 1maging [69, 70, 71], and military applications [39, 72]

Image fusion can be divided into three processing levels pixel, feature and
decision These methods increase 1n abstraction from pixel to feature to deciston levels
In the pixel-level approach, simple arithmetic rules like average of individual pixel
intensities or more sophisticated combination schemes are used to construct the fused

1mmage At the feature-level, the image 1s classified into regions with known labels, and
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these labeled regions from different sensor modalities are used to combine the data At
the decision level, a combination of rules can be used to include part of the data or not

Genetic algorithms (GA) are an optimization technique that seeks the optimum
solution of a function based on the Darwinian principles of biological evolution [29]
Even though there are several methods of performing and evaluating 1mage fusion, there
are still many open questions In this dissertation, a new measure of 1mage fusion quality
1s provided and compared with many existing ones The focus 1s on pixel-level 1mage
fusion (PLIF) and a new 1mage fusion technique that uses GA 1s proposed

The GA 1s used to optimize the parameters of the fusion process to produce an FI
that contains more information than either of the individual 1mages The main purpose of
this section 1s 1n finding the optimum weights that are used to fuse images with the help
of CGA

The techniques for GA and image fusion are given in Section 4 2 Section 4 3
describes the evaluation criteria Section 4 4 describes the experimental results, and
compares our results with other image fusion techniques In Section 4 5, conclusion 1s
provided
4.2 The Techniques of GA and Image Fusion
4.2.1 Genetic Algorithm

As stated earlier, GA 1s a non-linear optimization technique that seeks the
optimum solution of a function via a non-exhaustive search among randomly generated
solutions [29] GAs use multiple search points instead of searching one point at a time
and attempt to find global, near-optimal solutions without getting stuck at local optima

Because of these significant advantages, GAs reduce the search time and space [30]
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However, there are disadvantages of using GAs as well they are not generally suitable
for real-time applications since the time to converge to an optimal solution cannot be
predicted The convergence time depends on the population size, and the GA crossover
and mutation operators [29]

In this fusion process, a continuous genetic algorithm has been selected
4.2.2 Continuous Genetic Algorithm (CGA)

GAs typically operates on binary data For many applications, 1t 1s more
convenient to work 1n the analog, or continuous, data space rather than in the binary
space of most GAs Hence, CGA 1s used because they have the advantage of requiring
less storage and are faster than binary CGA inputs are represented by floating-point
numbers over whatever range 1s deemed appropriate Figure 2 15 shows the flowchart of
a simple CGA [35]

The various elements 1n the flowchart are described below

(1) Definition of the cost function and the variables The variable values are
represented as floating point numbers (p,) In each chromosome, the basic GA processing
vector, there are number of value depending on the parameters(p, ,p,.,) Each
chromosome has a cost determined by evaluating the cost function [35]

(1) Imitial Population To begin the CGA process, an nitial population must be
defined A matrix represents the population, with each row being a 1xN,, chromosome

of continuous values The chromosomes are passed to the cost function for evaluation

[35]
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(ur) Natural Selection The chromosomes are ranked from the lowest to highest

cost Of the total of chromosomes 1n a given generation, only the top ~,, are kept for

mating and the rest are discarded to make room for the new offspring [35]

(1v) Mating  Many different approaches have been tried for crossover in
continuous GAs In crossover, all the genes to the right of the crossover point are
swapped Variables are randomly selected 1n the first pair of parents to be the crossover
pomnt a=|U©,)N . |, where U(0,1) 1s the uniform distribution The parents are given by
(35]

parent, = [f),,”s ’RIIN ] (4 1)
parent2 =[P‘“, ’PdN ]

where subscripts m and d represent the mom and dad parent Then the selected variables

are combined to form new variables that will appear 1n the children

pnew, =p,, _ﬂ[Pmaf —})da]

(42)
pnew2 = pdar +ﬂ[Pmar _Pdar]

where fF1s a random value between 0 and 1 The final step 1s to complete the crossover
with the rest of chromosome

OﬂSPV’"é’l:[Pml’Pmp » pnew o, ’Pde]
offspring 2=[P¢11’szv s pnew o, ’PmNm]

(43)

(v) Mutation If care 1s not taken, the GA can converge too quickly nto one
region of the cost surface If this area 1s 1n the region of the global minimum, there 1s no
problem However, some functions have many local mimima To avoid overly fast
convergence, other areas of the cost surface must be explored by randomly introducing

changes, or mutations, 1n some of the variables Multiplying the mutation rate by the total

number of variables that can be mutated 1n the population gives the amount of mutation
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Random numbers are used to select the row and columns of the variables that are to be
mutated [35]

(vi) Next Generation After all these steps, the starting population for the next
generation 1s ranked The bottom ranked chromosomes are discarded and replaced by
offspring from the top ranked parents Some random variables are selected for mutation
from the bottom ranked chromosomes The chromosomes are then ranked from lowest
cost to highest cost The process 1s iterated until a global solution 1s achieved
4.2.3 Image Fusion

A set of input 1mages of a scene, captured at a different time or captured by
different kinds of sensors at the same time, reveals different information about the scene
The process of extracting and combining data from a set of input images to form a new
composite 1mage with extended information content 1s called image fusion [73] The
1mage fusion process must satisfy the following requirements [74,75]

e The FI must preserve the complementary information 1n the mput images

e The redundant information must be taken account 1n the FI

e The location of the input 1mages should not depend on the fusion process

e The most recent and advanced methods used for image fusion are wavelet-based
In these methods, the discrete wavelet transform (DWT) 1s performed on each of input
images The corresponding approximation and detail coefficients are fused based on
some optimization criterta Finally, the inverse DWT 1s utilized to produce the fused

1mage [36]
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4.3 Evaluation Criteria
In this section, the following criteria were defined to evaluate the performance of
the 1image fusion algorithm
4.3.1 Image Quality Assessment
This evaluation criterion was discussed in Section 32 3 2
4.3.2 Entropy
Entropy 1s often defined as the amount of information contained 1in an 1mage

Mathematically, entropy 1s usually given as [42]

L1
E=-) p,log, p, (4 4)

1=0
where L 1s the total number of grey levels, and p={p,, .p,,}1s the probability of
occurrence of each level An increase in entropy after fusion can be interpreted as an
overall increase 1n the information content Hence, one can assess the quality of fusion
by assessing entropy of the original data, and the entropy of the fused data
4.3.3 Mutual Information Indices

Mutual Information Indices are used to evaluate the correlative performances of
the fused 1mage and the source 1mages Let A and B be random varnables with marginal
probability distributions p,(a)and p,(b)and the joint probability distribution p,, (a,b)
The mutual information 1s then defined as [42]

Ly =) pas(a,b)loglp,,(a,b)/(p,(@)py ()] 45)
A higher value of Mutual Information (MI) indicates that the fused image, F,

contains fairly good quantity of information present in both the source images, A and B

The MI can be defined as MI =1, +1,,
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A high value of MI does not 1mply that the information from the both images 1s
symmetrically fused Therefore, information symmetry (IS) 1s introduced IS 1s the
indication of how symmetrically distributed 1s the information in the fused image, with
respect to input images The higher the value of IS, the better the fusion result IS 1s
given by [42]

IS =2—abs(l,, I(I,.+1,.)—05] (4 6)
4.4 Experimental Results

The goal of this experiment 1s to fuse visual and IR 1mages To mimmize
registration 1ssues, 1t 1s important that the visual and the thermal 1mages are captured at
the same time Pinnacle software was used to capture the visual and the thermal images
stmultaneously Although radiometric calibration 1s important, the thermal camera can
not always be calibrated 1n field conditions because of constraints on time Figure 4 1
shows an example where the IR and visual image were captured at the same time It 1s
obvious from the figure that the images need to be registered before they can be fused
since the field-of-view and the pixel resolution are obviously different

The performance of the proposed algorithm was tested and compared with
different PLIF methods The IR and visual images were not previously registered as
shown 1n Figure 4 1 The registered 1image, base image (IR Image) and fused image with
CGA are shown 1n Figure 4 2 The cost function 1s very simple and defined as

