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ABSTRACT 

FUSION OF VISUAL AND THERMAL IMAGES USING GENETIC 
ALGORITHMS 

Sertan Erkanli 
Old Dominion University, 2011 

Director Dr Zia-ur Rahman (Deceased) 

Demands for reliable person identification systems have increased significantly 

due to highly security risks in our daily life Recently, person identification systems are 

built upon the biometrics techniques such as face recogintion Although face recognition 

systems have reached a certain level of maturity, their accomplishments in practical 

applications are restricted by some challenges, such as illumilation variations Current 

visual face recognition systems perform relatively well under controlled illumination 

conditions while thermal face recognition systems are more advantageous for detecting 

disguised faces or when there is no illumination control A hybrid system utilizing both 

visual and thermal images for face recognition will be beneficial 

The overall goal of this research is to develop computational methods that 

improve image quality by fusing visual and thermal face images First, three novel 

algorithms were proposed to enhance visual face images In those techniques, specifical 

nonlinear image transfer functions were developed and parameters associated with the 

functions were determined by image statistics, making the algorithms adaptive Second, 

methods were developed for registering the enhanced visual images to their 

corresponding thermal images Landmarks in the images were first detected and a subset 

of those landmarks were selected to compute a transformation matrix for the registration 



Finally, A Genetic algorithm was proposed to fuse the registered visual and thermal 

images Experimental results showed that image quality can be significantly improved 

using the proposed framework 
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1. INTRODUCTION 

Biometric technologies such as fingerprint, hand geometry, face and ins 

recognition are widely used to identify a person's identity The face recognition system is 

currently one of the most important biometric technologies, which identifies a person by 

comparing individually acquired face images with a set of pre-stored face templates in a 

database 

Though the human perception system can identify faces relatively easily, face 

reorganization using computer techniques is challenging and remains an active research 

field Illumination and pose variations are currently the two obstacles limiting 

performances of face recognition systems Various techniques have been proposed to 

overcome those limitations in recent years For instance, a three dimensional face 

recognition system has been investigated to solve the illumination and pose variations 

simultaneously [1, 2] The illumination variation problem can also be mitigated by 

additional sources such as infrared (IR) images [3] The proposed work in this 

dissertation will be focusing on fusing optical and infrared images to further improve the 

image quality for mitigating the illumination challenges 

Thermal face recognition systems have received little attention in comparison 

with recognition in visible spectra partially due to the high cost associated with IR 

cameras Recent technological advances of IR cameras make it practical for face 

recognition While thermal face recognition systems are advantageous for detecting 

disguised faces or when there is no control over illumination, it is challenging to 

recognize faces in IR images because 1) it is difficult to segment faces from background 

in low resolution IR images and 2) intensity values in IR images are not consistent due to 

The reference model for this work is IEEE Transactions on Image Processing 
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the fact that different body temperatures result in different intensity values in IR images 

As a remedy, a system is presented for image enhancement by fusing thermal and visual 

images The primary objective of this research is to provide improved images, which 

include more information 

1.1 Research Question and Motivation 

The main goal of face recognition is to identify or verify one or more persons in 

the scene using a stored database of faces The first step in face recognition is to detect 

face in images Face detection systems usually work well for optical images if 

illumination condition is controlled However, the performance degrades significantly if 

the lighting is dim or if it is not uniformly illuminating the scene Because Thermal IR 

imagery is invariant to those types of distortions, identifying faces from thermal IR 

images becomes an active research area Recent technical advances significantly reduced 

the cost in the instrumentation of IR cameras, making face recognition based on IR 

images possible A combination of visual and thermal face images for face recognition is 

very promising because it can alleviate the problems caused by the two systems 

Fusing optical and IR images requires an image registration step that aligns one 

image source to another The registration step consists of finding a transformation that 

brings an optical image into the best possible spatial correspondence with its IR 

counterpart A common method for registration is to treat it as a mathematical 

optimization problem, using a similarity measure to quantify the quality of the alignment 

between the two image sources A Genetic algorithm is also proposed for fusing the 

registered images in this dissertation 



1.2 Research Objective 

The overall goal of this research is to develop computational methods for 

obtaining efficiently improved images The research objective will be accomplished by 

integrating enhanced visual images with IR Images through the following steps 

1 Enhance optical images, 

2 Register the enhanced optical images with IR images, 

3 Fuse the optical and IR images 

1.3. Thesis Contribution 

The contribution of this thesis is the development of novel techniques for image 

enhancement and image fusion as listed below 

1 Two new algorithms that enhance the uniformity of luminance and image 

details in optical images, 

2 A genetic algorithm that fuses the enhanced optical images with IR 

images 

1.4. Thesis Outline 

Chapter 2 surveys related work for IR imaging, image enhancement, image 

registration and image fusion 

Chapter 3 discusses the proposed nonlinear image enhancement methods 

Chapter 4 presents the proposed image fusion algorithm 

Chapter 5 reports the experimental results of the proposed algorithm 

Chapter 6 concludes this dissertation 
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2. LITERATURE SURVEY 

2.1 Introduction 

The term "biometrics" is derived from the Greek words bio (life) and metric or 

metry (to measure) and is used to describe technologies that include face, fingerprint, 

hand geometry, ins, vein and voice recognition systems Interestingly, the term 

"biometrics" was not used to describe these technologies until the 1980s, the first 

reference being in a 1981 article in The New York Times When used for personal 

identification, biometric technologies measure and analyze human biological and 

behavioral characteristics Identifying a person's biological characteristics is based on 

direct measurement of a part of the body—fingerprints, hand structure, facial features, 

ins patterns, and others The corresponding biometric technologies include fingerprint 

recognition, hand geometry, facial, and ins recognition, among others Face recognition 

systems are currently one of the most important biometric technologies Facial 

recognition is used to identify people by comparing sample images with stored templates, 

using mathematical analysis of the groups of acquired data 

While face recognition techniques have reached a considerable level of maturity, 

the overall problem still poses a significant challenge due to the large variations in face 

images of the same person resulting from the impact of changes in illumination and 

different types of cameras In this study, we present a new framework for improving the 

quality of fused images, which takes advantages of both visual and thermal images 

In this chapter, we will present related work in IR Image technology, nonlinear 

image enhancement algorithms, image registration and image fusion 
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2.2 IR Technology 

2.2.1 Introduction 

Most face detection and recognition research is based on visual images but visual 

face recognition-based systems perform poorly under poor illumination conditions An 

alternative approach for illumination invariant face detection and recognition tasks is to 

utilize the thermal infrared (IR) imagery 

2.2.2 Theoretical IR Background 

Visible light is one of the few types of radiation that can penetrate our atmosphere 

and be detected on the Earth's surface Figure 2 1 shows the electromagnetic spectrum 

ranging from gamma rays, X rays, ultraviolet, visible, infrared, microwaves to radio 

waves with ascending wavelength and descending frequency All of these forms of 

radiation travel at the speed of light (186,000 miles or 300,000,000 meters per second in a 

vacuum) In addition to visible light, radio, some infrared and very small amount of 

ultraviolet radiations can also reach the Earth's surface from space Fortunately, our 

atmosphere blocks out the rest, much of which is very hazardous, if not deadly, for life on 

Earth [4] 

One type of electromagnetic radiation that has received a lot of attention recently 

is Infrared (IR) radiation IR refers to the region beyond the red end of the visible color 

spectrum, a region located between the visible and the microwave regions of the 

electromagnetic spectrum [5] Infrared is usually divided into three spectral regions 

short, medium and long-wave infrared, which are listed below 

Short-wave Wavelength between 0 76 to 1 1 microns The infrared light that we 

observe in this region is not thermal Many do not even consider this range as part of 
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infrared astronomy Beyond about 1 1 microns, infrared emission is primary heat or 

thermal radiation 

Medium-wave As entering to the medium-wave region of the spectrum, the cool 

stars begin to fade out and cooler objects such as planets, comets and asteroids come into 

view Planets absorb light from the sun and heat up They then re-radiate the heat energy 

as infrared light The emitted infrared light is different from the visible light from planets, 

which is reflected sunlight The planets in our solar system have temperatures ranging 

from about 53 to 573 Kelvin degrees Objects in this temperature range emit mostly the 

medium-wave IR For example, the Earth itself radiates most strongly at about 10 

microns wavelength Asteroids also emit most of their light in the medium-wave region 

making this wavelength band the most efficient for locating dark asteroids Infrared data 

can help to determine the surface composition and diameters of asteroids 

Long-wave In the long-wave region, huge, cold clouds of gas and dust in our 

galaxy, as well as in nearby galaxies, glow in the long-wave light In some of these 

clouds, new stars are just beginning to form In the wavelength region, we can detect 

those protostars long before they 'turn on' visibly by sensing the heat they radiate 

2.2.3 Discussion 

The primary source of infrared radiation is heat or thermal radiation This is the 

radiation produced by the motion of atoms and molecules in an object The higher the 

temperature, the more atoms and molecules move and the more infrared radiation they 

produce Any object having a temperature above absolute zero (0 degrees Kelvin or 

273 15 degrees Celsius) radiates infrared Absolute zero is the temperature at which all 

atomic and molecular motion ceases Even objects that we think as being very cold, such 
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as an ice cube, emit infrared When an object is not quite hot enough to radiate visible 

light, it will emit most of its energy as infrared For example, hot charcoal may not give 

off light but it does emit radiation that we feel as heat The warmer the object, the more 

infrared radiation it emits 

Today, infrared technology has many exciting and useful applications In the field 

of infrared astronomy, new and fascinating discoveries are being made about the 

Universe and medical imaging as a diagnostic tool Infrared cameras are used for police 

and security as well in fire fighting and in the military Infrared satellites have been used 

to monitor the Earth's weather, to study vegetation patterns, and to study geology and 

ocean temperatures In addition, Infrared imaging is used to detect heat loss in buildings 

and in testing electronic system [4] 

IR sensors have been applied to face detection in some applications such as night-

vision, and military applications They can detect warm objects However, IR sensors are 

much more expensive compared to optical cameras with comparable resolutions, making 

it less affordable for many applications 

Humans, at normal body temperature, radiate most strongly in the infrared, at a 

wavelength of about 10 microns [4] The area of the skin that is directly above a blood 

vessel is, on average, 0 1 degrees Celsius warmer than the adjacent skin Moreover, the 

temperature variation for a typical human face is in the range of about 8 degrees Celsius 

[7] Recent improvements in IR-sensors making them be enable to capture the 

temperature variations with a relatively high sensitivity 
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In fact, variations among images from the same face due to changes in 

illumination, viewing direction, facial expressions, and pose are typically larger 

than variations introduced when different faces are considered Thermal IR 

imagery is invariant to variations introduced by illumination facial expressions 

since it captures the anatomical information However, thermal imaging has 

limitations in identifying a person wearing glasses because glass is a material of 

low emissivity, or when the thermal characteristics of a face have changed due to 

increased body temperature (e g , physical exercise) [8] Combining the IR and 

visual techniques will benefit face detection and recognition 
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2.3 Nonlinear Image Enhancement Techniques 

2.3.1 The Nonlinear Log Transform 

The non-linear log transform converts an original image g into an adjusted image 

g' by applying the log function to each pixel g[m, n] in the image, 

g'[m, n] = k\og(g[m, n\), (2 1) 

where k=L/log(L) is a scaling factor that preserve the dynamic range and L is intensity 

The log transform (Fig 2 2) is typically applied either to dark images where the 

overall contrast is low, or to images that contain specular reflections or glints In the 

former case, the brightening of the dark pixels leads to an overall increase in brightness 

In the latter case, the glints are suppressed thus increasing the effective dynamic range of 

the image 

The log function as defined in equation 2 1 is not parameterized, l e it is a single 

input/output transfer function A modified parameterized function was proposed by 

Schreiber in [9] as 

•"log(l + flfg(/))-log(ar+l) 
g'(l) = (L-l) + 1 (2 2) 

log(l + ah) - log(cr+1) 

where, a parameterizes the non-linear transfer function 

2.3.2 The Gamma Transform 

Most display devices, e g , monitors, and printers, have a non-linear transfer 

function This means that the input and output gray levels are not linearly related, 

8'[l]*ag[l] + b (2 3) 

where a and b are some constants The relationship between the input and output gray 

levels display devices is typically defined as the Gamma transform 
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Log transform 

g'M 

100 150 

g[m.n] 

Figure 2.2. Log Transform 

g'[l] = (L-l) (2 4) 

where the value of y is display device dependent Figure 2 3 shows the relationship 

between input and output gray level distributions for several values of y= 0 5, 0 75, 1, 

1 25, 1 75 and 2 As / increases from 1 0 to 2 0, the transfer function becomes more and 

more like the log function However, the non-linearity at the dark pixels is not as severe 

as it was in the log function These values produce supra-linear responses For values of 
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y< 1 0, the transfer function is sub-linear The result is to make dark pixels darker 

Figure 2 4 shows the enhanced Gamma Image for y=2 0 

2.3.3 The Retinex Theory 

The problem of enhancing images automatically is really twofold In the first 

instance, all the details in the image need to be preserved, and in the second, all the 

details need to be made visible These two problems often require opposing solutions to 

preserve all the details, the gray-level distribution needs to be preserved To enhance the 

detail in the dark, the dark gray level values need to be boosted For automatic 

processing, this is often done with the application of a gray level transformation such as 

histogram equalization, but the results are often severely disappointing, satisfying neither 

the first requirement nor the second 

The problem stated above can be thought of as the problem of surrounding the 

large naturally occurring dynamic range of scenes by limited-dynamic-range digital or 

film cameras The range for the former is restricted by the analog-to-digital conversion 

that occurs when the signal amplitude is quantized and for the latter by the linear region 

of film response 

A new non-linear image-enhancement technique, Retinex, was developed as a 

solution to this problem [10, 11] A retinex employs as much of the structure and function 

of the retina and cortex as is necessary for producing an image in terms of a correlate of 

reflectance for a band of wavelengths, an image as nearly independent of flux as is 

biologically possible Land's theory is based on computing the product of the ratios 

between a pixel's values along a set of paths in the image The first and second 
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components are the illumination l(m,n) and the reflectance component r{m,n) of an image 

I(m,n), and [12,13] 

The luminance is very hard to distinguish and the latter component can be 

separated if the former component is known In this case, if the intensity value at a pixel 

is divided by its weighted average value, we get [14,15] 