Entropy(F =w,V + w,IR) 47
where V and IR are the visual and IR images, w, and w; are the respective associated
weights, and F 1s the fused image The initial population size 1s 100x3 The first and

second columns 1n population matrix represent w,V, and w,/R and the last column
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represents the cost function which 1s the entropy of F Then 1mtial population has been
ranked based on the cost In each iteration of the GA, 20 of the 100 rows are kept for
mating and the rest are discarded The crossover has been applied based on the Equation
4 2 The mutation rate was set to 0 20, hence the total number of mutated variables 1s 40
The value of a mutated variable 1s replaced by a new random value 1n the same range
Figure 4 3 shows the CGA results after 50 1terations of the GA such that the CGA
maximize the cost and find optimum weights of images In the 2nd, 8th, and 25th
iterations, the cost increased but was not associated with the global solution The
optimum solution was determined 1n 45th iteration and remained unchanged because 1t 1s
optimum solution Figure 4 4 shows the fusion results of point-rules based PLIF After
registering IR and visual data, we determined that w, = 0 9931 and w;, = 0 0940 provide
the optimum values for maximzing the entropy cost function for the F specified 1n
Equation 4 7 The evaluation of these weights results 1s shown 1n Table 4 1 Table 4 1
shows that CGA based fusion method gives better results (optimum weights for
maximuzing the entropy of F) for entropy and IS from which it can concluded that CGA

performs better than other PLIFs

Figure 4.1. Visual and IR Images Left Visual Image, Right IR Image
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4.5 Conclusion
In this dissertation, CGA based image fusion algorithm was introduced and
compared with other classical PLIFs The results show that CGA based 1mage fusion

gives better result than other PLIFs

Registered Image IR Image Fused Image

2.

”

Figure 4.2. The Result of Fusion Left Registered Images, Middle IR Image Right

Fused Image with GA
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Figure 4.3. The Result of Continuous Genetic Algorithm
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Table 4.1. Performance Comparision of Image Fusion Methods for Figure 4 2 and Figure

44
Highest | Lowest Average Threshold GA_based
(Fig44) | (Fig44) |(Figd4d) (Fig4 4) (Fig42)
Entropy 691 314 6 56 693 728
Image Quality
(Number of 100 70 100 100 100
Good Regions)
IS 190 163 196 191 196

Fig. 4.4. Fusion Results (top-left) highest value from IR or Visual Images, (top-right)

lowest value form IR or Visual Images, (bottom-left) average of IR and Visual Images,

(bottom-right) threshold value
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5. EXPERIMENTAL RESULTS

5.1 Introduction

With face recognition, a database usually exists that stores a group of human faces
with known 1dentities In a testing image, once a face 1s detected, the face 1s cropped
from the 1mage or video as a probe to check with the database for possible matches The
matching algorithm produces a similarity measure for each of the comparing pairs

Variations among 1mages from the same face due to changes 1n illumination are
typically larger than variations rose from a change of face identity In an effort to address
the 1llumination and camera variations, a database was created, considering these
variations to evaluate the proposed techniques

Besides the regular room lights, four additional spot lights are located 1n the front
of the person that can be turned off and on 1n sequence to obtain face 1mages under
different 1llumination conditions Note that 1t 1s 1mportant to capture visual and thermal
images at the same time 1n order to see the variations in the facial 1images Visual and
thermal 1mages are captured almost at the same time Although radiometric calibration 1s
important, the thermal camera can not be calibrated because of current IR camera
characteristics

The Pinnacle (Pinnacle Systems Ltd ) software has been implemented to capture
visual and thermal 1mages at the same time Figure 5 1 shows an example of visual and
thermal 1images taken at the same time

In this dissertation, the focus 1s on visual image enhancement Then the visual

1mages will be registered with the IR 1mages based landmark registration algorithm
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i

Figure 5.1. Database Images Left Column Visual Images, Right Columns IR Images

(taken at the same time)
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Finally, the registered IR and visual images are fused for face recognition Fig

5 2 shows the workflow of the proposed work

Image Enhancement of Visual
Images

A

Registration of enhanced Visible
and IR Images

v

Image Fusion using a Genetic
Algorithm

Figure 5.2. Research Approach Overview

5.2 IR Images

In this subsection, some sample IR 1mages are shown with and their statistics such
as mean, standard deviation of pixels in the images Those statistics can give us
information on the contrast of the images Fig 5 3 shows one IR image with 1ts statistics
and Fig 54 shows the same image after histogram equalization with modified image
statistics From the both Images 1t can be said that the mean and standard deviation has
been significantly increased after histogram equalization

And then the IR 1mages were taken from different distances and statistics of those
IR 1mages shown 1n Table 51 It 1s observed that from the values of Table S 1 Those
values go down while the person retreat from the IR camera

The background, shown 1n Figure 5 13, 1s subtracted from the Figures 55 to 5 8
Figures 59 to 5 12 show the images after their background subtraction The statistics of
IR 1mages are shown in Table 51 It 1s observed that the values go down while the

person retreats from the IR camera
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Table S.1. The Statistics of Figures 5 5-5 8

Figure Mean Standard Deviation RMS Entropy
Left Upper IR 5 5 84 68020833 32 21200643 90 59995056 | 6 02810125
Right Upper IR § 6 83 36513021 27 53482620 8779471276 | 568955721

Left Bottom IR 57 84 87854167 24 43418270 88 32551228 | 542193817

Right Bottom IR 5 8 83 92352865 24 60098869 87 45494443 | 5 50655880

Figure 5.5-5.8. IR Images from Different Distances
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Table 5.2. The Statistics of Figures 59 -5 13

Figure Mean Standard deviation RMS Entropy
Left Upper IR 59 942182292 26 74171275 28 35295307 | 212672017
Right Upper IR 5 10 701039063 22 87623110 2392629361 | 176482414
Left Bottom IR 5 11 585242188 20 63104752 21 44506851 | 160233358
Right Bottom IR 5 12 539322917 20 36353732 2106562539 | 137625036
513 84 54343750 9 86076578 85 11655260 | 4 10966349

Figure 5.9-5.12. IR Images without their Background from Different Distances

Figure 5.13. The Background
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5.2.1 Discussion

IR and CCD have their own advantages and limitations For example, in IR
images, the object may be highly detectable because of its sufficient temperature
difference from the local background, whereas the visible images will provide more
details of the background Thermal IR and particularly Long Wave Infra-Red (LWIR)
imagery 1s independent of illumination since thermal IR sensors operating at particular
wavelength bands measuring heat energy emitted and not the Light reflected from the
objects More importantly, IR energy can be viewed 1n any light conditions and 1s less
subject to scattering and absorption by smoke or dust than visible light Hence thermal
tmaging has great advantages 1n face recognition under low 1llumination conditions and
even 1n total darkness, where visual face recognition techniques fail It 1s well known that
the detection of an object 1n an infrared 1mage depends on 1ts thermal contrast with the
background However, thermal 1maging needs to solve several challenging problems
Thermal signatures can be changed sigmificantly according to different body temperatures
caused by physical exercise or ambient temperatures and the target intensity varies
continuously with changing distance between the imaging device and target A combined
use of visual and thermal 1mages face recognition system can alleviate the problems
[38,39]

Here firstly, 1t has been tried to find out the various intensities of body depending
on the distance between the 1maging device and human body The point here 1s to detect
some parameters like standard deviation and entropy, which can give us some

information on the contrast of the 1mage [39]
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The second 1ssue 1s the removing the background in the image The problem here
1s that some pixel levels of human body are the same as the background The
segmentation of face from background and body 1s too difficult which can not be done
with tresholding For these reasons, a genetic algorithm is proposed based 1mage fusion
approach to fuse the enhanced visual images with the IR Images
5.3 Enhancement of Visual Images

The ETNUD and WBNUDE algorithms were applied to 16 visual images as
shown 1n Figures 5 14 to 5 21 under different 1llumination conditions In these figures
besides the regular room lights, the four extra spot lights located 1n the front of the person
were turned off and on for creating different illumination conditions To enhance those
visual 1mages, the luminance 1s first balanced, then image contrast 1s enhanced and
finally, the enhanced image 1s obtained by a linear color restoration based on chromatic
information contained 1n the original image

The results in the luminance enhancement part showed that the algorithms work
well for dark images All the details, which cannot be seen 1n the original image, become
evident The experiment results have shown that for all color images, the proposed

algorithms work sufficiently well
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i.14. Visual Database Enhancement for Images 1 and 2 Left Column Visual
Images Right Columns Enhanced Images

v o
Figure 5.15. Visual Database Enhancement for Images 3 and 4 Left Column Visual

Images Right Columns Enhanced Images
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Figure 5.16. Visual Database Enhancement for Images 5 and 6 Left Column Visual

Images Right Columns Enhanced Images

+ 74" . ‘» 2 ) N ) “
Figure 5.17. Visual Database Enhancement for Images 7 and 8 Left Column Visual
Images Right Columns Enhanced Images
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ki :
Figure 5.18. Visual Database Enhancement for Images 9 and 10 Left Column Visual

Images Right Columns Enhanced Images

Figure 5.19. Visual Database Enhancement for Images 11 and 12 Left olumn Visual
Images Right Columns Enhanced Images



Figure 5.20. Visual Database Enhacemt for ges 13 and 14 Left Column Visual
Images Right Columns Enhanced Images

Figure 5.21. Visual Database Enhancement for Images 15 and 16 Left Column Visual

Images Right Columns Enhanced Images
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5.4 Harris Corner Detection
5.4.1 Introduction

In this dissertation, the corners of visual and IR 1mages were determined by the
Harris detection algorithm for registration as shown in Fig 5 22 The corners 1n both the
visual and IR 1mages were determuned first and then a registration process was applied

based on the detected corner point pairs

Reference Image _‘:> Harris Corner ,
detection l

Registration

A

Sensed Image :> Harnis Corner
detection

Figure 5.22. Diagram of Harris Corner Detection for Registration

5.4.2 Results

The Harris corner detector determines a matrix M that contains all differential
operators and describes the geometry of the image surface at a given point (x,y) The
umage 1ntensity 1s denoted by /, intensity variation can be measured 1n any direction with
Eq 51 and w specifies the image window 1t 1s unity within a specified rectangular

region, and zero elsewhere

oY or\’ oI oI
A=|—| ®w,B=| — | ®w,C=| —— |®
(ax) ¢ (ay) " (axay) it

6D
AC

M =
i)
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where M 1s the image gradient covariance matrix and measure of cornerness C at the
position (x,y) 1s defined as

C(x,y)=det(M)—k(trace(M )’ (52)

where k 1s constant

Local maxima of these corner “strengths” indicate potential corner positions In
the experiments, M was filtered by the maximum filter with a size of 11x11 Then the
value of each pixel in M was compared with a threshold of 100 to filter M Figs 5 23 and
5 24 show corner detection results for IR and visual images Since the detection results
for IR 1mage are reasonably good, the histogram equalization technique was not apphed

to the IR images

5.5 IR and Visual Images Registration

First, the IR and visual 1mages taken from different sensors, viewpoints, times and
resolution were resized for the same size The correspondence between the features
detected 1n the IR 1mage and those detected in the visual 1mage were then established
Control points were picked manually from those corners detected by the Harris corner
detection algorithm from both 1mages, where the corners were 1n the same positions 1n
the two 1mages

In the second step, a spatial transformation was computed to map the selected
corners 1n one 1mage to those 1n another image Once the transformation was established,
the 1mage to be registered was resampled and interpolated to match the reference image

For RGB and intensity images, the bilinear or bicubic interpolation method 1is
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recommended since they lead to better results In the experiments, the bicubic

interpolation method was used

Figure 5.23. The Corners of Visual and IR images The corners have been shown with

Crosses

Figure 5.24. The Corners of Visual and IR images The corners have been shown with

Crosses

The registered 1images were overlapped at an approprate transparency The pixel
value 1n the fused i1mage was a weighted submussion of the corresponding pixels in the IR

and visual 1mages As shown in Figure 5 25, a simple overlapping cannot improve the
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image quality In the next section, results from advanced image fusion approaches are

presented

Figure 5.25. Visual, IR Image and Combined Image

5.6 Fusion of two Visual Images

In this section, 1mage fusion results are presented for the visual images as shown
in Fig 526 It 1s obvious from the figure that the images do not need to be registered
The cost functions are very simple and defined as

Entropy(F =w,A+w,B) (53)

Mean(F =w,A+w,B ) 54
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Std(F =w,A+w,B) 55
where A and B are the visual images, w, and w, are the respective associated weights, std
1s the standard deviation and F 1s the fused image Here the three cost functions were
chosen The reason of this step 1s to find the best suitable cost function which gives the
best result for fusion These three cost functions will be evaluated based on the metrics
which are mean, standard deviation, entropy, mutual information, information symmetry,
RMSE, PSNR and 1mage quality

In the first step, the evaluation of the Equation 5 3, A and B images were fused
four times 1n that the population size and number of iteration for the genetic algorithm
were changed, as shown 1n Table 53 The mitial population size has been selected as
10x3, 10x3, 100x3, 100x3 respectively The 1teration has been selected as 10, 50, 10 and
100 respectively The first and second columns 1n population matrix represent w,A, and
wpB and the last column represents the cost function which 1s the entropy of FF Then
inttial population has been ranked based on the chosen cost function In each iteration of
the CGA algorithm, the crossover was performed based on Equation 4 2 The mutation
rate was set to 0 20, and the value of a mutated vaniable was replaced by the mutated
value

Figures 5 26 and 5 27 show the CGA results after 10, 50, 10 and 100 iterations of
the CGA algornthm, respectively The optimum solution was determuned in the fourth
trial whose population size 1s 100x3 after 100 iterations It was determined that w, = 0 98
and wj, = 0 33 provide the optimum entropy cost function for the F specified in Equation

5 3 The evaluation of these weights results 1s shown 1n Table 5 3
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Figure 5.26. Fusion Results Left Upper Visual A Image, Middle Upper Visual B
Image, Right Upper Fused Image 1, Bottom Right Fused Image 2, Bottom Middle

Fused Image 3, Bottom Right Fused Image 4

To evaluate Equation 54, A and B 1mages were fused three times in that the
population size and number of iteration were changed, as shown 1n Table 54 The 1nitial
population sizes had been selected as 10x3, 10x3, 100x3 respectively The iteration
number had been selected as 10, 50, and 20 respectively The first and second columns 1n
population matrix represent w,A, and w,B and the last column represents the cost
function, which 1s the mean of F Then 1nitial population has been ranked based on the
cost function In each iteration of the CGA algorithm, the crossover has been applied
based on Equation 42 The mutation rate was performed on the Equation 42 The
mutation rate was set 0 20, and the value of a mutated vanable was replaced by the

mutated value
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IMAGE

WEIGHTS

MEAN

STD

ENTR

MI

IS

RMSE

PSNR

1Q

A Image

102 98

822

7 25041

85

B Image

103 13

6 84

7 19617

87

Fused
Image 1

Pop 10
Ite 10

13733

934

7 5559

601

198

3929

16 24

98

Fused
Image 2

Pop 10
Ite 50

W1=0 83

W2=0 50

138 11

979

7 56540

6 06

193

40 30

16 02

98

Fused
Image 3

Pop 100
Ite 10

W1=099

Ww2=033

13745

996

757172

631

187

39 98

16 09

98

Fused
Image 4

Pop 100
Ite 100

Wwi1=0 98

W2=0 33

135 67

998

7 57458599

632

187

3814

16 50

98

Figs 5 28 and 5 29 show the CGA results The 1teration number had been selected

as 10, 50 and 20 respectively The optimum solution was determined 1n the third trial

whose population size 1s 100x3 after 20 iterations It was determined that w, = 0 99 and

wp = 099 provide the optimum values for maximizing the mean cost function for the F

specified 1n Equation 5 3 The evaluation of these weights results 1s shown 1n Table 5 4

To evaluate Equation 55, A and B images were fused three times in that the

population size and number of iteration were changed, as shown 1n Table 55 The 1nitial
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population sizes had been selected as 10x3, 50x3, 3x3 respectively The 1teration
numbers had been selected as 10, 50, and 3 respectively The first and second columns 1n
population matrix represent w,A, and wpB and the last column represents the cost
function which 1s the standard deviation of /' Then mmitial population has been ranked
based on the cost function The crossover was performed based on Equation 4 2 The
mutation rate was set to 0 20, and the value of a mutated variable was replaced by the

mutated value
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Figure 5.27. The Result of Continuous Genetic Algorithm of Table 5 3
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Figure 5.28. Fusion Results Left Fused Image 1, Middle Fused Image 2, Left Fused