I(m,n) l(m,n)r(m,n) 
Rt(m,ri)=- (2 6) 

I(m,n) l(m,n)r(m,n) 

where the bars denote the spatially weighted average value at a pixel Then for 

compressing the dynamic range, the logarithm has been applied to each pixel as follows, 

enlarging low intensity pixel values with respect to higher intensity pixel values [14], 

Rt(m,n) = log 

C \ 
I(m,n) 

I(m,n) 
= log 

f \ 
l(m,n)r(m,n) 

l(m,n)r(m,n) 
(2 7) 

I(m, n) - l(m, n)r(m, n) (2 5) 

',(!} 

2 5 0 

2 0 0 

1 6 0 

1 0 0 

6 0 

0 

1 ^~ ^ ' s * * * * ^ ^s^ 

/ / 1 J 3 ^ ^ / ^ 

/ J / / ^ J S * - ^ ' ' ^ 0 75 ^ ^ 

^ ^ ^ " 

i i i 
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/ 

1 1 
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Figure 2.3. Gamma Transform 
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Figure 2.4. Original and Gamma Enhanced Images Left Image Original Image, Right 

Image Gamma Transformed Image with y=2 0 

The general form of the center/surround retinex system models both the receptive 

fields of individual neurons and perceptual processes The only extensions required are i) 

to greatly enlarge and weaken the surround Gaussian (as determined by its space and 

amplitude constants) and n) to include a logarithmic function to make subtractive 

inhibition into a shunting inhibition The Gaussian surround form has been chosen as 

[14] 

Rt (m, ri) = log It (m, n) - log[F(m, n) * ll (m,«)] (2 8) 

where 7,(m,n)is the image distribution in the ith spectral band, "*" represents the 

convolution and F{m,n) is the surround function Land proposed an inverse square spatial 

surround function defined as 

F(m,n) = \ (2 9) 
r 

where r = <Jx2 + y2 and can be modified to be dependent on a space constant as 
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F(m,n) = 
1 

V c J 

(2 10) 

Hulbert investigated the Gaussian form of the surround function as 

..2\ 

F(m,«) = exp — (2 11) 

The single scale retinex is defined by the Equation (2 8) and the surround function of 

SSR is given by [13] 

F(m,n) = Kexp 
( ?\ 
v c J 

(2 12) 

c is the Gaussian surround space constant and K is determined such that 

\\F{m,n)dxdy = 1 (2 13) 

The MSR output is then simply a weighted sum of the outputs of several different SSR 

outputs such that [13] 

RMSR, =HWnRn, (2 14) 

where N is the number of scales, Rn is the ith spectral component of the MSR output and 

wn is the weight associated with the nth scale The scales have been selected with the 

help of some experimentation Experimental results showed that equal weighting 

wn =1/3 of the scales was sufficient for most applications 

A new set of design issues emerges for the design of the MSR in addition to those 

for the SSR [14] A senes of tests are conducted starting with only two scales and adding 

further scales as needed It was performed initially with a very small value of scale 

constant (c<15) and with a very large value of scale constant (c>200) since the small 
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scale produced good dynamic range compression and fine details at the expense of poorer 

color rendition while the bigger scale produced high global tonal rendition but at the 

expense of dynamic range compression By doing this the choice of an intermediate value 

c = 80 was determined The three scales produced good dynamic range compression and 

global tonal rendition [13] 

SSR provides dynamic range compression (DRC) and color/lightness constancy 

However, SSR can provide either good DRC or good tonal rendition but not both 

simultaneously For the conventional 8-bit digital image range, the MSR algorithm 

performs well in terms of dynamic range compression, but it fails to handle all the images 

effectively—proposed images possessing notable, and often senous, defects in color 

rendition The general effect of retinex processing on images with regional or global 

gray-world violations is a "graying out" of the image, either globally or in specific 

regions This desaturation of color can, in some cases, be severe More rarely, the gray-

world violations can simply produce an unexpected color distortion Therefore, a color 

restoration scheme is considered, which called as the Multi-Scale Retinex with Color 

Restoration (MSRCR), that was developed for providing good color rendition for images 

that contain gray-world violations The starting point is analogous to the computation of 

chromatidty coordinates [13] 

/, (m, n) = -^ (2 15) 
^]/,(m,n) 

1=1 

For the ith color band, and S is the number of spectral channels Generally, S = 3 of the 

RGB color space The modified MSR is mathematically represented as [13] 
RMSRCR, = c, (m, n)RMSR (m, n) (2 16) 
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where 

C,(m,n) = f[I,(m,n)] (2 17) 

is the ith band of the color restoration function (CRF) in the chromaticity space and 

RMSRCR is the ith spectral band of the multiscale retinex with color restoration The 

nonlinear color restoration function that provided the best color restoration is defined as 

[13] 

C, (m, n) = J31 log[aI, (m, n)] - log £ / , (m,n) 
i = i 

(2 18) 

where (3 is a gain constant and a is a constant that controls the strength of the 

nonlinearity The final MSRCR output is obtained by using a "canonical" gain constant 

and gain/offset adjustment to transition from the logarithmic domain to the display 

domain The canonical gain/offset values are independent of spectral channels and image 

content The final version of the MSRCR can be written as [13] 

RMSRCR, =G[C,(m,n){log1(m,n)-log[F(m,n)*/((m,n)] + ̂ } (2 19) 

where G is the final gain value and b is the final offset value The chromatics of the 

original image are used to restore the color which stands in direct contrast to the color 

constancy objectives of the retinex It is observed that the stronger the color restoration, 

the weaker the color constancy, and the MSRCR produces far more visual information 

and is more "true-to-life" than the unprocessed image as shown in Figure 2 5 

2.3.4 Adaptive and Integrated Neighborhood-Dependent Approach for Nonlinear 

Enhancement (AINDANE) 

There are two parts of AINDANE algorithm, which are adaptive luminance 

enhancement and adaptive contrast enhancement [16] In the luminance enhancement 
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part, intensity values are transformed by a nonlinear transfer function and in the second 

part image contrast is enhanced based on the local statistics of the image, tuning the 

intensity of each pixel based on its relative magnitude with respect to the neighboring 

pixels First, the color image is converted as follows [16] 

I(m,n) = (76 2457?+ 149 6851G + 29 075)/255 (2 20) 

where R, G and B are the values of the red, green and blue color band of a pixel 

After converting the color image into intensity image, the image intensity is 

normalized as 

Innr(m,n) = I(m,n)/255 (2 21) 

Then, the dynamic range compression (DRC) has been done with a specially 

determined nonlinear transfer function for enhancing the dark region in the image [16] 

Imr (m, n) = {liwr (m, n)(075j+0 25) + (1 - Inor (m, «))0 4(1 - z) + I,wr (m, n)™} 12 (2 22) 

where z provides the transfer function's curve and is related to the image histogram 

defined as 

0 for L<50 

(L-50)/100 for 50<L<150 (2 23) 

1 for L>150 

where L is the intensity level corresponding to a cumulative distribution function (CDF) 

of 0 1 L is used as an indication to determine how dark the 10% of pixels in an image 

are If the z value is 0, the pixel will be a maximally enhanced level and if the z value is 

1, no pixel will be enhanced 
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Figure 2.5. Original and Enhanced Image with Retinex Left Image Original Image, 

Right Image Enhanced Image with Retinex 

Once the darker region has been enhanced, the second part of AINDANE 

algorithm is applied to achieve sufficient contrast for the image The luminance 

information of surrounding pixels is obtained by using the 2D discrete spatial convolution 

of the image with a Gaussian kernel, where the Gaussian function G(m,n) is defined as 

G(m,n) = Ke< c* ' (2 24) 

and K is given by 

f-(m2
+«2)l 

jJKe^ c" >dxdy = l (2 25) 

where c is the Gaussian surround space constant The 2D discrete convolution is carried 

out on the original intensity image I(m,n) of size MxN as 

1/-1 V - l 

Icm{m,n) = Y^YjI(u,v)G(u + m,v + n) (2 26) 
«=0 v=0 



19 

Finally, the center-surround contrast enhancement is earned out as defined in the 

following equation 

S(m,n) = 255In{m,n) E(m n) (2 27) 

The AINDANE algorithm performs the adaptive contrast enhancement by using a 

power function with a parameter P as 

I (m,n) 
E(m,n) = 

I(m,n) 
(2 28) 

where the parameter P is related to the global standard deviation of the input intensity 

image, I(m,n), and can be determined as 

P = \ 

3 for a < 3 

(27-2<r)/7 for 3<cr<10 

1 for <7>10 

(2 29) 

where c is the indication of the contrast level of the original intensity image If o is less 

than 3, the image has poor contrast and the contrast of the image will be increased If a 

is more than 10, the image has sufficient contrast and the contrast will not be changed 

Finally, the enhanced image as shown in Figure 2 6 can be obtained by a linear color 

restoration based on chromatic information contained in the original image 

I (m,n) 
S (m,n)-S(m,n)^- -/t, 

l(m,n) 
(2 30) 

where j represents the RGB spectral band and X is a parameter, which adjusts the color 

hue 
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2.3.5 An Illuminance-Reflectance Model for Nonlinear Enhancement of Color 

Images (IRME) 

The IRME algorithm consists of four steps, which are illuminance estimation and 

reflectance extraction, adaptive dynamic range compression of illuminance, adaptive 

mid-tone frequency components enhancement and image restoration by combining 

illuminance and reflectance to recover the intensity image and then performing color 

recovery [17] 

Figure 2.6. Original and Enhanced Image with AINDANE Left Image Original Image, 

Right Image Enhanced Image with AINDANE 

For color images, the intensity image I(m,n) can be obtained using either one of 

the following two methods 

I(m,n) = max[r(m,n),g(m,n),b(m,n)] (2 31) 

The latter method is used in this algorithm Then, the image intensity I (m,n) is 

formulated with following equation 
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I(m,n)~L(m,n)R(m,n) (2 32) 

where L(m,n) is the illuminance and R(m,n) is the reflectance at each point (m,n) The 

luminance is supposed to contain low frequency component and reflectance includes the 

high frequency component of the image Afterwards, the illuminance estimation is the 

low-pass filtered result of intensity image through a Gaussian filter described in Equation 

2 24 The 2D discrete convolution is earned out on the original intensity image I(m,n) of 

size MxN as 

u-\ v-\ 
L(m,n) = 2_l2_lI(u,v)G(u + m,v + n) (2 33) 

u=0 v=0 

and the illuminance is normalized as 

Lnor(m,n) = L{m,n) 1255 (2 34) 

It is observed that the determined illumination is composed of not only the real 

illuminance but also the mid-tone and low-frequency components of reflectance 

Afterwards, the windowed Inverse Sigmoid function is used for enhancing the 

dark region of the image as 

f(v) = l/l + e-av (2 35) 

This function can also used by performing the computational step described by Equation 

2 36 

K =A,[/(vmax)-/(vmin)] + /(vmin) (2 36) 

^•=(% )( (XI
)"1) (237) 

Lnenh=
(L»-V™){v _v } (2 38) 

/ v v max mm ' 
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where Equation 2 37 is the inverse sigmoid function and Equation 2 36 is used for 

linearity mapping normalized illuminance defined in Equation 2 34 to the input range 

[0 1] Here the sigmoid function can be used to pull down the intensity of the overly 

lighted pixels The value for vmax is always set to 3 for all images and vmin, depending on 

the global mean of the intensity image, is defined by 

-6 for Im < 70 

((27 -70) / 80)*3 - 6 for 3< / m <10 

-3 for Im>l0 

(2 39) 

The above steps will introduce a degradation for dynamic compression because 

the illuminance includes low frequency and mid tone components To overcome this 

degradation, a center-surround type of contrast enhancement method is applied as 

Kenh(™,n) = Lnmh{m,n)E(mn) (2 40) 

E(m, n) = R(m, rif = 
I(m,n) 

-\p 

(2 41) 

where Ln enh(m,n)is the illuminance after mid-tone frequencies enhancement and R(m,n) 

is the ratio of l(m,ri) to its low-pass version ILmv{m,n) computed through the same 

operations as in Equations 2 24, 2 25 and 2 33 P is determined by the global standard 

deviation of the input intensity image I(m,n) as 

P = 

2 for a < 30 

-0 03CT-I-2 9 for 3 0 < a < 8 0 

1/2 for <7>80 

(2 42) 

Following the dynamic range compression and contrast enhancement, the final 

illuminance Ln enh (m, n) and reflectance R are combined using Equation 2 32 to produce 

an intensity image / ' with compressed dynamic range For color images, a color 
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restoration process based on the chromatic information of the original image is applied to 

/ ' to recover the RGB color as 

(2 43) 

such that the color information (hue and saturation) in the original image is preserved in 

the enhanced image as shown in Figure 2 7 

2.4 Registration 

2.4.1 Introduction 

Image registration is a basic task in image processing to align two or more 

images, usually refereed as a reference, and a sensed image [18] Registration is typically 

a required process in remote sensing [19], medicine [20, 21] and computer vision 

Registration can be classified into four main categories according to the manner how the 

image is obtained [22] 

• Different viewpoints Images of the same scene taken from different viewpoints 

• Different times Images of the same scene taken at different times 

• Different sensors Images of the same scene taken by different sensors 

• Scene to model registration Images of a scene taken by sensors and images of the 

same scene but from a model (digital elevation model) 

It is impossible to implement a comprehensive method useable to all registration 

tasks and there are many different registration algorithms The focus is on the feature 

based registration techniques in the dissertation and they usually consist of the following 

three steps [22] 
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• Feature detection The step tries to locate a set of control points such as edges, 

line intersections and corners in the image They could be manually or 

automatically detected 

• Feature matching The second step is to establish the correspondence between the 

features detected in the sensed image and those detected in the reference image 

• Transform model estimation, Image resampling and Geometric transformation 

The sensed image is transformed and resampled to match the reference image by 

proper interpolation techniques [22] 

Each registration step has its specific problems In the first step, features that can 

be used for registration must spread over the images and be easily detectable The 

determined feature sets in the reference and sensed images must have enough common 

elements, even though the both images do not cover exactly the same scene Ideally, the 

algorithm should be able to detect the same features [22] 

In the second step, known as feature matching, physically corresponded features 

can be dissimilar because of the different imaging conditions and/or the different spectral 

sensitivities of the sensors The choice of the feature description and measuring of 

similarity has to take into account of these factors The feature descriptors should be 

efficient and invariant to the assumed degradations The matching algorithm should be 

robust and efficient Single features without corresponding counterparts in the other 

image should not affect its performance [22] 