Image 3

Table 5.4. The Statistics of Figures 5 28

IMAGE

WEIGHTS

MEAN [ STD | ENTR MI IS RMSE | PSNR | 1Q

A Image

i02 98 822 7250 85

B Image

10313 | 6841 7196 87

Fused
Image |

Pop 10
Ite 10

W 1=09595

W 2=09137

18110 [ 8380 | 6016 | 5228 | 1979 854 949 100

Fused
Image 2

Pop 10
Ite 50

W 1=09573

W 2=09661

18413 | 8179 5777 5099 | 1981 885 918 100

Fused
Image 3

Pop 100
Ite 20

W 1=0 9986

W 2=0 9953
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Figure 5.29. The Result of Continuous Genetic Algorithm of Table 5 4
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Figures 5 30 and 5 31 shows the CGA results after 10, 50, and 3 times 1terations
of the GA respectively such that the CGA maximizes the cost and find optimum weights
for images The optimum solution was determined 1n the second trial whose population
size 1s 100x3 after 50 iterations It was determined that w, = 0 99 and w;, = 0 98 provide
the optimum values for maximizing the standard deviation cost function for the F

specified in Equation 5 4 The evaluation of these weights results 1s shown 1n Table 5 5

5.7 Fusion of Visual and IR Images
Figures 5 32 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 76 iterations It was
determined that w, = 099 and w;, = 047 are the optimum values for maximizing the
entropy cost function which 1s 7 58 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 6 By inspection, the faces and the details in
the fused 1mage are clearer as compared to either the original IR 1mage or the visual
1mage
Figures 5 33 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determuned with a population size of 100x3 after 12 iterations It was
determined that w, = 099 and w;, = 0 15 are the optimum values for maximizing the
entropy cost function which 1s 7 68 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 7 By inspection, the faces and the details 1n
the fused 1mage are clearer as compared to either the original IR 1mage or the visual

1mage
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IMAGE WEIGHTS MEAN STD | ENTR | MI IS RMSE | PSNR | IQ
A Image 102 98 822 725 85
B Image 103 13 6 84 719 87
Fused
Image 1 | W 1=0 9937
Pop 10 W 220 6476 169 13 8229 699 575 | 193 69 3 113 100
Ite 10
Fused
Image 2 | W 1=0 9954
4
Pop 10 W 220 9899 204 60 99 21 558 499 | 198 9213 89 100
Ite 50
Fused
Image3 | W i=06379
T7 64
Pop 10 W 2209179 160 36 I8 725 583 | 198 62 1 122 99
Ite 3

Figure 5.30. Fusion Results Left Fused Image 1, Middle Fused Image 2, Left Fused

Image 3

Figures 5 34 (f) and (g) show the result of CGA after 100 iterations The optimum

solution was determined with a population size of 100x3 after 3 iterations It was

determined that w, = 0 58 and w;, = 0 59 are the optimum values for maximizing the
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entropy cost function which is 7 42 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 8 By inspection, the faces and the details 1n
the fused image are clearer as compared to erther the original IR 1mage or the visual
1mage
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Figure 5.31. The Result of Continuous Genetic Algorithm of Table 5 5

Figures 535 (f) and (g) show the result of CGA after 100 iterations The
optimum solution was determined with a population size of 100x3 after 36 iterations It
was determined that w, = 0 73 and w;, = 0 36 are the optimum values for maximizing the
entropy cost function which 1s 7 53 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 59 By inspection, the faces and the details 1n
the fused image are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 36 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 8 iterations It was
determined that w, = 0 84 and w;, = 020 are the optimum values for maximizing the
entropy cost function which 1s 7 82 for the F specified in Equation (5 3) The evaluation

of these weights results 1s shown 1n Table 5 10 By inspection, the faces and the details in



99

the fused 1mage are clearer as compared to eirther the original IR 1mage or the visual
1mage

Figures 5 37 (f) and (g) show the result of CGA after 100 1terations The optimum
solution was determined with a population size of 100x3 after 14 iterations It was
determined that w, = 0 89 and w;, = 009 are the optimum values for maximizing the
entropy cost function which 1s 7 78 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 11 By inspections, the faces and the details
in the fused 1mage are clearer as compared to either the original IR 1mage or the visual
image

Figures 5 38 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 2 iterations It was
determined that w, = 077 and w, = 032 are the optimum values for maximizing the
entropy cost function which 1s 7 68 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 12 By inspection, the faces and the details in
the fused 1mage are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 39 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 14 iterations It was
determined that w, = 086 and w, = 0 16 are the optimum values for maximizing the
entropy cost function which 1s 7 83 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 13 By inspection, the faces and the details 1n
the fused 1mage are clearer as compared to either the original IR 1mage or the visual

1mage
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Figures 5 40 (f) and (g) show the result of CGA after 100 iterations The optimum
solutton was determuned with a population size of 100x3 after 76 iterations It was
determined that w, = 090 and w, = 050 are the optimum values for maximizing the
entropy cost function which 1s 7 63 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 14 By nspection, the faces and the details 1n
the fused image are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 41 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 2 iterations It was
determined that w, = 098 and w, = 009 are the optimum values for maximizing the
entropy cost function which 1s 7 60 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 15 By inspection, the faces and the details n
the fused image are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 42 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determuned with a population size of 100x3 after 17 iterations It was
determined that w, = 0 88 and w;, = 0 17 are the optimum values for maximizing the
entropy cost function which 1s 7 51 for the F specified 1n Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 16 By inspection, the faces and the details 1n
the fused image are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 43 (f) and (g) show the result of CGA after 100 iterations The optimum

solution was determuned with a population size of 100x3 after 95 iterations It was
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determined that w, = 0 88 and w;, = 0 17 are the optimum values for maximizing the
entropy cost function which 1s 7 66 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 17 By mspection, the faces and the details 1n
the fused image are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 44 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 36 iterations It was
determined that w, = 0 83 and w;, = 027 are the optimum values for maximizing the
entropy cost function which 1s 7 51 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 18 By 1nspection, the faces and the details in
the fused 1mage are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 45 (f) and (g) show the result of CGA after 100 iterations The optimum
solutton was determined with a population size of 100x3 after 36 iterations It was
determined that w, = 0 84 and w;, = 025 are the optimum values for maximizing the
entropy cost function which 1s 7 60 for the F specified 1n Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 19 By 1nspection, the faces and the details n
the fused image are clearer as compared to either the oniginal IR 1mage or the visual
1mage

Figures 5 46 (f) and (g) show the result of CGA after 100 iterations The optimum
solution was determined with a population size of 100x3 after 8 iterations It was
determined that w, = 0 64 and w, = 0 46 are the optimum values for maximzing the

entropy cost function which 1s 7 60 for the F specified in Equation (5 3) The evaluation
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of these weights results 1s shown 1n Table 5 20 By inspection, the faces and the details 1n
the fused 1mage are clearer as compared to either the original IR 1mage or the visual
1mage

Figures 5 47 (f) and (g) show the result of CGA after 100 iterations The optimum
solutton was determuned with a population size of 100x3 after 4 iterations It was
determuned that w, = 080 and w, = 022 are the optimum values for maximizing the
entropy cost function which 1s 7 68 for the F specified in Equation (5 3) The evaluation
of these weights results 1s shown 1n Table 5 11 By inspection, the faces and the details in
the fused image are clearer as compared to erther the IR original image or the visual

image

5.8 Discussion

Image Fusion 1s a powerful technique for image analysis and computer vision that
can reduce errors 1n detection and recognition of objects by combining multisource
1magery to enhance the mformation apparent in the images as well as to increase the
reliability of interpretation In this section, the results of an 1image fusion algorithm for
Visual and IR Images are presented with the help of the Genetic Algorithm Experimental
results have been applied on the database, which 1s created by the research team This
algorithm 1s categorized nto four steps, which are described respectively In the first step,
there 1s enhancement of visual images, as described 1n Section 53 The fused image
should be more suitable for human visual perception and computer-processing tasks The
experience of image processing has prompted the research to consider fundamental
aspects for good visual presentation of images, requiring nonlinear 1mage enhancement

techniques of visual recorded images to get a better image, which has more information
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from the original images In the second step, the corners of visual and IR 1mages were
determined with the help of Harris Detection algorithm for registration purpose to use as
control points, as described 1n Section 5 4 In the third step, because the source i1mages are
obtained from different sensors, they present different resolution, size and spectral
characteristic, the source images have to be correctly registered, as described in Section
55 In the last step, an 1mage fusion process is performed, which was described 1n
Section 56 Three functions were evaluated and 1t was decided to use the entropy cost
function based with the help of the Genetic Algorithm for the fusion process of visual and
IR 1mages

The Image fusion algorithm was applied with the help of Genetic Algorithm to
the database One of the 1ssues 1s the determination of the quality of image fusion results
As part of the general theme of fusion evaluation there 1s a growing interest to develop
methods that address the scored performance of 1mage fusion algorithms as described in
Chapter 4 Given the diversity of applications and various methods of evaluation metrics,
there are still open questions concerning when to perform image fusion There 1s an
mnterest 1n exploring mean, standard deviation, entropy, mutual information, peak signal
to noise ratio and 1mage quality as described in Chapter 4 Because source images have
different spectrum, they show quite distinct characters and have complementary
information It can be seen 1n Figure 5 32 (a and c) that the visual image does not have
enough information to see the faces and 1s very dark Figure 532 (b) shows that the
luminance enhancement part works well for dark 1mages and the technique adjusts 1itself
to the image In the contrast enhancement part it 1s clear that unseen or barely seen

features of low contrast images were made visible Enhancement algorithms were
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developed to improve the images before the fusion process After enhancement it was
found that the corners of the enhanced image and the IR 1mage then registered the
enhanced 1mage as shown in Figure 5 32 (d) Then, the enhanced image was fused with
the IR 1mage 1n Figure 5 32 (f)

The cost function defined 1n Equation 5 3 and the iteration selected as 100 1n the
experiments The first and second columns 1n the population matrix represent w,A, and
wpB and the last column represents the cost function, which 1s the entropy of F' Then the

iitial population 1s ranked based on the cost function
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Figure 5.32. Fusion Results for Image 1 (top-left-(a)) Original, (top-right-(b)) Enhanced,

7 n

(muddle-left-(c)) Original, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR, (bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 1terations

Table 5.6. The Statistics of Figures 5 32

Figure 5 32 | WEIGHTS | MEAN | STD | ENTROPY| MI | PSNR | 1Q
ORIGINAL
IMAGE (& ] 364 66 613 ; ; 16
IR _ 88 7 152 712 ] ] )
IMAGE(e)
ENHANCED
IMAGE() ] 1275 | 252 7 48 . ; 87
FUSED W1=0099
IMAGE() | W2=047 | 1535 183 758 363 | 3573 94
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Figure 5.33. Fusion Results for Image 2 (top-left-(a)) Original, (top-right-(b)) Enhanced,
(middle-left-(c)) Ornginal, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-
right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.7. The Statistics of Figures 5 33

Figure 533 | WEIGHTS | MEAN STD ENTROPY MI PSNR 1IQ
ORIGINAL
IMAGE (c) - 109 2 1108 771 - - 86
IR
IMAGE(e) - 896 14 87 711 - - -
ENHANCED
IMAGE(d) - 140 17 2075 760 - - 95
FUSED W1=099
IMAGE(f) W2=015 144 92 18 47 7 68 544 3573 95
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Fusion Results for Image 3 (top-left-(a)) Original, (top-right-(b)) Enhanced,

(muddle-left-(c)) Onginal, (mddle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.8. The Statistics of Figures 5 34

Figure 5 34 | WEIGHTS | MEAN STD | ENTROPY Ml PSNR 1Q
ORIGINAL

IMAGE (c) - 89 36 2392 716 - - 84
IR

IMAGE(e) - 9011 14 55 717 - - -
ENHANCED

IMAGE(d) - 123 98 25 60 696 - - 94
FUSED Wi1=058

IMAGE(f) W2=059 124 06 14 29 742 427 2813 96
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Figure 5.35. Fusion Results for Image 4 (top-left-(a)) Onginal, (top-right-(b)) Enhanced,

(middle-left-(c)) Ornigmnal, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.9. The Statistics of Figures 5 35

Figure 5 35 | WEIGHTS | MEAN STD ENTROPY MI PSNR 1Q
ORIGINAL
IMAGE (c) - 122 44 14 11 771 - - 95
IR

IMAGE(e) - 90 44 14 29 721 - - -
ENHANCED
IMAGE(d) - 151 51 2204 751 - - 99
FUSED Wi=073

IMAGE(f) W2=036 140 72 14 48 753 428 2833 96
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Figure 5.36. Fusion Results for Image 5
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(top-left-(a)) Oniginal, (top-right-(b)) Enhanced,

(middle-left-(c)) Onginal, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 1terations

Table 5.10. The Statistics of Figures 5 36

Figure 5 36 | WEIGHTS | MEAN STD ENTROPY MI PSNR 1Q
ORIGINAL
IMAGE (c) - 87 66 2036 762 - - 74
IR

IMAGE(e) - 90 55 14 11 724 - - -
ENHANCED

IMAGE() - 118 41 2223 757 - - 92
FUSED Wi1=084

IMAGE(f) W2=020 117 17 179 782 504 294 94
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Figure 5.37. Fusion Results for Image 6 (top-left-(a)) Original, (top-right-(b)) Enhanced,

(muddle-left-(c)) Ornigimnal, (muddle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 1iterations

Table 5.11. The Statistics of Figures 5 37

Figure 5 37 | WEIGHTS | MEAN STD ENTROPY MI PSNR IQ
ORIGINAL
IMAGE (c) - 9233 2061 765 - - 80
IR
IMAGE(e) - 90 84 1415 727 - - -
ENHANCED
IMAGE(d) - 123 07 2259 761 - - 94
FUSED W1=0289

IMAGE(f) W2=009 117 41 19 51 778 557 2915 94
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Figure 5.38. Fusion Results for Image 7 (top-left-(a)) Original, (top-right-(b)) Enhanced,
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(middle-left-(c)) Onginal, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.12. The Statistics of Figures 5 38

Figure 5 38 | WEIGHTS | MEAN STD ENTROPY MI PSNR IQ
ORIGINAL
IMAGE (c) - 107 27 16 52 7 66 - - 93
IR
IMAGE(e) - 90 69 14 87 732 - - -
ENHANCED
IMAGE(d) - 141 67 18 47 771 - - 96
FUSED Wi1=077

IMAGE(f) W2=032 137 67 14 35 7 68 403 29 26 98
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Figure 5.39. Fusion Results for Image 8 (top-left-(a)) Original, (top-right-(b)) Enhanced,

(middle-left-(c)) Ornginal, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR, (bottom-
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right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.13. The Statistics of Figures 5 39

Figure 5 39 | WEIGHTS | MEAN STD ENTROPY MI PSNR IQ
ORIGINAL

IMAGE (c) - 107 13 1975 7 66 - - 89
IR

IMAGE(e) - 8978 14 02 736 - - -
ENHANCED

IMAGE(d) - 138 82 1875 767 - - 99
FUSED W1=086

IMAGE(f) W2=0 16 137 02 16 17 783 516 29 64 96
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Figure 5.40. Fusion Results for Image 9 (top-left-(a)) Original, (top-right-(b)) Enhanced,
(middle-left-(c)) Onginal, (middle-right-(d)) Enhanced, (bottom-left-(¢)) IR,(bottom-
right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.14. The Statistics of Figures 5 40

Figure 5 40 | WEIGHTS | MEAN STD ENTROPY Ml PSNR 1Q
ORIGINAL
IMAGE (c) - 57 89 982 642 - - 54
IR
IMAGE(e) - 90 96 13 96 744 - - -
ENHANCED

IMAGE(d) - 102 23 19 15 625 - - 86
FUSED W1=090

IMAGE(f) W2=053 134 03 16 26 763 425 3341 83
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Figure 5.41. Fusion Results for Image 10 (top-left-(a)) Ornginal, (top-right-(b))

¥ o

Enhanced, (middle-left-(c)) Ongmnal, (middle-right-(d)) Enbanced, (bottom-left-(e))

IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 1terations

Table 5.15. The Statistics of Figures 5 41

Figure 5 41 | WEIGHTS | MEAN STD ENTROPY MI PSNR IQ
ORIGINAL
IMAGE (c) - 119 39 12 14 7 68 - - 84
IR
IMAGE(e) - 90 95 1349 736 - - -
ENHANCED
IMAGE(d) - 142 34 19 89 735 - - 97
FUSED Wi1=0098
IMAGEC(f) W2=009 143 26 18 36 760 543 36 177 98
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Figure 5.42.