In the last step, the selection of an appropriate resampling technique is restricted 

by the trade-off between the interpolation accuracy and the computational complexity In 
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the literature, there are popular techniques such as the nearest-neighbor and bilinear 

interpolation [22] 

Figure 2.7. Original and Enhanced Image with IRME Left Image Original Image, Right 

Image Enhanced Image with IRME 

2.4.2 The Steps of Image Registration 

The three steps of image registration are defined as follows and shown in Figure 

2 8 and Figure 2 9 

2 4 2 1 Feature detection 

An expert selects manually the features in the objects There are two main 

approaches of feature detection 

2 4 2 11 Area-based methods 

In these approaches, the first step of image registration is omitted because there is 

no need to detect features [22] 

In the second approach, points (region corners, line intersections, points on curves 

with high curvature), lines (region boundaries, coastlines, roads, rivers) or significant 
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regions (forests, lakes, and fields) are classified as features The features should be 

unique, spread all over the images and efficiently detectable in sensed and reference 

images They are expected to be steady in time [22] 

2 4 2 2 Feature matching 

The detected features in both images can be matched with the help of the image 

intensity values in their neighborhoods, the feature spatial distribution Two main 

approaches to feature matching have been formed [23] 

2 4 2 2 1 Area-based methods 

2 4 2 2 1 1 Cross-correlation 

Without any structural analysis, classical area-based methods like cross-

correlation (CC) depend on matching directly image intensities As a result, they are 

sensitive to the intensity changes, introduced for example by using different sensor types 

and/or by noise, varying illumination This method is based on a statistical similarity 

First, the windows pairs are established based on similarity, which is computed for 

window pairs from both images as follows, 

Then, equation's maximum is searched and the window pairs for which the maximum is 

achieved are set as the corresponding ones [22, 23, 24] 

2 4 2 2 12 Optimization methods 

The aim of this method is to find the maximum or minimum of a similarity 

measure between the reference and sensor images, generally involving the geometrical 

transformation Therefore, the problem of registration is converted into a 
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multidimensional optimization problem where the number of dimensions corresponds to 

the degrees of freedom of the expected geometrical transformation The only method for 

finding global solution is an exhaustive search over the entire image Although it is 

computationally demanding, it is often used if only translations are to be estimated [22, 

25] 

Figure 2.8. Three Steps of Image Registration Top row—feature detection, Middle 

row—feature matching by invariant descriptors, Bottom left—transforms model 

estimation exploiting the established correspondence Bottom right—image resampling 

and transformation uses appropriate interpolation technique [22] 

2 4 2 2 13 Fourier methods 

If time is a significant factor and an acceleration of the computational speed is 

needed, Fourier methods are preferred rather than correlation methods [22, 26] This step 

can also be achieved by the feature-based method, which aims to find the correspondence 

between the two images to be registered [22] 
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Figure 2.9. Registration top row — Original Visual and IR Images, Second Row 

Registered Image 

2 4 2 3 Transform Model Estimation, Image Resampling and Geometric Spatial 

Transformation 

After the feature correspondence has been determined, a mapping function is 

constructed and is used to transform the sensed image to match the reference image 

Several useful transformations, including image resizing, rotation, cropping, stretching, 

shearing, and image projections, could be utilized There are three interpolation methods 
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popularly used in image registration and they differ primarily in how many neighbors are 

considered [18] 

The simplest interpolation method is the nearest neighbor method in which the 

output pixel is assigned the value of the closest pixel in the transformed image In the 

bilinear interpolation method, the output pixel is the weighted average of transformed 

pixels in the nearest 2x2 neighborhood, and in bicubic interpolation, the weighted 

average is taken over a 4x4 neighborhood [18] 

Computational accuracy and complexity increase with the number of pixels under 

consideration For most cases, the nearest neighbor interpolation method is sufficient 

The method is also the most appropriate for binary images For RGB and intensity image 

types, the bilinear or bicubic interpolation method is recommended [18] 

Two types of transformation can be defined the affine transformation and the 

projective transformation In affine transformations, straight lines remain straight and 

parallel lines remain parallel but rectangles may become parallelograms In projective 

translations, straight lines still remain straight but parallel lines often converge toward 

vanishing points [18] 

Suppose an image, /, defined over a (w,z) coordinate system undergoes 

geometric distortion to produce an image, g, defined over a (x, y) coordinate system, the 

affine transform can be expressed as 

(x,y) = T{(w,z)} (2 45) 

or in matrix form as [15] 
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This transformation can scale, rotate, translate, or shear a set of points, depending 

on the values chosen for the parameters as shown in Table 2 1 The forward mapping 

functions are [18] 

11 21 31 ( 2 4 ? ) 

y = tnw+t22z + t32 

2.5 Genetic Algorithm 

2.5.1 Introduction 

Optimization can be distinguished by either discrete or continuous variables 

Discrete variables have only a finite number of possible values, whereas continuous 

variables have an infinite number of possible ones Discrete variable optimization is also 

known as combinatorial optimization, because the optimum solution consists of a certain 

combination of variables from the finite pool of all possible variables However, when 

trying to find the minimum value of f(x) on a number line, it is more appropriate to view 

the problem as continuous [27,28,29,30] 

Genetic algorithms manipulate a population of potential solutions for the problem 

to be solved Usually, each solution is coded as a binary string, equivalent to the genetic 

material of individuals in nature Each solution is associated with a fitness value that 

reflects how good it is, compared with other solutions in the population The higher the 

fitness value of an individual, the higher its chances of survival and reproduction in the 

subsequent generation Recombination of genetic material in genetic algorithms is 

simulated through a crossover mechanism that exchanges portions between strings 
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Table 2.1. Registration 

Type 

Identity 

Scaling 

Rotation 

Shear(Honzontal) 

Shear(Vertical) 

Translation 

Affine matrix 

"1 0 0" 

01 0 

0 0 1 

\ 0 0 

0 s% 0 

0 0 1 

cos 6 sin 6 0 

- s in# cos# 0 

0 0 1 

"1 0 0" 

al 0 

0 01 

"i po 
01 0 

0 0 1 

"l 0 0 

0 1 0 

5 S 1 
X \ 

Coordinate Equations 

x = w 

y = z 

x = sxw 

y = s,z 

x = wcosO- zsm& 

v = wsm0+ zcosO 

x= w+az 

y = z 

x—w 

v=fiw+z 

x- w + Sx 

y = z + 6^ 

Another operation, called mutation, causes sporadic and random alteration of the 

bits in strings Mutation has a direct analogy in nature and plays the role of regenerating 

lost genetic material [31] GAs have found applications in many fields including image 

processing [32,33,34] 
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2.5.2 Continuous Genetic Algorithm (CGA): 

GAs typically represent solution as binary strings For many applications, it is 

more convenient to denote solutions as real numbers known as continuous Genetic 

algorithms (CGA) CGAs have the advantage of requiring less storage and are faster than 

the binary counterparts Figure 2 10 shows the flowchart of simple CGA [35] 

2 5 2 1 Components of a Continuous Genetic Algorithm 

The various elements in the flowchart are described below [36] 

2 5 2 11 Cost Function 

The goal of GAs is to solve an optimization problem defined as a cost function 

with a set of parameters involved In CCA, the parameters are organized as a vector 

known as a chromosome If the chromosome has /Vvar variables (an /V-dimensional 

optimization problem) given by /?,, p2, p3, , pN , then the chromosome is written as an 

array with lxA^var elements as [27] 

chromosome =[pl,p2,p3, , pN^ ] (2 48) 

In this case, the variable values are represented as floating-point numbers Each 

chromosome has a cost found by evaluating the cost function / at the variables 

P^P2,Pi> ,PN„, 

cost = /(chromosome) =f{p{,p2,p3, ,pN ) (2 49) 

Equations (2 48) and (2 49) along with applicable constraints constitute the problem to be 

solved Since the GA is a search technique, it must be limited to exploring a reasonable 

region of variable space Sometimes this is done by imposing a constraint on the problem 

If one does not know the initial search region, there must be enough diversity in the 
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initial population to explore a reasonably sized variable space before focusing on the 

most promising regions 

2 5 2 12 Initial Population 

To begin the CGA process, an initial population of N must be defined, a 

matrix represents the population, with each row being a lxAfvar chromosome of 

continuous values [36] Given an initial population of N chromosomes, the full matrix 

of Npop x Nvar random values is generated by 

pop = rand(Npop,NvJ (2 50) 

All variables are normalized to have values between 0 and 1 If the range of 

values is between plo and phl, then the normalized values are given by 

P = (Phl-Plo)Pnorm + P,o (2 51) 

where 

plo = highest number in the variable range 

phi = lowest number in the variable range 

Pnorm ~ normalized value of variable 

This society of chromosomes is not a democracy the individual chromosomes are 

not all created equal Each one's worth is assessed by the cost function So at this point, 

the chromosomes are passed to the cost function for evaluation [35] 

2 5 2 13 Natural Selection 

Now is the time to decide which chromosomes in the initial population are good 

enough to survive and possibly reproduce offspring in the next generation As done for 

the binary version of the algorithm, the iV costs and associated chromosomes are 
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ranked from lowest cost to highest cost This process of natural selection occurs in each 

iteration to allow the population of chromosomes to evolve Of the Npop chromosomes in 

a given generation, only the top Nkeep are kept for mating and the rest are discarded to 

make room for the new offspring [35] 

Define cost function variables 

Generate initial population 

¥ 
Find cost for each chromosome 

Select mates 

Mating 

Mutation 

Converge Check 

done 

Figure 2.10. Flowchart of CGA 

2 5 2 14 Pairing 

A set of eligible chromosomes is randomly selected as parents to generate next 

generation Each pair produces two offspring that contain traits from each parent The 

more similar the two parents, the more likely are the offspring to carry the traits of the 

parents [35] 

2 5 2 15 Mating 

As for the binary algorithm, two parents are chosen to produce offsprings Many 

different approaches have been tried for crossing over in continuous GAs The simplest 
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method is to mark a crossover points first, then parents exchange their elements between 

the marked crossover points in the chromosomes Consider two parents 

parent, = [ / > „ „ , ,pmN ] 

parent, = [pdl, ,pdN ] 
(2 52) 

two offspring's might be produced as 

offspring, =[pml,pm2, p < n , p d 4 , pm,,pm6, ,PmN ] 

offspring, = [pdl, p d 2 , p„n, p m i , p d s , p d 6 , , / V ] 
(2 53) 

The extreme case is selecting /Vvar points and randomly choosing which of the 

two parents will contribute its variable at each position Thus one goes down the line of 

the chromosomes and, at each variable, randomly chooses whether or not to swap 

information between the two parents This method is called uniform crossover [35] 

offspring, =[pm,,pd2,prn,pd4,pd,,pmf}, ,PdN ] (254) 

offspring, =[pdl,plll2,p„n,pm4,p„„,pdk, ,PmN ] 

The problem with these point crossover methods is that no new information is 

introduced each continuous value that was randomly initiated in the initial population is 

propagated to the next generation, only in different combinations Although this strategy 

worked fine for binary representations, in case of continuous variables, we are merely 

interchanging two data points These approaches totally rely on mutation to introduce 

new genetic material The blending methods remedy this problem by finding ways to 

combine variable values from the two parents into new variable values in the offspring 

[35] A single offspring variable value, pnew, comes from a combination of the two 

corresponding offspring variable values 

pnew = PPmn+(l-P)Pdn (2 55) 

where 
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P = random number in the interval [0, 1] 

pmn = the «th variable in the mother chromosome 

pdn = the «th variable in the father chromosome 

The same variable of the second offspring is merely the complement of the first 

(I e , replacing P by 1 - P) If P = 1, then pmn propagates in its entirety and pdn dies 

In contrast, if P = 0, then pdn propagates in its entirety and pmn dies When p = 0 5, the 

result is an average of the variables of the two parents This method is demonstrated to 

work well on several interesting problems in [35] 

Choosing which variables to blend is the next issue to be solved Sometimes, this 

linear combination process is done for all variables to the right or to the left of some 

crossover point Any number of points can be chosen to blend, up to /Vvar values where 

all variables are linear combinations of those of the two parents The variables can be 

blended by using the same/? for each variable or by choosing different/?'s for each 

variable These blending methods effectively combine the information from the two 

parents and choose values of the variables between the values bracketed by the parents, 

however, they do not allow introduction of values beyond the extremes already 

represented in the population The simplest way is the linear crossover [35], where three 

offspring are generated from two parents by 

pnew,=0 5pmn+0 5pdn 

pnew2 = 1 5pmn - 0 5pdn (2 56) 

pnewi=-0 5pmn+l 5pdn 

Any variable outside the bounds is discarded Then the best two offspring are 

chosen to propagate Of course, the factor 0 5 is not the only one that can be used in such 
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a method Heuristic crossover [35] is a variation where some random number,/J, is 

chosen on the interval [0, 1] and the variables of the offspring are formed by 

pnew = p(pmn -pdn) + p,m (2 57) 

Variations on this theme include choosing any number of variables to modify and 

generate different P for each variable This method also allows generations of offspring 

outside the value ranges of the two parent variables If this happens, the offspring is 

discarded and the algorithm tries to use another b The blend crossover (BLX- a) method 

[35] begins by choosing some parameters that determine the distance outside the bounds 

of the two parent variables that the offspring variable may lay This method allows new 

values outside of the range of the parents without letting the algorithm stray too far 

The algorithm is a combination of an extrapolation method with a crossover 

method The goal was to find a way to closely mimic the advantages of the binary GA 

mating scheme It begins by randomly selecting a variable in the first pair of parents to be 

the crossover point 

a - roundup { random * Nvar} (2 58) 

Let 

parent, =[pm,, , p m a , ,pmNJ (2 59) 

parent, =[pd,, , p d a , , p d N > ] 

where the m and d subscripts discriminate between the mom and the dad parent Then the 

selected variables are combined to form new variables that will appear in the children 

[35] 

pnew, = Pma - P\Pma - Pda ] 

pnew2=pda+P[Pma-Pda] 
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where /?is a random value between 0 and 1 The final step is to complete the crossover 

with the rest of chromosome 

offspring, =[pm,, p m 2 , p„eKi ,PdNJ ( 2 6 1 ) 

offspring, =[pdt, p d 2 , p „ e n 2 ,PmN ] 

where /? is also a random value between 0 and 1 The final is to complete the crossover 

with the rest of the chromosome as before 

If the first variable of the chromosomes is selected, then only the variables to the 

right of the selected variable are swapped If the last variable of the chromosomes is 

selected, then only the variables to the left of the selected variable are swapped This 

method does not allow offspring variables outside the bounds set by the parent unless 