Fusion Results for Image 11

aD B D B D
Mermficono Numbar

(top-left-(a)) Ongnal, (top-right-(b))

7D

Enhanced, (middle-left-(c)) Original, (middle-right-(d)) Enhanced, (bottom-left-(e))

IR, (bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.16. The Statistics of Figures 5 42

Figure 542 | WEIGHTS | MEAN STD ENTROPY MI PSNR 1Q
ORIGINAL
IMAGE (c) - 9993 2110 700 - - 89
IR
IMAGE(e) - 9072 1347 735 - - -
ENHANCED

IMAGE(d) - 136 43 2587 734 - - 97
FUSED W1=0 88
IMAGE(f) W2=017 13112 15 87 751 42 28 25 99
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Figure 5.43. Fusion Results for Image 12 (top-left-(a)) Ornginal, (top-right-(b))
Enhanced, (middle-left-(c)) Onginal, (middle-right-(d)) Enhanced, (bottom-left-(e))
IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.17. The Statistics of Figures 5 43

Figure 5 43 | WEIGHTS | MEAN STD ENTROPY Ml PSNR IQ
ORIGINAL
IMAGE (c) - 120 77 14 84 762 - - 92
IR
IMAGE(e) - 9079 13 96 7 36 - - -
ENHANCED
IMAGE(d) - 149 24 2243 741 - - 96
FUSED W1=0 88
IMAGEC(f) W2=017 14250 17 99 7 66 509 3010 95
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Figure 5.44. Fusion Results for Image 13 (top-left-(a)) Omgnal, (top-nght-(b))

Enhanced, (middle-left-(c)) Orginal, (middle-right-(d)) Enhanced, (bottom-left-(e))

IR, (bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.18. The Statistics of Figures 5 44

Figure 5 44 | WEIGHTS | MEAN STD ENTROPY Ml PSNR 1Q
ORIGINAL
IMAGE (c) - 102 32 2146 761 - - 87
IR
IMAGE(e) - 90 98 1425 737 - - -
ENHANCED
IMAGE(d) - 137 41 23 87 738 - - 97
FUSED W1=083
IMAGE(f) W2=027 139 16 1923 751 403 3005 96
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Figure 545. Fusion Results for Image 14 (top-left-(a)) Original, (top-right-(b))
Enhanced, (muddle-left-(c)) Ornginal, (middle-right-(d)) Enhanced, (bottom-left-(e))
IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.19. The Statistics of Figures 5 45

Figure 545 | WEIGHTS | MEAN STD | ENTROPY MI PSNR IQ
ORIGINAL

IMAGE (c) - 112 17 17 96 7 68 - - 92
IR

IMAGE(e) - 9072 1356 737 - - -
ENHANCED

IMAGE(d) - 141 40 2034 740 - - 98
FUSED W1=084

IMAGE(f) W2=025 141 82 18 29 754 407 3094 99
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Figure 5.46. Fusion Results for Image 15 (top-left-(a)) Onginal, (top-right-(b))

v+ oo

Enhanced, (middle-left-(c)) Original, (middle-right-(d)) Enbanced, (bottom-left-(e))
IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.20. The Statistics of Figures 5 46

Figure 5 46 | WEIGHTS | MEAN STD | ENTROPY MI PSNR 1Q
ORIGINAL
IMAGE (c) - 102 31 2319 751 - - 85
IR
IMAGE(e) - 91 00 1351 738 - - -
ENHANCED
IMAGE(d) - 13433 2141 754 - - 97
FUSED W1=0 64
IMAGE(f) W2=046 132 06 15 89 760 403 2875 97
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Figure 5.47. Fusion Results for Image 16 (top-left-(a)) Omnginal, (top-right-(b))

Enhanced, (middle-left-(c)) Orniginal, (middle-right-(d)) Enhanced, (bottom-left-(e))

IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations

Table 5.21. The Statistics of Figures 5 47

Figure 547 | WEIGHTS | MEAN STD ENTROPY MI PSNR 1Q
ORIGINAL
IMAGE (c) - 111 26 19 52 7 66 - - 94
IR
IMAGE(e) - 90 94 1357 739 - - -
ENHANCED
IMAGE(d) - 14379 1979 751 - - 100
FUSED W1=0 80
IMAGE(f) W2=022 137 00 16 26 7 68 442 2890 99
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Table 5 22 shows the detailled comparison results of the fused images A 1s the fused

1mage by averaging the visual and IR images B 1s the fused 1mage by the proposed

approach The total images used 1n this experiment were from the created database The

results show that this approach 1s better than the averaging fusion result

Table 5.22. The Statistics of Figures 5 32 to 5 47

MEAN STD ENTROPY MI PSNR IQ
Figures A B A B A B A B A B A| B
532 10161 | 15350 | 135 (183 703 {758 (294|363 |1416 (3573 (85|94
533 11178 | 14492 | 1316 | 1847 | 726 | 768 | 357|544 | 1364 |3573 |90 |95
534 10535 | 12406 | 1239 | 1429 [ 725 | 742|394 1427 | 1384 | 2813 | 87 | 96
535 11891 | 14072 | 1229 (1448 | 733 | 753 {366 | 428 | 1321 | 2833 |97 |96
536 1042 | 11717 [ 13121790 | 741 | 782 (344 {504 114122940 |91 |94
537 10682 | 11741 | 1319|1951 (746 | 778 |345 557 (14102915 |97 |94
538 11576 | 13767 | 1326 | 1435 [ 737 | 768 | 317 |403 | 1412 | 2926 | 98 | 98
539 11618 | 13702 | 1481|1617 [ 756 | 783 | 368 | 516 | 1450 | 2964 | 97 | 96
540 9322 13403 | 1256|1626 | 729 | 763 (384 1425|1522 3341|8783
541 11405 114326 [ 1359 [ 1836 { 723 1760 (324 [543 | 1464 [ 3617 |99 (98
542 11150 (13112 | 1356 | 1587 | 734 | 751 | 388 1420|1392 2825|9399
543 11751 | 14250 | 1370 | 1799 (737 | 766 |361 | 509 | 1360 | 3010 | 96 | 95
544 11465 | 13916 | 1502 {1923 {734 | 751 {323 1403|1418 3005|9496
545 11647 | 14182 | 1541 | 1829 (729 [ 754 |305 (407 | 1508 | 3094 | 99 {99
546 11581 | 13206 | 1434 | 1589 | 753 | 760|370 | 403 | 1439 | 2875 | 98 | 97
547 11857 [ 13700 | 1513 | 1626 | 734 | 768 | 327 | 442 | 1493 | 2890 |99 | 99
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, a database for visual and thermal images was created and
several techniques were developed to improve 1mage quality as an effort to address the
illumination challenge 1n face recognition

Firstly, two novel 1mage enhancement algorithms were designed to improve the
immages' visual quality Experimental results showed that the enhancement algorithms
performed well and provided good results in terms of both luminance and contrast
enhancement In the luminance enhancement part, 1t has been shown that the proposed
algorithms worked well for both dark and bright images In the contrast enhancement
part, 1t was proven that the proposed nonlinear transfer functions could make unseen or
barely seen features 1n low contrast 1mages clearly visible

Secondly, the IR and enhanced visual 1mages taken from different sensors,
viewpoints, times and resolution were registered A correspondence between an IR and a
visual 1mage was established based on a set of 1mage features detected by the Harris
Corner detection algorithm in both images A spatial transformation matrix was
determined based on some manually chosen corners and the transformation matrix was
utilized for the registration

Finally, a continuous genetic algorithm was developed for image fusion The
continuous GA has the advantage of less storage requirements than the binary GA and 1s
inherently faster than the binary GA because the chromosomes do not have to be decoded
prior to the evaluation of the cost function In addition, three cost functions were

evaluated for the fusion and decided that the entropy 1s a good candidate for the fusion
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Data fusion provides an integrated 1mage from a pair of registered and enhanced
visual and thermal IR 1mages The fused image 1s 1nvariant to illumination directions and
1s robust under low lighting conditions They have potentials to significantly boost the
performances of face recognition systems One of the major obstacles 1n face recognition
using visual images 1s the illumination variation This challenge can be mitigated by
using infrared (IR) images On the other hand, using IR 1mages alone for face recognition
1s usually not feasible because they do not carry enough detailed information As a
remedy, a hybrid system 1s presented that may benefit from both visual and IR 1mages
and improve face recognition under various lighting conditions

Future work 1ncludes further improving the quality of the fused images by finding
a separate fusion weight for each of the pixels in the image pair and utilizing the fused
images for face recognition An evaluation will be presented on whether the fused 1mages

can improve face recognition especially under extreme 1llumination conditions



[1]

[2]

(3]

[4]

[5]

(61

[7]

(8]

[9]

124

REFERENCES

W Bowyer, K Chang and P Flynn, “A Survey Of Approaches To Three-
Dimensional Face Recognition,” ICPR, Vol 1, pp 358 — 361, 2004

S Mdhani, J Ho, T Vetter and D J Kriegman, “Face Recognition Using 3-D
Models Pose and Illumination,” Proceedings of the IEEE, Vol 94, pp 1977 —
1999, 2006

D A Socolinsky and A Selinger, “A Comparative Analysis of Face Recognition
Performance with Visible and Thermal Infrared Imagery,” IEEE International
Conference of Pattern Recognition, Vol 4, pp 217 222, 2002

http//coolcosmos 1pac caltech edu/cosmic_classroom/ir_tutorial/what_is 1r html,
accessed on April 2010

FLIR Infrared Camera Systems, [http //www {lir com], accessed on June 2009

http //mivim gel ulaval ca/imgs/figs/Figure_001big gif, accessed on July 2010

F Prokoski, “History, Current Status, and Future of Infrared Identification,”
Computer Vision Beyond the Visible Spectrum Methods and Applications,
Proceedings IEEE Workshop, pp 5-14, 2000

G S Kong,J Heo, B R Abidi, J] Paikk and M A Abidi, “Recent Advances 1n
Visual and Infrared Face recognition—a Review,” Computer Vision and Image
Understanding, Vol 1, pp 103-135, 2005

W F Schreiber, “Image processing for quality improvement,” Proceedings of the

IEEE, Vol 66, pp 1640-1651, 1978



(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

125

E Land and J Mc Cann, “Lightness and Retinex Theory,” J Opt Soc Am, pp
61, 1971

E Land, “Recent Advances in Retinex Theory and Some Implications for Cortical
Computations,” Proc Natl Acad Sct USA, pp 5163-5168, 1983

D J Jobson and G A Woodel, “Properties of a Center/Surround Retinex Part
two Surround Design,” NASA Technical Memorandum 110188, Langley
Research Center, Hampton, VA, August 1995

D J Jobson, Z Rahman and G A Woodell, “A Multiscale Retinex for Bridging
the Gap Between Color Images and the Human Observation of Scenes,” IEEE
Transactions on Image Processing, Vol 6, July 1997

D J Jobson, Z Rahman and G A Woodell, “Properties and Performance of a
Center/Surround Retinex,” IEEE Transactions on Image Processing, Vol 6,
March 1997

Z Rahman, “Properties of a Center/Surround Retinex Part one Signal Processing
Design,” NASA Contractor Report, Langley Research Center, Hampton, VA,
August 1995

L Tao, “An Adaptive and Integrated Neighborhood Dependent Approach for
Nonlinear Enhancement of Color Images,” SPIE Journal of Electronic Imaging,
pp 11-14, 2005

L. Tao, R Tompkins and V K Asari, “An Illuminance-Reflectance Model for
Nonlinear Enhancement of Color Images,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2005



(18]

[19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

126

R C Gonzalez, R E Woods and S L Eddins, “Digital Image Processing,”
Pearson Education, Inc Prentice Hall, 2004

L M G Fonseca and B S Manjunath, “Registration Techniques for Multisensor
Remotely Sensed Imagery,” Photogrammetric Engineering & Remote Sensing,
Vol 62, pp 1049-1056, 1996

http //www fas hcmut edu vin/webhn10/Baocao/PDF/TDLinh-MIRegistration pdf,
accessed on March 2010

J B A Maintzand M A Viergever, “A Survey of Medical Image Registration,”
Medical Image Analysis, Vol 2, pp 1-37, 1998

B Zitova and J Flusser, “Image Registration Methods A Survey,” Image and
Vision Computing 21, pp 977-1000, 2003

Yan H and Liu J, “Robust Phase Correlation Based Feature Matching for Image
Co-Registration and Dem Generation,” The Xxi Congress Of International Soctety
For Photogrammetry And Remote Sensing, Beijing, The Organizing Committee
Of The Xx1 Congress Of International Society For Photogrammetry And Remote
Sensing, pp 1751-1756, 2008

H S Ranganath and S G Shiva, “Correlation Of Adjacent Pixels For Multiple
Image Registration,” IEEE Transactions on Computers, Vol C-34, July 1985
Http //Web Uvic Ca/~Dsorrent/Projects/Optregistration Pdf

K B Kim,J S KimandJ S Choi, “Fourter Based Image Registration for Sub-
Pixel using Pyramud Edge Detection and Line Fitting,” First International

Conference on Intelligent Networks and Intelligent Systems, pp 535 — 538, 2008

Http //Www le Itcr Ac Cr/Rpererra/Mat_Ant/Genetic%20algorithms/Ch1 Pdf,



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

127

accessed on May 2009

J H Holland, “Adaptation In Natural and Artificial Systems,” Umniversity of
Michigan Press, 1975

G Karkavitsas, And M Rangoussi,

“Http //Www Waset Org/Journals/Waset/V2/V2-2 Pdf’

S K Mitra, C A Murthy and M K Kundu, “Technique for Fractal Image
Compression using Genetic Algorithm,” IEEE Trans Image Process pp 586-93,
1998

M Srinmivas and L. M Patnaik, “Genetic Algorithms a Survey,” pp 17 — 26, Vol
27, Jun 1994

J Zhang, X Feng, B Song, M Liand Y Lu, “Multi-Focus Image Fusion using
Quality Assessment of Spatial Domain And Genetic Algorithm,” Human System
Interactions, pp 71 — 75, 25-27 May 2008

L Yu, T Yung, K Chan, Y Ho and Y Ping Chu, “Image Hiding with an
improved Genetic Algorithm and an Optimal Pixel Adjustment Process,” Fighth
International Conference On Intelligent Systems Design And Applications, 2008
C Rongyuan, L Shuang, Y Ran and Q Quanqing, “Multi-Focus Images Fusion
Based on Data Assimilation and Genetic Algonithm,” International Conference
On Computer Science and Software Engineering, 2008

Http //Www Ie Itcr Ac Cr/Rpereira/Mat_Ant/Genetic%20algorithms/Ch3 Pdf,

accessed on February 2009



[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

128

D Patnaik, “Bromedical Image Fusion using Wavelet Transforms and Neural
Network,” IEEE International Conference on Industrial Technology, pp 1189 —

1194, 2006

Z Wang, D Ziou, C Armenakis, D Li and Q Li, “A Comparative Analysis of
Image Fusion Methods,” IEEE Transactions On Geosciences And Remote

Sensing, Vol 43, pp 1391 — 1402, June 2005

F Sun, S Liand B Yang, “A New Color Image Fusion Method for Visible and
Infrared Images,” International Conference On Robotics And Biomumetic,
December 15 -18, 2007,

Z Xue and R S Blum, “Fusion Of Visual And IR Images For Concealed
Weapon Detection,” In Proc 5th Int Conf Information Fusion, Jul 2002, pp
1198-1205