2 5 2 16 Mutation 

If care is not taken, the GA can converge too quickly into one region on the cost 

surface If this area is in the region of the global minimum, there is no problem However, 

some functions have many local minima To avoid overly fast convergence, other areas 

on the cost surface must be explored by randomly introducing changes, or mutations, in 

some of the variables Random numbers are used to select the row and columns of the 

variables that are to be mutated [35] 

2 5 2 17 Next Generation 

After all these steps, the chromosomes in the starting population are ranked and 

the bottom ranked chromosomes are replaced by offspring from the top ranked parents to 

produce the next generation Some random variables are selected for mutation from the 
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bottom ranked chromosomes The chromosomes are then ranked from lowest cost to 

highest cost The process is iterated until a global solution is achieved 

2.6 Image Fusion 

In last decades, the rapid developments of image sensing technologies make 

multisensory systems popular in many applications Researchers have begun to work on 

the fields of these systems such as medical imaging, remote sensing and the military 

applications [36, 37, 38, 39] The outcome of using these techniques is a great increase of 

the amount of diversity data available Multi-sensor image data often present 

complementary information about the region surveyed so that image fusion provides an 

effective method to enable comparison and analysis of such data [40] Image fusion is 

defined as the process of combining information in two or more images of a scene to 

enhance viewing or understanding of the scene The fusion process must preserve all 

relevant information in the fused image [41, 42] 

Image fusion can be done at pixel, feature and decision levels [43] Out of these, 

the pixel level fusion method is the simplest technique, where average/weighted averages 

of individual pixel intensities are taken to construct a fused image [44, 45] Despite their 

simplicity, these methods are not used nowadays because of some serious disadvantages 

they possess For instance, the contrast of the fused information is reduced and also 

redundant information is introduced in the fused image, which may mask the useful 

information These disadvantages are overcomed by feature level and decision level 

fusion methods Feature and decision level fusion methods are based on human vision 

system Decision level fusion combines the results from multiple algorithms to yield a 

final fused image Several pyramid transform methods for feature level fusion have been 
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suggested [45] Recently, developed methods based on the wavelet transform become 

popular [45] In the method source images are decomposed into subimages of different 

resolutions and in each subimage different features become prominent To fuse the 

original source images, the corresponding subimages of different source images are 

combined based some criteria to form composite subimages Inverse pyramid transform 

of composite transform gives the final fused image 
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3. ENHANCING POOR VISIBILITY IMAGES 

3.1 Introduction 

The human visual system (HVS) allows individuals to assimilate information 

from their environment The act of seeing starts when the lens of the eye focuses an 

image of its sunoundings onto a light-sensitive membrane in the back of the eye, called 

the retina All vertebrate retina contain at least two types of photoreceptors—rods and 

cones Rods are generally used for low-light vision and cones for daylight and color 

vision The photoreceptive cells of the retina produce neural impulses in response to 

photons These signals are processed in a hierarchical fashion by different parts of the 

brain for further processing and visual perception [46,47] 

The HVS perceives colors and detail across a wide range of photometric intensity 

levels much better than electronic cameras The perceived color of an object, 

additionally, is almost independent of the type of illumination, I e , the HVS is color 

constant Electronic cameras suffer, by comparison, from limited dynamic range and the 

lack of color constancy and current imaging and display devices such as CRT monitors 

and printers have limited dynamic range of about two orders of magnitude, while the best 

photographic prints can provide contrast up to 103 1 However, real world scenes can 

have a dynamic range of six orders of magnitude [48,49] This can result in overexposure 

that causes saturation in high contrast images, or underexposure in dark images 

[50,51,52,53] The idea behind enhancement techniques are to bring out details in images 

that are otherwise too dim to be perceived either due to insufficient brightness or 

insufficient contrast [54,55,56] A large number of image enhancement methods have 

been developed, like log transformations, power law transformations, piecewise-hnear 
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transformations and histogram equalization However these enhancement techniques are 

based on global processing which results in a single mapping between the input and the 

output intensity space These techniques are thus not sufficiently powerful to handle 

images that have both very bright and very dark regions Other image enhancement 

techniques are local in nature, 1 e , the output value depends not only on the input pixel 

value but also on pixel values in the neighborhood of the pixel These techniques are able 

to improve local contrast under various illumination conditions 

Single-Scale Retinex (SSR) [50,57], is a modification of the Retinex algorithm 

introduced by Edwin Land [58,59] It provides dynamic range compression (DRC), color 

constancy, and tonal rendition SSR gives good results for DRC or tonal rendition but 

does not provide both simultaneously [54] Therefore, the Multi-Scale Retinex (MSR) 

was developed by Rahman et al [52,54] The MSR combines several SSR outputs with 

different scale constants to produce a single output image, which has good DRC, color 

constancy and good tonal rendition The outputs of MSR display most of the detail in the 

dark pixels but at the cost of enhancing the noise in these pixels and the tonal rendition is 

poor in large regions of slowly changing intensity As a result, Multi-Scale Retinex with 

Color Restoration (MSRCR) was developed by Jobson et al [54], for synthesizing local 

contrast improvement, color constancy and lightness/color rendition Other non-linear 

enhancement models include the Illuminance Reflectance Model for Enhancement 

(IRME) proposed by Tao et al [51], and the Adaptive and Integrated Neighborhood-

Dependent Approach for Nonlinear Enhancement (AINDANE) described by Tao [60] 

Both use a nonlinear function for luminance enhancement and tune the intensity of each 

pixel based on its relative magnitude with respect to the neighboring pixels 



43 

In this section, a two new image enhancement approach is described 

Enhancement Technique for Nonuniform and Uniform-Dark Images (ETNUD) and a 

Wavelet Based Enhancement Technique for Non-Uniform and Uniform-Dark Images 

(WBNUDE) The details of the new algorithms are given in Section 3 2 and in Section 

3 3, respectively Sections 3 2 and 3 3 describe experimental results and compare our 

results with other techniques for image enhancement Finally in Section 3 4, conclusions 

are presented 

3.2 Enhancement Technique for Nonuniform and Uniform-Dark Images (ETNUD) 

The major innovation in ETNUD is in the selection of the transformation 

parameters for DRC, and the surround scale and color restoration parameters The 

following sections describe the selection mechanisms 

3.2.1 Selection of transformation parameters for DRC 

The intensity I of the color image Ic can be determined by 

I{m,n)=Qm9r{m,n)+05Wg(m,n)+0l\4b{Tn,ri) (3 1) 

where r, g, b are the red, green, and blue components of Ic respectively, and m and n are 

the row and column pixel locations respectively Assuming I to be 8-bits per pixel, ln is 

the normalized version of I, such that 

I n(m,n) = I (m,n)/255 (3 2) 

Using linear input-output intensity relationships typically does not produce a good 

visual representation compared with direct viewing of the scene [54] Therefore, 

nonlinear transformation for DRC is used, which is based on some information extracted 

from the image histogram To do this, the histogram of the intensity images is subdivided 

into four ranges 
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rx =0-63, r2= 64-127, r3 = 128-191 and r4 = 192-255 /„ is mapped to 7,fc using the 

following 

, * _ { < ' . ) • + « 0<x<l 
[ (OS + ̂ S / J ^ + a JC>1 

The first mapping pulls out the details in the dark regions, and the second 

suppresses the bright overshoots The value of x is given by 

02, if ( / (#i+r 2)>/(r 3 + r4)) A ( / ( r , ) > / ( r 2 ) ) 

(3 4) x = < 
05, if (f(r,+r2)>f(r3 + r4)) A (f(rt)<f(r2)) 

30, // ( / (#i+r 2)</(r 3 + r4)) A ( / ( r , ) > / ( r 4 ) ) 

5 0, if (f(rl+r2)<f(r3 + r4)) A (f(r,)<f(r4)) 

where f(a)refers to number of pixels between the range (a), f (a, + a2) = f (a,) + f (a2), 

and A is the logical AND operator a is the offset parameter, helping to adjust the 

brightness of image The curves for the two ranges of x are shown in Figures 3 1 and 3 2 

The determination of the x values and their association with the range-relationships as 

given in Equation 3 4 was done experimentally using a large number of non-uniform and 

uniform dark images and x value can be also determined manually 

The DRC mapping of the intensity image performs a visually dramatic 

transformation However, it tends to have poor contrast, so a local, pixel dependent 

contrast enhancement method is used to improve the contrast 

3.2.2 Selection of surround parameter and color restoration 

Many local enhancement methods rely on center/sunound ratios [50], [60] 

Hurlbert [61] investigated the Gaussian as the optimal surround function Other surround 

functions proposed by Land [59] were compared with the performance of the Gaussian 

proposed by Jobson et al [50] Both investigations determined that the Gaussian form 
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produced good dynamic range compression over a range of space constants Therefore, 

the luminance information of sunounding pixels is obtained by using 2D discrete spatial 

convolution with a Gaussian kernel, G(m, n) defined as 
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Figure 3.1. IJc for Different Ranges r 

G(m,n) = Kexp 
f 2 , 2 \ 

m +n (3 5) 

where as is the surround space constant equal to the standard deviation of G(m, n), and 

K is determined under the constraint that V G(m, n) = 1 
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Figure 3.2. 7n for Different Ranges r 

The center-surround contrast enhancement is defined as 

where, E(m, n) is given by 

where, 

drc i Ienh{m,n) = 255(ia
n
rc(m,n)) \E(m n) 

E(m,n) = 
/(m,n) 

Ifllt (m,n) = I{m,n)*G(m,n) 

(3 6) 

(3 7) 

(3 8) 

S is an adaptive contrast enhancement parameter related to the global standard deviation 

of the input intensity image, I(m, n), and '*' is the convolution operator, I(m, n) is 

defined by 
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3 for G<1 

1 5 for 1 < o < 20 (3 9) 

1 for a> 20 

o is the contrast—standard deviation—of the original intensity image If a < 7, the 

image has poor contrast and the contrast of the image will be increased If o > 20, the 

image has sufficient contrast and the contrast will not be changed Finally, the enhanced 

image can be obtained by linear color restoration based on chromatic information 

contained in the original image as 

S]{x,y) = Ienh{x,y)I-j^\x] (3 10) 

where ye [r,g,b\represents the RGB spectral band and X is a parameter which adjusts 

the color hue 

3.2.3 Evaluation Criteria 

In this work, following evaluation criteria was used 

3 2 3 1 A new metric 

There are some metrics such as brightness and contrast to characterize an image 

Another such metric is sharpness Sharpness is directly proportional to the high-

frequency content of an image So the new metric is defined as [62] 

\M,-\M2-\ 

*«T=JZZ 
v,=0 v,=0 

MvpVjjyrvpvj (3 11) 

where h is a high-pass filter, periodic with period MxxM2 and h is its direct Discrete 

A 

Fourier Transform (DFT) I is also DFT of Image / The role of h (or h) is to weight the 

energy at the high frequencies relative to the low frequencies, thereby emphasizing the 
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contribution of the high frequencies to S The larger the value of S, the greater the 

sharpness of / and conversely 

Equation 3 11 defines how the sharpness should be computed and defined as 

/?[v,,v2] = l -exp 
f vf + vT (3 12) 

where <r is the parameter at which the attenuation coefficient = 1 0-e~' ~ 2/3 A smaller 

value of a implies that fewer frequencies are attenuated and vice versa For this 

dissertation <r=0 15 

3 2 3 2 Image Quality Assessment 

The overall quality of images can be measured by using the brightness //, contrast 

a and sharpness S, where brightness and contrast are assumed to be the mean and the 

standard deviation However, instead of using global statistics, it is used regional 

statistics In order to do this [62] 

1) Divide the M,xM2image I into (M, /10)x(M2l 10)non-overlapping blocks, 

/,, i = 1, , 100, such that / « u" , It, (Total Number of Regions are 100) 

2) For each block compute the measures, /J., cr and S, 

3) Classify the block as either GOOD or POOR based on the computed measure 

(will be discussed with the following) 

4) Classify the image as a whole as GOOD or POOR based upon the classification 

of regions (will be discussed with the following) 

The following criteria are used for brightness, contrast and sharpness [62] 

1) Let //„ be normalized brightness parameter, such that 
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fp /255 //<154 
Mn=\ (3 13) 

[1 —///255 otherwise 

A region is considered to have sufficient brightness when 0 4 < jin < 0 6 

2) Let crn be normalized contrast parameter, such that 

^4an2S "*" (3 14) 

[ 1 - < T / 1 2 8 otherwise 

A region is considered to have sufficient contrast when 0 25 < crn < 0 5 When 

<7n < 0 25, the region has poor contrast, and when <Jn > 0 5, the region has too 

much contrast 

3) Let Sn be normalized sharpness parameter, such that Sn =min(2 0,5/100) When 

Sn >0 8, the region has sufficient sharpness Image Quality is evaluated using by 

Q = 0 5jUn+crn+0lSn (3 15) 

where 0<<2<10is the quality factor A region is classified as good when 

Q > 0 55, and poor when on < 0 5 An image is classified as GOOD when the 

total number of regions classified as GOOD, NG >0 6/V 

3.2.4 Experimental Result 

The image samples for ETNUD were selected to be as diverse as possible so that 

the result would be as general as possible MATLAB was used for AINDANE and IRME 

algorithms and their codes were developed by the author and research team MSRCR 

enhancement was done with commercial software, Photo Flair From visual experience, 

the following statements are made about the proposed algorithm 
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1) In the Luminance enhancement part it has been shown that ETNUD works well 

for darker images and the technique adjusts itself to the image (Figure 3 3) 