H Wang, “Multisensory Image Fusion by using Discrete Multiwavelet

b2

Transform,” The Third International Conference on Machine Learming and
Cybernetics, Shanghat, 26-29 August 2004

A Mumtaz and A Majpud, “Genetic Algorithms and 1its application to Image
Fusion,” International Conference On Emerging Technologies ICET, 2008

S Erkanli and Zia-Ur Rahman, “Entropy Based Image Fusion With the help of
Continuous Genetic Algorithm,” IEEE ISDA Conference, December 2010
Dasarthy, “Decision Fusion,” IEEE Computer Society Press, 2004

K Kannan and S Perumal, “Optimal Decomposition Level of Discrete Wavelet

Transform for Pixel Based Fusion of Multi-Focused Images,” International

Conference On Computational Intelligence And Multimedia Applications, 2007



[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

129

A Wang, H Sun and Y Guan, “The Application of Wavelet Transform to Multi-
Modality Medical Image Fusion,” Networking, Sensing and Control, ICNSC
Proceedings Of The 2006 IEEE International Conference, pp 270-274, 2006

S Erkanli and Zia-Ur Rahman, “Enhancement Technique for Uniformly and
Non-Uniformly llluminated Dark Images,” ISDA 2010, Cairo, Egypt, 2010

H Kolb, “How the Retina works,” American Scientist, Vol 91, 2003

S Erkanli and Zia-Ur Rahman, “Wavelet Based Enhancement for Uniformly and
Non-Uniformly llluminated Dark Images,” ISDA 2010, Cairo, Egypt, 2010

L Tao, R C Tompkins, and K V Asari, “An Illuminance Reflectance Model
For Nonlinear Enhancement Of Video Stream For Homeland Security
Applications,” IEEE International Workshop on Applied Imagery and Pattern
Recognition, AIPR, October 19 -21, 2005

D J Jobson, Z Rahman and G A Woodell, “Properties and Performance of a
Center/Surround Retinex,” IEEE Trans Image Processing, Vol 6, pp 451-462,
1997

Z Rahman, D Jobson and G A Woodell, “Multiscale Retinex For Color Image
Enhancement," In Proceedings of the IEEE International Conference On Image
Processing, 1996

7Z. Rahman, D Jobson and G A Woodell, “Multiscale Retinex For Color
Rendition And Dynamic Range Compression,” In Applications Of Digital Image
Processing XIX, A G Tescher, Ed, Proc SPIE 2847, 1996

D Jobson, Z Rahman and G A Woodell, “Retinex Image Processing Improved

Fidehty for Direct Visual Observation,” In Proceedings Of The IS&T Fourth



[54]

[55]

(56]

[57]

[58]

[59]

130

Color Imaging Conference Color Science, Systems, and Applications, pp 124-
126, 1996

D J Jobson,Z Rahman and G A Woodell, “A Multi-Scale Retinex for Bridging
the Gap Between Color Images and The Human Observation of Scenes," IEEE
Transactions on Image Processing Special Issue On Color Processing 6, pp
965-976, July 1997

Z. Rahman, G A Woodell and D Jobson, “A Comparison of The Multiscale
Retinex with other Image Enhancement Techniques,” In Proceedings Of The
IS&T 50th Anniversary Conference, pp 426-431, 1997

Z Rahman, D Jobson and G A Woodell, “Resiliency of The Multiscale Retinex
Image Enhancement Algorithm,” In Proceedings of The IS&T Sixth Color
Imaging Conference Color Science, Systems, and Applications, pp 129-134,
1998

D Jobson, Z Rahman and G A Woodell, “Spatial Aspect of Color and Scientific
Implications of Retinex Image Processing," In Visual Information Processing X,
S K Park, Z Rahman, And R A Schowengerdt, Eds, pp 117-128, 2001

G D Hines, Z Rahman D J Jobson, and G A Wodell, “Single-Scale Retinex
Using Digital Signal Processors” In Proceedings Of The GSPX, 2004

E Land, “An Alternative Technique For The Computation of The Designator 1n
The Retinex Theory of Color Vision,” Proc Of The National Academy Of Science

USA, Vol 83, pp 2078-3080, 1986



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

131

L Tao, “An Adaptive And Integrated Neighborhood Dependent Approach For
Nonlinear Enhancement Of Color Images,” SPIE Journal of Electronic Imaging,
pp 1 1-1 14,2005

A C Hulbert, “The Computation of Color,” Ph D Duissertaion, Mass Inst
Techol, Cambridge, MA, Sept 1989

Z Rahman, “The Lectures Notes Of Image Processing,” Old Domunion
Unwersity, 2009

K V Velde, “Multi-Scale Color Image Enhancement,” In Proc Int Conf Image
Processing, pp 584-587, 1999

T Reeves and M Jermigan, “Multiscale-Based Image Enhancement,” Canadian
Conf On Elect And Comp Engineering, pp 500-505, 1997

B Peng, W Fu, And C Yang, “Contrast Enhancement Of Radiographs Using
Shift Invariant Wavelet Transform,” Wuhan Un1 J Of Nat Sciences, Pp 59-62,
2000

K P Ramesh, S Gupta, E P Blasch,

Http //Www Isif Org/Fusion/Proceedings/Fusion07cd/Fusion07/Pdfs/Fusion2007

_1428 Pdf, accessed on January 2010

T AWison, and S K Rogers, “Perceptual-Based Image Fusion for
Hyperspectral Data,” IEEE Trans Ge Remote Sensing, Vol 35, pp 1007-1017,
July 1997

G Simone and A Farina, “Image Fusion Techniques for Remote Sensing
Applications,” Inform Fusion, Vol 3, pp 3-15, 2002

C S Pattichis and M S Pattichis, “Medical Imaging Fusion Applications— An
Overview,” In Conf Rec Asilomar Conf Signals, Systems Computers, Vol 2, pp

1263-1267, 2001



[70]

[71]

[72]

[73]

(74]

[75]

132

S G Nikolov, And D R Bull, “Image Fusion Using A 3-D Wavelet Transform,”
In Inst Elect Eng Conf Pub, Vol 1, Pp 235-239, 1999

A Das and M Bhattacharya, “Evolutionary Algorithm based Automated Medical
Image Fusion Techmque Comparative Study With Fuzzy Fusion Approach,”
Proceedings of The World Congress on Nature & Biologically Inspired
Computing, pp 269-274, 2009

B V Dasarathy, “Image Fusion 1in the Context Of Aerospace Applications,”
Inform Fusion, Vol 3, 2002

D M Jaswunas, A D Kearney, John Hopf, and Grant B Wigley,
“Http //Www Cis Unisa Edu Au/~Cisjph/31_Jasiunas Pdf”, accessed on January
2010

H Singh, J Raj, G Kaur, and T Meitzler, “Image Fusion using Fuzzy Logic
and Applications,” Fuzzy Systems, Proceedings IEEE International Conference,
Vol 1, pp 337 - 340, 2004

J J Lewiss, R J O’callaghan, S G Nikolov, D R Bull, and C N
Canagarajah,“Http //Www Google Com Tr/Search?Hl=Tr&Source=Hp&Q=Reg1

on+Based+Image+Fusion+Using+Complex+Wavelets& Aqg=F&Aqi=& Aql=&0Oq

=&Gs_Rfar” accessed on January 2011



133

VITA
NAME Sertan Erkanli
DATE OF BIRTH May 5, 1973
DEGREES Bachelor of Science (Electrical and Electronics

Engineering), Turkish Air Force Academy, Istanbul,
Turkey, August 1995

Master of Science (Electrical and Electronics
Engineering), Turkish Air Force Academy, Istanbul,
Turkey, August 2003

Doctor of Philosophy (Electrical and Computer
Engineering), Old Dominion Unmiversity, Norfolk, Virginia,
May 2011

EMPLOYMENT Officer in Turkish Air Force, August 1995 to present



	Old Dominion University
	ODU Digital Commons
	Spring 2011

	Fusion of Visual and Thermal Images Using Genetic Algorithms
	Sertan Erkanli
	Recommended Citation


	tmp.1553536057.pdf.BOdjn