2) In the contrast enhancement part it is clear that unseen or barely seen features of 

low contrast images are made visible 

3) In Figure 3 4 and 3 5 Gamma Conection with y = 1 4 does not provide good 

visual enhancement IRME and MSRCR bring out the details in the dark but have 

some enhancement of noise in the dark regions, which can be considered 

objectionable AINDANE does not bring out the finer details of the images 

including the regions in the face and in the sign The ETNUD algorithm gives 

good result (in Table 3 1) and outperforms the other algorithms if the results are 

compared (in Table 3 2 and Table 3 3) due to the Evaluation Criteria The 

ETNUD provides better visibility enhancement the best sharpness can be adjusted 

by the a parameter in Equation 3 3 

Table 3.1. The Results of Evaluation Criteria for Figure 3 3 

Figure 3 3 

TOP ROW IMAGE 

SECOND ROW IMAGE 

THIRD ROW IMAGE 

LAST ROW IMAGE 

ORIGINAL IMAGE 

NUMBER OF REGIONS 

GOOD POOR 

60 

49 

36 

32 

40 

51 

64 

68 

ETNUD 

NUMBER OF REGIONS 

GOOD POOR 

100 

84 

72 

99 

-

16 

28 

1 
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Figure 3.3. The Results of Enhancement Left Column Original Images, Right Columns 

Enhanced Images 
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Figure 3.4. Comparisons of Enhancement Techniques (top-left) Original, (top-right) 

IRME, (middle-left) Gamma correction, y = 1 4, (middle-right) MSR, (bottom-left) 

AINDANE, (bottom-right) ETNUD 
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Table 3.2. The Results of Evaluation Criteria for Figure 3 4 

Figure 3 4 

Number of Good Regions 

NumberofPoor Regions 

Original Image 

51 

49 

Gamma 

64 

36 

Irme 

93 

7 

Aindane 

72 

28 

Msr 

89 

11 

Etnud 

98 

2 

Figure 3.5. Comparisons of Enhancement Techniques (top-left) Original, (top-right) 

IRME, (middle-left) Gamma conection, g = 1 4, (middle-right) MSR, (bottom-left) 

AINDANE,(bottom-nght) ETNUD 
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Table 3.3. The Results of Evaluation Criteria for Figure 3 5 

Figure 3 5 

Number of Good 

Regions 

Number of Poor 

Regions 

Original Image 

32 

68 

Gamma 

52 

48 

Irme 

95 

5 

Aindane 

90 

10 

Msr 

90 

10 

Etnud 

99 

1 

3.3 A Wavelet Based Enhancement Technique for Non-Uniform and Uniform-Dark 

Images (WBNUDE): 

A new wavelet based image enhancement technique is proposed for non-uniform 

and uniform-dark image enhancement technique (WBNUDE) based on the principles of 

MSRCR, IRME and AINDANE In this proposed technique, the discrete wavelet 

transform (DWT) is used for dimension reduction and the DRC and contrast 

enhancement algorithms are applied to the approximation coefficients The detail 

coefficients are multiplied with a constant After the inverse DWT (IDWT), the enhanced 

image is obtained by linear color restoration such that it tunes the intensity of each pixel 

magnitude based on its sunounding pixels By using the process described above, 

WBNUDE can compress the bright regions and enhance the dark regions at the same 

time 

The new image enhancement algorithm is composed of four major parts DWT, 

DRC, Contrast enhancement, and Color restoration The DRC and the contrast 

enhancement are both applied in the DWT domain The major innovation is in the 

selection of the transformation functions for DRC, and the selection of the sunound scale 
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for contrast enhancement and color restoration The algorithm is described in the 

following sections 

3.3.1 Discrete Wavelet Transform 

The DWT has been widely used in image processing [63,64,65] for myriad 

applications The DWT decomposes the luminance into approximation and detail 

coefficients The WBNUDE is applied for gray-level images to these coefficients and the 

image is reconstructed by applying the inverse DWT The WBNUDE process can be 

summarized as follows 

• Apply DWT decomposition for J levels and find the approximation coefficients, 

A, and detail coefficients H, V, and D 

• Normalize A to get An in the range [0-1 ] 

• Apply the non-linear DRC transfer function to An to produce modified coefficient 

Am This provides DRC and neighborhood dependent contrast enhancement 

• De-normalize Am * 

• Perform the IDWT 

Haar filters were used for the DWT Each pass of the DWT decomposes the input into 

the four lower resolution approximation, horizontal, vertical and diagonal detail 

coefficients respectively (Step 1), so that 

/ ( m n) = X A J t ,<b J t ,(m n ) + £ £ d * k , V ) t , ( m « ) + (3 16) 
k / € j > J k / e 

+ 1 I d J . . * U i ( m «) + E I d;. i * 'J L < ( m » > 
j > J k U j > J k le 

where A} k, are the approximation coefficients at scale y with the conesponding scaling 

functions <&;kl(m,n) And djkl are the vertical, horizontal and diagonal detail coefficients 
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at scale y with the conesponding wavelet functions ,PjU(m,n) The normalized 

coefficients in Step 2 are obtained by 

An(m,n) = Ajkl(m,n)/255 (3 17) 

In the third step, the two transfer functions are applied, as described in Section 3 2 3 2 to 

An(m,n) 

3.3.2 The Placement of Function for DRC: 

RGB color imageslc{m,n) can be converted to intensity images l(m,n) using 

Equation 3 1 The DWT is applied to the intensity image rather than to each component 

of the color image The transfer functions for DRC and local contrast enhancement are 

based on some information extracted from the histogram of I(m,n) To do this, the 

histogram is divided into four ranges r{ =0-63, r2~ 64-127, r3 = 128-191 and 

r4 = 192-255 An is mapped to Ad
n

rc using the following relationships 

K" ={(4*)"* ° < * ^ } (3 18) 

0 1, i/(/(/i+r2)>/(r, + r4)) A (f(r,)> f(r2)) 
10 3, if(f(r,+r2)>f(r, + r4)) A (/(fj)</(r2)) ( 3 1 9 ) 

1 3, i/(/(r1 + r2)</(r3 + r4)) A (/(r3)>/(r4)) 
.5, «/(/(»;+r2)</(r, + r4)) A (/(r3)</(r4)) 

f(r, +r2) = f(r,) + f(r,) and A is the logical AND operator The first transformation pulls out 

the details in the dark regions for x < 1, where the values of x are obtained from Equation 

3 19 The curves for the ranges are shown in Figure 3 6 The determination of the x 

values in Equation 3 19 was done experimentally using a large number of non-uniform 
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and uniform dark images but it can be also determined manually based on the image 

information 
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The second transfer function is used for mapping Ad
n
rc to A*c using the following process 

First, Ad
n
rc is mapped to T(m,n)using 

Adrc (m, n) - mm(Adrc (m, n)) -1 ,~ ~ „ , 

T(m, n) = log n j " \ — (3 20) 
max(Adrc (m, n)) + \- Adrc (m, n) 

Then T(m, n) is normalized 

T , . T(m,n)-mm(T(m,n)) 
Tn(m,n) = (3 21) 

max(r(ra, n)) - min(T(m, n)) 
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Tn (m, n) is mapped to A , the new enhanced approximation coefficients, using the 

following equation 

At-={Tn{m,n){a-P) + p)r 

«=max(^,f), p=mm(Afc) 

where r is the curvature parameter for adjusting the shape of the transfer function With 

this transformation, the details can be pulled out in the dark regions while suppressing the 

bright overshoots The curve can be adjusted with r as shown in Figure 3 7 

The fourth step is A ^ is de-normalized by multiplying it with 255 Then, in the 

last step, the image is reconstructed from the de-normalized approximation coefficients 

A^f by applying the IDWT The DRC enhancements were experimentally determined 

alone result in an image that typically has poor contrast So a local, neighborhood 

dependent, contrast enhancement method was applied to improve the contrast before the 

image is reconstructed 

3.3.3 Selection of surround parameter for contrast enhancement 

A center/surround ratio was proposed, proposed by Hulbert [61], who showed that 

the Gaussian is the optimal sunound for center-surround natural vision operations The 

sunound for the approximation coefficient is obtained by using a 2D discrete convolution 

with a Gaussian kernel, G(m,n) defined as in Equation 3 5 The kernels for improved 

rendition use crs = 15, 80 and 220 for the surround space constant The center-surround 

contrast enhancement is earned out as shown below and the approximation coefficients 

A rc are replaced with coefficients Aenh using 
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A^c(x,y) 1 1 => r => 0 9 

250 

200 

150 

-a m 
< 

100 

A^ rc(x,y) 

,drc Figure 3.7. A for Different Ranges rt 

Anh{m,n) = 255Ad
e^{m,n) 

where, E(m, n) is obtained by the same Equations between 3 7-3 9 such as 

A
fii,{

m'n) E[m,n) = 
A(m,n) 

Afil! (m,n) = A(m,n)*G{m,n) 

(3 23) 

(3 24) 

(3 25) 

'*' is the convolution operator, and S is the adaptive contrast enhancement parameter S is 

related to the global standard deviation and same procedure has been applied here as in 

Section 3 2 2 The approximation coefficients A k, (m, n) are replaced with the enhanced 
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coefficientsAenh(m,n), before reconstruction Additionally, the detail coefficients are 

multiplied with a constant before applying the IDWT 

3.3.4 Color restoration 

Finally, the enhanced image can be obtained by the same procedure, applied in 

Section 3 2 2 Linear color restoration based on chromatic information contained in the 

original image as 

/ s / x I,(m>n) „ 

SJ {m,n) = Aenh {m,n)-fi U (3 26) 
I[m,n) 

3.3.5 Evaluation Criteria 

In this work, the same evaluation criteria were used as discussed in Section 3 2 3 

3.3.6 Experimental Result 

The proposed algorithm was tested with many non-uniform and uniform-dark 

images MATLAB codes for AINDANE and IRME were used that were developed by 

research team MSRCR enhancements were done with the commercial software, Photo 

Flair Figure 3 8 shows the original and the enhanced images by WBNUDE Figure 3 9 

shows original enhanced images by Gamma Correction, MSRCR, AINDANE, IRME and 

WBNUDE From our own visual experience, the following statements can be made about 

the proposed algorithm 

1) WBNUDE works well for non-uniform and uniform dark images for the 

luminance enhancement, bringing out the details in the dark regions (Figure 3 8) 

2) WBNUDE algorithm gives good results for contrast enhancement The number 

of good regions in the images in creased with the application of WBNUDE (Table 

3 4) 
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3) In Figure 3 9 Gamma Correction (middle-left) does not provide good visual 

enhancement IRME (top-right), AINDANE (bottom-left) and MSRCR 

(middle-right) bring out the details in the dark regions but also enhance noise, 

which can be considered objectionable The WBNUDE algorithm outperforms the 

other algorithms and if the results are compared in Table 3 5 WBNUDE provides 

better visibility enhancement but does not necessarily provide the best sharpness 

Table 3.4. The Results of Evaluation Criteria for Figure 3 8 

Figure 3 8 

TOP ROW IMAGE 

SECOND ROW IMAGE 

THIRD ROW MAGE 

LAST ROW IMAGE 

ORIGINAL IMAGE 

NUMBER OF REGIONS 

GOOD POOR 

60 

49 

100 

100 

40 

51 

-

-

WBNUDE 

NUMBER OF REGIONS 

GOOD POOR 

100 

98 

100 

100 

-

2 

-

-

TABLE 3.5. The Results of Evaluation Criteria for Figure 3 9 

Figure 3 9 

Number of 
Good 
Regions 
Number of 
Poor Regions 

ORIGINAL 
IMAGE 

60 

40 

GAMMA 

60 

40 

IRME 

98 

2 

AINDANE 

99 

1 

MSR 

82 

18 

WBNUDE 

100 

-
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Figure 3.8. The Results of Enhancement Left Column Original Images, Right Columns 

Enhanced Images (WBNUDE) 
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Figure 3.9. Comparisons of Enhancement Techniques (top-left) Original, (top-right) 

IRME, (middle-left) Gamma conection, g = 1 4, (middle-right) MSRCR, (bottom-left) 

AINDANE, (bottom-right) WBNUDE 
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3.4 Conclusion 

The ETNUD and WBNUDE image enhancement algorithms provide high color 

accuracy and better balance between the luminance and contrast in images 
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4. ENTROPY-BASED IMAGE FUSION WITH A CONTINUOUS GENETIC 

ALGORITHM 

4.1 Introduction 

Image fusion is defined as the process of combining information from two or 

more images of a scene to enhance the viewing or understanding of that scene [66] The 

images that are to be fused can come from different sensors, or have been acquired at 

different times, or from different locations Hence, the first step in any image fusion 

process is the accurate registration of the image data This is relatively straightforward if 

parameters such as the instantaneous field-of-view (IFOV), and locations and orientations 

from which the images are acquired are known, especially when the sensor modalities 

produce images that use the same coordinate space This is more of a challenge when 

sensor modalities differ significantly and registration can only be accomplished at the 

information level Hence, the goal of the fusion process is to preserve all relevant 

information in the component images and place it in the fused image (FI) This requires 

that the process minimize the noise and other artifacts in the FI Because of this, the 

fusion process can be also regarded as an optimization problem [44] In recent years, 

image fusion has been applied to a number of diverse areas such as remote sensing [67, 

68], medical imaging [69, 70, 71], and military applications [39, 72] 

Image fusion can be divided into three processing levels pixel, feature and 

decision These methods increase in abstraction from pixel to feature to decision levels 

In the pixel-level approach, simple arithmetic rules like average of individual pixel 

intensities or more sophisticated combination schemes are used to construct the fused 

image At the feature-level, the image is classified into regions with known labels, and 



66 

these labeled regions from different sensor modalities are used to combine the data At 

the decision level, a combination of rules can be used to include part of the data or not 

Genetic algorithms (GA) are an optimization technique that seeks the optimum 

solution of a function based on the Darwinian principles of biological evolution [29] 

Even though there are several methods of performing and evaluating image fusion, there 

are still many open questions In this dissertation, a new measure of image fusion quality 

is provided and compared with many existing ones The focus is on pixel-level image 

fusion (PLIF) and a new image fusion technique that uses GA is proposed 

The GA is used to optimize the parameters of the fusion process to produce an FI 

that contains more information than either of the individual images The main purpose of 

this section is in finding the optimum weights that are used to fuse images with the help 

of CGA 

The techniques for GA and image fusion are given in Section 4 2 Section 4 3 

describes the evaluation criteria Section 4 4 describes the experimental results, and 

compares our results with other image fusion techniques In Section 4 5, conclusion is 

provided 

4.2 The Techniques of GA and Image Fusion 

4.2.1 Genetic Algorithm 

As stated earlier, GA is a non-linear optimization technique that seeks the 

optimum solution of a function via a non-exhaustive search among randomly generated 

solutions [29] GAs use multiple search points instead of searching one point at a time 

and attempt to find global, near-optimal solutions without getting stuck at local optima 

Because of these significant advantages, GAs reduce the search time and space [30] 
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However, there are disadvantages of using GAs as well they are not generally suitable 

for real-time applications since the time to converge to an optimal solution cannot be 

predicted The convergence time depends on the population size, and the GA crossover 

and mutation operators [29] 

In this fusion process, a continuous genetic algorithm has been selected 

4.2.2 Continuous Genetic Algorithm (CGA) 

GAs typically operates on binary data For many applications, it is more 

convenient to work in the analog, or continuous, data space rather than in the binary 

space of most GAs Hence, CGA is used because they have the advantage of requiring 

less storage and are faster than binary CGA inputs are represented by floating-point 

numbers over whatever range is deemed appropriate Figure 2 15 shows the flowchart of 

a simple CGA [35] 

The various elements in the flowchart are described below 

(/) Definition of the cost function and the variables The variable values are 

represented as floating point numbers (p,) In each chromosome, the basic GA processing 

vector, there are number of value depending on the parameters(p,, ,pNvai) Each 

chromosome has a cost determined by evaluating the cost function [35] 

(u) Initial Population To begin the CGA process, an initial population must be 

defined A matrix represents the population, with each row being a 1 x yvvar chromosome 

of continuous values The chromosomes are passed to the cost function for evaluation 

[35] 
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(in) Natural Selection The chromosomes are ranked from the lowest to highest 

cost Of the total of chromosomes in a given generation, only the top NKeep are kept for 

mating and the rest are discarded to make room for the new offspring [35] 

(iv) Mating Many different approaches have been tried for crossover in 

continuous GAs In crossover, all the genes to the right of the crossover point are 

swapped Variables are randomly selected in the first pair of parents to be the crossover 

point a-\ U(0,l)Nmr |, where U(0,1) is the uniform distribution The parents are given by 

[35] 

parent, =[P„„, ,PmN ] ^ ^ 

parent2=[Pd,, ,PdN ] 

where subscripts m and d represent the mom and dad parent Then the selected variables 

are combined to form new variables that will appear in the children 

pnew, = pma - P\Pma - Pda ] 

pnew2 = pda+P[Pma-Pda] 

where p is a random value between 0 and 1 The final step is to complete the crossover 

with the rest of chromosome 

offspring i = [Pmi,Pm2, .pnew ,, , P d N ^ ] 

offspring 2 = [Pd\>Pdl> > Pnew 2- 'PmN ,„ ] 

(v) Mutation If care is not taken, the GA can converge too quickly into one 

region of the cost surface If this area is in the region of the global minimum, there is no 

problem However, some functions have many local minima To avoid overly fast 

convergence, other areas of the cost surface must be explored by randomly introducing 

changes, or mutations, in some of the variables Multiplying the mutation rate by the total 

number of variables that can be mutated in the population gives the amount of mutation 
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Random numbers are used to select the row and columns of the variables that are to be 

mutated [35] 

(vi) Next Generation After all these steps, the starting population for the next 

generation is ranked The bottom ranked chromosomes are discarded and replaced by 

offspring from the top ranked parents Some random variables are selected for mutation 

from the bottom ranked chromosomes The chromosomes are then ranked from lowest 

cost to highest cost The process is iterated until a global solution is achieved 

4.2.3 Image Fusion 

A set of input images of a scene, captured at a different time or captured by 

different kinds of sensors at the same time, reveals different information about the scene 

The process of extracting and combining data from a set of input images to form a new 

composite image with extended information content is called image fusion [73] The 

image fusion process must satisfy the following requirements [74,75] 

• The FI must preserve the complementary information in the input images 

• The redundant information must be taken account in the FI 

• The location of the input images should not depend on the fusion process 

• The most recent and advanced methods used for image fusion are wavelet-based 

In these methods, the discrete wavelet transform (DWT) is performed on each of input 

images The conesponding approximation and detail coefficients are fused based on 

some optimization criteria Finally, the inverse DWT is utilized to produce the fused 

image [36] 
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4.3 Evaluation Criteria 

In this section, the following criteria were defined to evaluate the performance of 

the image fusion algorithm 

4.3.1 Image Quality Assessment 

This evaluation criterion was discussed in Section 3 2 3 2 

4.3.2 Entropy 

Entropy is often defined as the amount of information contained in an image 

Mathematically, entropy is usually given as [42] 

E = -TiPil°Z2P, (4 4) 
(=0 

where L is the total number of grey levels, and/? = {/?„, ,pL_,}is the probability of 

occurrence of each level An increase in entropy after fusion can be interpreted as an 

overall increase in the information content Hence, one can assess the quality of fusion 

by assessing entropy of the original data, and the entropy of the fused data 

4.3.3 Mutual Information Indices 

Mutual Information Indices are used to evaluate the correlative performances of 

the fused image and the source images Let A and B be random variables with marginal 

probability distributions pA(a)and pB(b)and the joint probability distributionpAB(a,b) 

The mutual information is then defined as [42] 

IAB =Y,PAB(a>b)l0g\-PAB(a>b)/(PA(a)PB(b))] (4 5) 

A higher value of Mutual Information (MI) indicates that the fused image, F, 

contains fairly good quantity of information present in both the source images, A and B 

The MI can be defined as MI = IiF+IRP 
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A high value of MI does not imply that the information from the both images is 

symmetrically fused Therefore, information symmetry (IS) is introduced IS is the 

indication of how symmetrically distributed is the information in the fused image, with 

respect to input images The higher the value of IS, the better the fusion result IS is 

given by [42] 

IS = 2-abs[IAF 1(1AF +IBF)-0 5] (4 6) 

4.4 Experimental Results 

The goal of this experiment is to fuse visual and IR images To minimize 

registration issues, it is important that the visual and the thermal images are captured at 

the same time Pinnacle software was used to capture the visual and the thermal images 

simultaneously Although radiometric calibration is important, the thermal camera can 

not always be calibrated in field conditions because of constraints on time Figure 4 1 

shows an example where the IR and visual image were captured at the same time It is 

obvious from the figure that the images need to be registered before they can be fused 

since the field-of-view and the pixel resolution are obviously different 

The performance of the proposed algorithm was tested and compared with 

different PLIF methods The IR and visual images were not previously registered as 

shown in Figure 4 1 The registered image, base image (IR Image) and fused image with 

CGA are shown in Figure 4 2 The cost function is very simple and defined as 

Entropy(F = waV + whIR) (4 7) 

where V and IR are the visual and IR images, wa and Wb are the respective associated 

weights, and F is the fused image The initial population size is 100x3 The first and 

second columns in population matrix represent waV, and WblR and the last column 
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represents the cost function which is the entropy of F Then initial population has been 

ranked based on the cost In each iteration of the GA, 20 of the 100 rows are kept for 

mating and the rest are discarded The crossover has been applied based on the Equation 

4 2 The mutation rate was set to 0 20, hence the total number of mutated variables is 40 

The value of a mutated variable is replaced by a new random value in the same range 

Figure 4 3 shows the CGA results after 50 iterations of the GA such that the CGA 

maximize the cost and find optimum weights of images In the 2nd, 8th, and 25th 

iterations, the cost increased but was not associated with the global solution The 

optimum solution was determined in 45th iteration and remained unchanged because it is 

optimum solution Figure 4 4 shows the fusion results of point-rules based PLIF After 

registering IR and visual data, we determined that wa = 0 9931 and w\, = 0 0940 provide 

the optimum values for maximizing the entropy cost function for the F specified in 

Equation 4 7 The evaluation of these weights results is shown in Table 4 1 Table 4 1 

shows that CGA based fusion method gives better results (optimum weights for 

maximizing the entropy of F) for entropy and IS from which it can concluded that CGA 

performs better than other PLIFs 

Figure 4.1. Visual and IR Images Left Visual Image, Right IR Image 
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4.5 Conclusion 

In this dissertation, CGA based image fusion algorithm was introduced and 

compared with other classical PLIFs The results show that CGA based image fusion 

gives better result than other PLIFs 

Registered Image IR Image Fused Image 

Figure 4.2. The Result of Fusion Left Registered Images, Middle IR Image Right 

Fused Image with GA 

G E N E T I C A L G O R I T H M 
7 3 , 

7 2 8 

7 2 6 

7 2 4 

7 2 2 

7 2 

7 1 8 

7 1 6 
1 0 1 5 2 0 2 5 3 0 

Iteration Number 
3 5 4 0 4 5 5 0 

Figure 4.3. The Result of Continuous Genetic Algorithm 
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Table 4.1. Performance Comparision of Image Fusion Methods for Figure 4 2 and Figure 

44 

Entropy 

Image Quality 
(Number of 
Good Regions) 
IS 

Highest 

(Fig 4 4) 

6 91 

100 

190 

Lowest 

(Fig 4 4) 

3 14 

70 

163 

Average 

(Fig 4 4) 

6 56 

100 

196 

Threshold 

(Fig 4 4) 

6 93 

100 

191 

GA_based 

(Fig 4 2) 

7 28 

100 

196 

Fig. 4.4. Fusion Results (top-left) highest value from IR or Visual Images, (top-right) 

lowest value form IR or Visual Images, (bottom-left) average of IR and Visual Images, 

(bottom-right) threshold value 
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5. EXPERIMENTAL RESULTS 

5.1 Introduction 

With face recognition, a database usually exists that stores a group of human faces 

with known identities In a testing image, once a face is detected, the face is cropped 

from the image or video as a probe to check with the database for possible matches The 

matching algorithm produces a similarity measure for each of the comparing pairs 

Variations among images from the same face due to changes in illumination are 

typically larger than variations rose from a change of face identity In an effort to address 

the illumination and camera variations, a database was created, considering these 

variations to evaluate the proposed techniques 

Besides the regular room lights, four additional spot lights are located in the front 

of the person that can be turned off and on in sequence to obtain face images under 

different illumination conditions Note that it is important to capture visual and thermal 

images at the same time in order to see the variations in the facial images Visual and 

thermal images are captured almost at the same time Although radiometric calibration is 

important, the thermal camera can not be calibrated because of cunent IR camera 

characteristics 

The Pinnacle (Pinnacle Systems Ltd) software has been implemented to capture 

visual and thermal images at the same time Figure 5 1 shows an example of visual and 

thermal images taken at the same time 

In this dissertation, the focus is on visual image enhancement Then the visual 

images will be registered with the IR images based landmark registration algorithm 
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Figure 5.1. Database Images Left Column Visual Images, Right Columns IR Images 

(taken at the same time) 
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Finally, the registered IR and visual images are fused for face recognition Fig 

5 2 shows the workflow of the proposed work 

Image Enhancement of Visual 
Images 

Registration of enhanced Visible 
and IR Images 

T 
Image Fusion using a Genetic 

Algorithm 

Figure 5.2. Research Approach Overview 

5.2 IR Images 

In this subsection, some sample IR images are shown with and their statistics such 

as mean, standard deviation of pixels in the images Those statistics can give us 

information on the contrast of the images Fig 5 3 shows one IR image with its statistics 

and Fig 5 4 shows the same image after histogram equalization with modified image 

statistics From the both Images it can be said that the mean and standard deviation has 

been significantly increased after histogram equalization 

And then the IR images were taken from different distances and statistics of those 

IR images shown in Table 5 1 It is observed that from the values of Table 5 1 Those 

values go down while the person retreat from the IR camera 

The background, shown in Figure 5 13, is subtracted from the Figures 5 5 to 5 8 

Figures 5 9 to 5 12 show the images after their background subtraction The statistics of 

IR images are shown in Table 5 1 It is observed that the values go down while the 

person retreats from the IR camera 
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Table 5.1. The Statistics of Figures 5 5-5 8 

Figure 
Left Upper IR 5 5 
Right Upper IR 5 6 
Left Bottom IR 5 7 
Right Bottom IR 5 8 

Mean 
84 68020833 
83 36513021 
84 87854167 
83 92352865 

Standard Deviation 
32 21200643 
27 53482620 
24 43418270 
24 60098869 

RMS 
90 59995056 
87 79471276 
88 32551228 
87 45494443 

Entropy 
6 02810125 
5 68955721 
5 42193817 
5 50655880 

Figure 5.5-5.8. IR Images from Different Distances 
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Table 5.2. The Statistics of Figures 5 9-5 13 

Figure 
Left Upper IR 5 9 
Right Upper IR 5 10 
Left Bottom IR 5 11 
Right Bottom IR 5 12 

5 13 

Mean 
9 42182292 
7 01039063 
5 85242188 
5 39322917 
84 54343750 

Standard deviation 
26 74171275 
22 87623110 
20 63104752 
20 36353732 
9 86076578 

RMS 
28 35295307 
23 92629361 
21 44506851 
21 06562539 
85 11655260 

Entropy 
212672017 
1 76482414 
1 60233358 
1 37625036 
4 10966349 

Figure 5.9-5.12. IR Images without their Background from Different Distances 

Figure 5.13. The Background 
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5.2.1 Discussion 

IR and CCD have their own advantages and limitations For example, in IR 

images, the object may be highly detectable because of its sufficient temperature 

difference from the local background, whereas the visible images will provide more 

details of the background Thermal IR and particularly Long Wave Infra-Red (LWIR) 

imagery is independent of illumination since thermal IR sensors operating at particular 

wavelength bands measuring heat energy emitted and not the light reflected from the 

objects More importantly, IR energy can be viewed in any light conditions and is less 

subject to scattering and absorption by smoke or dust than visible light Hence thermal 

imaging has great advantages in face recognition under low illumination conditions and 

even in total darkness, where visual face recognition techniques fail It is well known that 

the detection of an object in an infrared image depends on its thermal contrast with the 

background However, thermal imaging needs to solve several challenging problems 

Thermal signatures can be changed significantly according to different body temperatures 

caused by physical exercise or ambient temperatures and the target intensity varies 

continuously with changing distance between the imaging device and target A combined 

use of visual and thermal images face recognition system can alleviate the problems 

[38,39] 

Here firstly, it has been tried to find out the various intensities of body depending 

on the distance between the imaging device and human body The point here is to detect 

some parameters like standard deviation and entropy, which can give us some 

information on the contrast of the image [39] 
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The second issue is the removing the background in the image The problem here 

is that some pixel levels of human body are the same as the background The 

segmentation of face from background and body is too difficult which can not be done 

with tresholding For these reasons, a genetic algorithm is proposed based image fusion 

approach to fuse the enhanced visual images with the IR Images 

5.3 Enhancement of Visual Images 

The ETNUD and WBNUDE algorithms were applied to 16 visual images as 

shown in Figures 5 14 to 5 21 under different illumination conditions In these figures 

besides the regular room lights, the four extra spot lights located in the front of the person 

were turned off and on for creating different illumination conditions To enhance those 

visual images, the luminance is first balanced, then image contrast is enhanced and 

finally, the enhanced image is obtained by a linear color restoration based on chromatic 

information contained in the original image 

The results in the luminance enhancement part showed that the algorithms work 

well for dark images All the details, which cannot be seen in the original image, become 

evident The experiment results have shown that for all color images, the proposed 

algorithms work sufficiently well 
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Figure 5.14. Visual Database Enhancement for Images 1 and 2 Left Column Visual 

Images Right Columns Enhanced Images 

Figure 5.15. Visual Database Enhancement for Images 3 and 4 Left Column Visual 

Images Right Columns Enhanced Images 
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Figure 5.16. Visual Database Enhancement for Images 5 and 6 Left Column Visual 

Images Right Columns Enhanced Images 

1 

Figure 5.17. Visual Database Enhancement for Images 7 and 8 Left Column Visual 

Images Right Columns Enhanced Images 



Figure 5.18. Visual Database Enhancement for Images 9 and 10 Left Column Visual 

Images Right Columns Enhanced Images 

Figure 5.19. Visual Database Enhancement for Images 11 and 12 Left Column Visual 

Images Right Columns Enhanced Images 
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rvs*^ 
Figure 5.20. Visual Database Enhancement for Images 13 and 14 Left Column Visual 

Images Right Columns Enhanced Images 

Figure 5.21. Visual Database Enhancement for Images 15 and 16 Left Column Visual 

Images Right Columns Enhanced Images 
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5.4 Harris Corner Detection 

5.4.1 Introduction 

In this dissertation, the corners of visual and IR images were determined by the 

Harris detection algorithm for registration as shown in Fig 5 22 The corners in both the 

visual and IR images were determined first and then a registration process was applied 

based on the detected corner point pairs 

Reference Image 

Sensed Image 

V 
N Harris Corner 

detection 

Harris Corner 
detection 

Registration 

Figure 5.22. Diagram of Hams Corner Detection for Registration 

5.4.2 Results 

The Harris corner detector determines a matrix M that contains all differential 

operators and describes the geometry of the image surface at a given point (x,y) The 

image intensity is denoted by /, intensity variation can be measured in any direction with 

Eq 5 1 and w specifies the image window it is unity within a specified rectangular 

region, and zero elsewhere 

A = 

M 

3/ 

AC 

CB 

®w,B = 
'a/V 
Va>7 

®w,C = 
'3/3/ 
Kdx dy 

®w 

(5 1) 
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where M is the image gradient covariance matrix and measure of cornerness C at the 

position (x,y) is defined as 

C(x,y) = det(M)-k(trace(M))2 (5 2) 

where k is constant 

Local maxima of these corner "strengths" indicate potential corner positions In 

the experiments, M was filtered by the maximum filter with a size of 11x11 Then the 

value of each pixel in M was compared with a threshold of 100 to filter M Figs 5 23 and 

5 24 show corner detection results for IR and visual images Since the detection results 

for IR image are reasonably good, the histogram equalization technique was not applied 

to the IR images 

5.5 IR and Visual Images Registration 

First, the IR and visual images taken from different sensors, viewpoints, times and 

resolution were resized for the same size The correspondence between the features 

detected in the IR image and those detected in the visual image were then established 

Control points were picked manually from those corners detected by the Harris corner 

detection algorithm from both images, where the corners were in the same positions in 

the two images 

In the second step, a spatial transformation was computed to map the selected 

corners in one image to those in another image Once the transformation was established, 

the image to be registered was resampled and interpolated to match the reference image 

For RGB and intensity images, the bilinear or bicubic interpolation method is 
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recommended since they lead to better results In the experiments, the bicubic 

interpolation method was used 

Figure 5.23. The Corners of Visual and IR images The corners have been shown with 

crosses 

Figure 5.24. The Corners of Visual and IR images The corners have been shown with 

crosses 

The registered images were overlapped at an appropriate transparency The pixel 

value in the fused image was a weighted submission of the conesponding pixels in the IR 

and visual images As shown in Figure 5 25, a simple overlapping cannot improve the 
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image quality In the next section, results from advanced image fusion approaches are 

presented 

Figure 5.25. Visual, IR Image and Combined Image 

5.6 Fusion of two Visual Images 

In this section, image fusion results are presented for the visual images as shown 

in Fig 5 26 It is obvious from the figure that the images do not need to be registered 

The cost functions are very simple and defined as 

Entropy(F = waA + wbB ) (5 3) 

Mean(F - waA + wbB ) (5 4) 
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Std(F = waA + wbB) (5 5) 

where A and B are the visual images, wa and Wb are the respective associated weights, std 

is the standard deviation and F is the fused image Here the three cost functions were 

chosen The reason of this step is to find the best suitable cost function which gives the 

best result for fusion These three cost functions will be evaluated based on the metrics 

which are mean, standard deviation, entropy, mutual information, information symmetry, 

RMSE, PSNR and image quality 

In the first step, the evaluation of the Equation 5 3, A and B images were fused 

four times in that the population size and number of iteration for the genetic algorithm 

were changed, as shown in Table 5 3 The initial population size has been selected as 

10x3, 10x3, 100x3, 100x3 respectively The iteration has been selected as 10, 50, 10 and 

100 respectively The first and second columns in population matrix represent w<A and 

WbB and the last column represents the cost function which is the entropy of F Then 

initial population has been ranked based on the chosen cost function In each iteration of 

the CGA algorithm, the crossover was performed based on Equation 4 2 The mutation 

rate was set to 0 20, and the value of a mutated variable was replaced by the mutated 

value 

Figures 5 26 and 5 27 show the CGA results after 10, 50, 10 and 100 iterations of 

the CGA algorithm, respectively The optimum solution was determined in the fourth 

trial whose population size is 100x3 after 100 iterations It was determined that wa = 0 98 

and Wb = 0 33 provide the optimum entropy cost function for the F specified in Equation 

5 3 The evaluation of these weights results is shown in Table 5 3 
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Figure 5.26. Fusion Results Left Upper Visual A Image, Middle Upper Visual B 

Image, Right Upper Fused Image 1, Bottom Right Fused Image 2, Bottom Middle 

Fused Image 3, Bottom Right Fused Image 4 

To evaluate Equation 5 4, A and B images were fused three times in that the 

population size and number of iteration were changed, as shown in Table 5 4 The initial 

population sizes had been selected as 10x3, 10x3, 100x3 respectively The iteration 

number had been selected as 10, 50, and 20 respectively The first and second columns in 

population matrix represent WaA, and WbB and the last column represents the cost 

function, which is the mean of F Then initial population has been ranked based on the 

cost function In each iteration of the CGA algorithm, the crossover has been applied 

based on Equation 4 2 The mutation rate was performed on the Equation 4 2 The 

mutation rate was set 0 20, and the value of a mutated variable was replaced by the 

mutated value 
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Table 5.3. The Statistics of Figures 5 26 

IMAGE 

A Image 

B Image 

Fused 
Image 1 

Pop 10 
Ite 10 

Fused 
Image 2 

Pop 10 
Ite 50 

Fused 
Image 3 

Pop 100 
Ite 10 

Fused 
Image 4 

Pop 100 
Ite 100 

WEIGHTS 

Wl=0 83 

W2=0 50 

Wl=0 99 

W2=0 33 

W1=0 98 

W2=0 33 

MEAN 

102 98 

103 13 

137 33 

138 11 

137 45 

135 67 

STD 

8 22 

6 84 

9 34 

9 79 

9 96 

9 98 

ENTR 

7 25041 

719617 

7 5559 

7 56540 

7 57172 

7 57458599 

MI 

601 

6 06 

631 

6 32 

IS 

1 98 

193 

1 87 

187 

RMSE 

39 29 

40 30 

39 98 

3814 

PSNR 

16 24 

16 02 

16 09 

16 50 

IQ 

85 

87 

98 

98 

98 

98 

Figs 5 28 and 5 29 show the CGA results The iteration number had been selected 

as 10, 50 and 20 respectively The optimum solution was determined in the third trial 

whose population size is 100x3 after 20 iterations It was determined that wa = 0 99 and 

Wb = 0 99 provide the optimum values for maximizing the mean cost function for the F 

specified in Equation 5 3 The evaluation of these weights results is shown in Table 5 4 

To evaluate Equation 5 5, A and B images were fused three times in that the 

population size and number of iteration were changed, as shown in Table 5 5 The initial 
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population sizes had been selected as 10x3, 50x3, 3x3 respectively The iteration 

numbers had been selected as 10, 50, and 3 respectively The first and second columns in 

population matrix represent WaA, and WbB and the last column represents the cost 

function which is the standard deviation of F Then initial population has been ranked 

based on the cost function The crossover was performed based on Equation 4 2 The 

mutation rate was set to 0 20, and the value of a mutated variable was replaced by the 

mutated value 

GENETIC ALGORITHM GENETIC ALGORITHM 
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1 2 3 4 5 6 7 
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Figure 5.27. The Result of Continuous Genetic Algorithm of Table 5 3 
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f 
\ 

K K K 
Figure 5.28. Fusion Results Left Fused Image 1, Middle Fused Image 2, Left Fused 

Image 3 

Table 5.4. The Statistics of Figures 5 28 

IMAGE 

A Image 

B Image 

Fused 
Image 1 

Pop 10 
Ite 10 

Fused 
Image 2 

Pop 10 
Ite 50 
Fused 

Image 3 

Pop 100 
Ite 20 

WEIGHTS 

W 1=0 9595 

W 2=0 9137 

W 1=0 9573 

W 2=0 9661 

W 1=0 9986 

W 2=0 9953 

MEAN 

102 98 

103 13 

181 10 

184 13 

187 39 

STD 

8 22 

6 841 

8 380 

8 179 

7 889 

ENTR 

7 250 

7 196 

6016 

5 777 

5 558 

MI 

5 228 

5 099 

4 980 

IS 

1 979 

1 981 

1984 

RMSE 

85 4 

88 5 

918 

PSNR 

9 49 

9 18 

8 86 

IQ 

85 

87 

100 

100 

100 

> 179h 

i J-
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Figure 5.29. The Result of Continuous Genetic Algorithm of Table 5 4 
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Figures 5 30 and 5 31 shows the CGA results after 10, 50, and 3 times iterations 

of the GA respectively such that the CGA maximizes the cost and find optimum weights 

for images The optimum solution was determined in the second trial whose population 

size is 100x3 after 50 iterations It was determined that wa = 0 99 and Wb = 0 98 provide 

the optimum values for maximizing the standard deviation cost function for the F 

specified in Equation 5 4 The evaluation of these weights results is shown in Table 5 5 

5.7 Fusion of Visual and IR Images 

Figures 5 32 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 76 iterations It was 

determined that wa = 0 99 and Wb = 0 47 are the optimum values for maximizing the 

entropy cost function which is 7 58 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 6 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 33 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 12 iterations It was 

determined that wa = 0 99 and Wb = 0 15 are the optimum values for maximizing the 

entropy cost function which is 7 68 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 7 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 
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Table 5.5. The Statistics of Figures 5 30 

IMAGE 

A Image 

B Image 

Fused 
Image 1 

Pop 10 
Ite 10 

Fused 
Image 2 

Pop 10 
Ite 50 

Fused 
Image 3 

Pop 10 
Ite 3 

WEIGHTS 

W 1=0 9937 

W 2=0 6476 

W 1=0 9954 

W 2=0 9899 

W 1=0 6379 

W 2=0 9179 

MEAN 

102 98 

103 13 

169 13 

204 60 

160 36 

STD 

8 22 

6 84 

82 29 

99 21 

77 6-i 

ENTR 

7 25 

7 19 

6 99 

5 58 

7 25 

MI 

5 75 

4 99 

5 83 

IS 

1 93 

198 

1 98 

RMSE 

69 3 

913 

62 1 

PSNR 

11 3 

89 

122 

10 

85 

87 

100 

100 

99 

Figure 5.30. Fusion Results Left Fused Image 1, Middle Fused Image 2, Left Fused 

Image 3 

Figures 5 34 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 3 iterations It was 

determined that wa = 0 58 and Wb = 0 59 are the optimum values for maximizing the 
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entropy cost function which is 7 42 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 8 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

05 1 15 2 25 3 
Herat on Number 

Figure 5.31. The Result of Continuous Genetic Algorithm of Table 5 5 

Figures 5 35 (f) and (g) show the result of CGA after 100 iterations The 

optimum solution was determined with a population size of 100x3 after 36 iterations It 

was determined that wa = 0 73 and Wb = 0 36 are the optimum values for maximizing the 

entropy cost function which is 7 53 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 9 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 36 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 8 iterations It was 

determined that wa = 0 84 and Wb = 0 20 are the optimum values for maximizing the 

entropy cost function which is 7 82 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 10 By inspection, the faces and the details in 

GENETIC ALGORITHM GENETIC ALGORITHM 

J L L 1 J J 
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the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 37 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 14 iterations It was 

determined that wa = 0 89 and Wb = 0 09 are the optimum values for maximizing the 

entropy cost function which is 7 78 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 11 By inspections, the faces and the details 

in the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 38 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 2 iterations It was 

determined that wa = 0 77 and Wb = 0 32 are the optimum values for maximizing the 

entropy cost function which is 7 68 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 12 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 39 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 14 iterations It was 

determined that wa = 0 86 and Wb = 0 16 are the optimum values for maximizing the 

entropy cost function which is 7 83 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 13 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 
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Figures 5 40 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 76 iterations It was 

determined that wa = 0 90 and Wb = 0 50 are the optimum values for maximizing the 

entropy cost function which is 7 63 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 14 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 41 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 2 iterations It was 

determined that wa = 0 98 and Wb = 0 09 are the optimum values for maximizing the 

entropy cost function which is 7 60 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 15 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 42 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 17 iterations It was 

determined that wa = 0 88 and Wb = 0 17 are the optimum values for maximizing the 

entropy cost function which is 7 51 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 16 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 43 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 95 iterations It was 
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determined that wa = 0 88 and Wb — 0 17 are the optimum values for maximizing the 

entropy cost function which is 7 66 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 17 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 44 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 36 iterations It was 

determined that wa - 0 83 and Wb = 0 27 are the optimum values for maximizing the 

entropy cost function which is 7 51 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 18 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 45 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 36 iterations It was 

determined that wa = 0 84 and Wb = 0 25 are the optimum values for maximizing the 

entropy cost function which is 7 60 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 19 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 46 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 8 iterations It was 

determined that wa = 0 64 and Wb = 0 46 are the optimum values for maximizing the 

entropy cost function which is 7 60 for the F specified in Equation (5 3) The evaluation 
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of these weights results is shown in Table 5 20 By inspection, the faces and the details in 

the fused image are clearer as compared to either the original IR image or the visual 

image 

Figures 5 47 (f) and (g) show the result of CGA after 100 iterations The optimum 

solution was determined with a population size of 100x3 after 4 iterations It was 

determined that wa = 0 80 and Wb = 0 22 are the optimum values for maximizing the 

entropy cost function which is 7 68 for the F specified in Equation (5 3) The evaluation 

of these weights results is shown in Table 5 11 By inspection, the faces and the details in 

the fused image are clearer as compared to either the IR original image or the visual 

image 

5.8 Discussion 

Image Fusion is a powerful technique for image analysis and computer vision that 

can reduce errors in detection and recognition of objects by combining multisource 

imagery to enhance the information apparent in the images as well as to increase the 

reliability of interpretation In this section, the results of an image fusion algorithm for 

Visual and IR Images are presented with the help of the Genetic Algorithm Experimental 

results have been applied on the database, which is created by the research team This 

algorithm is categorized into four steps, which are described respectively In the first step, 

there is enhancement of visual images, as described in Section 5 3 The fused image 

should be more suitable for human visual perception and computer-processing tasks The 

experience of image processing has prompted the research to consider fundamental 

aspects for good visual presentation of images, requiring nonlinear image enhancement 

techniques of visual recorded images to get a better image, which has more information 



103 

from the original images In the second step, the corners of visual and IR images were 

determined with the help of Harris Detection algorithm for registration purpose to use as 

control points, as described in Section 5 4 In the third step, because the source images are 

obtained from different sensors, they present different resolution, size and spectral 

characteristic, the source images have to be conectly registered, as described in Section 

5 5 In the last step, an image fusion process is performed, which was described in 

Section 5 6 Three functions were evaluated and it was decided to use the entropy cost 

function based with the help of the Genetic Algorithm for the fusion process of visual and 

IR images 

The Image fusion algorithm was applied with the help of Genetic Algorithm to 

the database One of the issues is the determination of the quality of image fusion results 

As part of the general theme of fusion evaluation there is a growing interest to develop 

methods that address the scored performance of image fusion algorithms as described in 

Chapter 4 Given the diversity of applications and various methods of evaluation metrics, 

there are still open questions concerning when to perform image fusion There is an 

interest in exploring mean, standard deviation, entropy, mutual information, peak signal 

to noise ratio and image quality as described in Chapter 4 Because source images have 

different spectrum, they show quite distinct characters and have complementary 

information It can be seen in Figure 5 32 (a and c) that the visual image does not have 

enough information to see the faces and is very dark Figure 5 32 (b) shows that the 

luminance enhancement part works well for dark images and the technique adjusts itself 

to the image In the contrast enhancement part it is clear that unseen or barely seen 

features of low contrast images were made visible Enhancement algorithms were 
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developed to improve the images before the fusion process After enhancement it was 

found that the corners of the enhanced image and the IR image then registered the 

enhanced image as shown in Figure 5 32 (d) Then, the enhanced image was fused with 

the IR image in Figure 5 32 (f) 

The cost function defined in Equation 5 3 and the iteration selected as 100 in the 

experiments The first and second columns in the population matrix represent WaA, and 

WbB and the last column represents the cost function, which is the entropy of F Then the 

initial population is ranked based on the cost function 
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Figure 5.32. Fusion Results for Image 1 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.6. The Statistics of Figures 5 32 

Figure 5 32 
ORIGINAL 
IMAGE (c) 
IR 
MAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
MAGE(f) 

WEIGHTS 

-

-

-

Wl=0 99 
W2= 0 47 

MEAN 

36 4 

88 7 

127 5 

153 5 

STD 

6 6 

152 

25 2 

18 3 

ENTROPY 

6 13 

7 12 

7 48 

7 58 

MI 

-

-

-

3 63 

PSNR 

-

-

-

35 73 

IQ 

16 

-

87 

94 
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Figure 5.33. Fusion Results for Image 2 (top-left-(a)) Original, (top-right-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.7. The Statistics of Figures 5 33 

Figure 5 33 
ORIGINAL 
IMAGE (c) 
IR 
DVIAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

W l = 0 99 
W2= 0 15 

MEAN 

109 2 

89 6 

140 17 

144 92 

STD 

1108 

14 87 

20 75 

18 47 

ENTROPY 

771 

7 11 

7 60 

7 68 

MI 

-

-

-

5 44 

PSNR 

-

-

-

35 73 

IQ 

86 

-

95 

95 
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Figure 5.34. Fusion Results for Image 3 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.8. The Statistics of Figures 5 34 

Figure 5 34 
ORIGINAL 
IMAGE (c) 
IR 
IMAGE(e) 
ENHANCED 
EVIAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

Wl=0 58 
W2= 0 59 

MEAN 

89 36 

90 11 

123 98 

124 06 

STD 

23 92 

14 55 

25 60 

14 29 

ENTROPY 

7 16 

7 17 

6 96 

7 42 

MI 

-

-

-

4 27 

PSNR 

-

-

-

28 13 

IQ 

84 

-

94 

96 
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Figure 5.35. Fusion Results for Image 4 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.9. The Statistics of Figures 5 35 

Figure 5 35 
ORIGINAL 
IMAGE (c) 
IR 
IMAGE(e) 
ENHANCED 
DVIAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

W l = 0 73 
W2= 0 36 

MEAN 

122 44 

90 44 

15151 

140 72 

STD 

14 11 

14 29 

22 04 

14 48 

ENTROPY 

771 

721 

751 

7 53 

MI 

-

-

-

4 28 

PSNR 

-

-

-

28 33 

IQ 

95 

-

99 

96 
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Figure 5.36. Fusion Results for Image 5 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.10. The Statistics of Figures 5 36 

Figure 5 36 
ORIGINAL 
IMAGE (c) 
IR 
EVIAGE(e) 
ENHANCED 
EvIAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

W l = 0 84 
W2= 0 20 

MEAN 

87 66 

90 55 

11841 

117 17 

STD 

20 36 

14 11 

22 23 

17 9 

ENTROPY 

7 62 

7 24 

7 57 

7 82 

MI 

-

-

-

5 04 

PSNR 

-

-

-

29 4 

IQ 

74 

-

92 

94 
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Figure 5.37. Fusion Results for Image 6 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.11. The Statistics of Figures 5 37 

Figure 5 37 
ORIGINAL 
IMAGE (c) 
IR 
MAGE(e) 
ENHANCED 
IMAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

Wl=0 89 
W2= 0 09 

MEAN 

92 33 

90 84 

123 07 

117 41 

STD 

20 61 

14 15 

22 59 

1951 

ENTROPY 

7 65 

7 27 

761 

7 78 

MI 

-

-

-

5 57 

PSNR 

-

-

-

29 15 

IQ 

80 

-

94 

94 
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Figure 5.38. Fusion Results for Image 7 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.12. The Statistics of Figures 5 38 

Figure 5 38 
ORIGINAL 
IMAGE (c) 
IR 
IMAGE(e) 
ENHANCED 
EVIAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

W l = 0 77 
W2= 0 32 

MEAN 

107 27 

90 69 

14167 

137 67 

STD 

16 52 

14 87 

18 47 

14 35 

ENTROPY 

7 66 

7 32 

771 

7 68 

MI 

-

-

-

4 03 

PSNR 

-

-

-

29 26 

IQ 

93 

-

96 

98 
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Figure 5.39. Fusion Results for Image 8 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.13. The Statistics of Figures 5 39 

Figure 5 39 
ORIGINAL 
IMAGE (c) 
IR 
DVIAGE(e) 
ENHANCED 
IMAGE(d) 
FUSED 
DVIAGE(f) 

WEIGHTS 

-

-

-

W l = 0 86 
W2= 0 16 

MEAN 

107 13 

89 78 

138 82 

137 02 

STD 

19 75 

14 02 

18 75 

16 17 

ENTROPY 

7 66 

7 36 

7 67 

7 83 

MI 

-

-

-

5 16 

PSNR 

-

-

-

29 64 

IQ 

89 

-

99 

96 
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Figure 5.40. Fusion Results for Image 9 (top-left-(a)) Original, (top-nght-(b)) Enhanced, 

(middle-left-(c)) Original, (middle-right-(d)) Enhanced, (bottom-left-(e)) IR,(bottom-

nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.14. The Statistics of Figures 5 40 

Figure 5 40 
ORIGINAL 
IMAGE (c) 
IR 
IMAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
DVIAGE(f) 

WEIGHTS 

-

-

-

Wl=0 90 
W2= 0 53 

MEAN 

57 89 

90 96 

102 23 

134 03 

STD 

9 82 

13 96 

19 15 

16 26 

ENTROPY 

6 42 

7 44 

6 25 

7 63 

MI 

-

-

-

4 25 

PSNR 

-

-

-

33 41 

IQ 

54 

-

86 

83 
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Figure 5.41. Fusion Results for Image 10 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-right-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.15. The Statistics of Figures 5 41 

Figure 5 41 
ORIGINAL 
IMAGE (c) 
IR 
DVIAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

W l = 0 98 
W2= 0 09 

MEAN 

119 39 

90 95 

142 34 

143 26 

STD 

12 14 

13 49 

19 89 

18 36 

ENTROPY 

7 68 

7 36 

7 35 

7 60 

MI 

-

-

-

5 43 

PSNR 

-

-

-

36 177 

IQ 

84 

-

97 

98 
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Figure 5.42. Fusion Results for Image 11 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.16. The Statistics of Figures 5 42 

Figure 5 42 
ORIGINAL 
IMAGE (c) 
IR 
DVIAGE(e) 
ENHANCED 
IMAGE(d) 
FUSED 
IMAGE(f) 

WEIGHTS 

-

-

-

Wl=0 88 
W2= 0 17 

MEAN 

99 93 

90 72 

136 43 

131 12 

STD 

21 10 

13 47 

25 87 

15 87 

ENTROPY 

7 00 

7 35 

7 34 

751 

MI 

-

-

-

4 2 

PSNR 

-

-

-

28 25 

IQ 

89 

-

97 

99 
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Figure 5.43. Fusion Results for Image 12 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.17. The Statistics of Figures 5 43 

Figure 5 43 
ORIGINAL 
IMAGE (c) 
IR 
EVIAGE(e) 
ENHANCED 
IMAGE(d) 
FUSED 
EVIAGE(f) 

WEIGHTS 

-

-

-

Wl=0 88 
W2=0 17 

MEAN 

120 77 

90 79 

149 24 

142 50 

STD 

14 84 

13 96 

22 43 

17 99 

ENTROPY 

7 62 

7 36 

7 41 

7 66 

MI 

-

-

-

5 09 

PSNR 

-

-

-

30 10 

IQ 

92 

-

96 

95 
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Figure 5.44. Fusion Results for Image 13 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.18. The Statistics of Figures 5 44 

Figure 5 44 
ORIGINAL 
IMAGE (c) 
IR 
DVIAGE(e) 
ENHANCED 
IMAGE(d) 
FUSED 
DvIAGE(f) 

WEIGHTS 

-

-

-

Wl=0 83 
W2= 0 27 

MEAN 

102 32 

90 98 

137 41 

139 16 

STD 

2146 

14 25 

23 87 

19 23 

ENTROPY 

7 61 

7 37 

7 38 

751 

MI 

-

-

-

4 03 

PSNR 

-

-

-

30 05 

IQ 

87 

-

97 

96 
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Figure 5.45. Fusion Results for Image 14 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.19. The Statistics of Figures 5 45 

Figure 5 45 
ORIGINAL 
MAGE (c) 
IR 
IMAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
MAGE(f) 

WEIGHTS 

-

-

-

W l = 0 84 
W2= 0 25 

MEAN 

112 17 

90 72 

14140 

14182 

STD 

17 96 

13 56 

20 34 

18 29 

ENTROPY 

7 68 

7 37 

7 40 

7 54 

MI 

-

-

-

4 07 

PSNR 

-

-

-

30 94 

IQ 

92 

-

98 

99 
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Figure 5.46. Fusion Results for Image 15 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.20. The Statistics of Figures 5 46 

Figure 5 46 
ORIGINAL 
MAGE (c) 
IR 
MAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
MAGE(f) 

WEIGHTS 

-

-

-

W l = 0 64 
W2= 0 46 

MEAN 

102 31 

9100 

134 33 

132 06 

STD 

23 19 

1351 

2141 

15 89 

ENTROPY 

751 

7 38 

7 54 

7 60 

MI 

-

-

-

4 03 

PSNR 

-

-

-

28 75 

IQ 

85 

-

97 

97 
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Figure 5.47. Fusion Results for Image 16 (top-left-(a)) Original, (top-nght-(b)) 

Enhanced, (middle-left-(c)) Original, (middle-nght-(d)) Enhanced, (bottom-left-(e)) 

IR,(bottom-nght-(f)) Fused Images, Graph-Genetic Algorithm result after 100 iterations 

Table 5.21. The Statistics of Figures 5 47 

Figure 5 47 
ORIGINAL 
MAGE (c) 
IR 
MAGE(e) 
ENHANCED 
MAGE(d) 
FUSED 
MAGE(f) 

WEIGHTS 

-

-

-

Wl=0 80 
W2= 0 22 

MEAN 

111 26 

90 94 

143 79 

137 00 

STD 

19 52 

13 57 

19 79 

16 26 

ENTROPY 

7 66 

7 39 

751 

7 68 

MI 

-

-

-

4 42 

PSNR 

-

-

-

28 90 

IQ 

94 

-

100 

99 
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Table 5 22 shows the detailed comparison results of the fused images A is the fused 

image by averaging the visual and IR images B is the fused image by the proposed 

approach The total images used in this experiment were from the created database The 

results show that this approach is better than the averaging fusion result 

Table 5.22. The Statistics of Figures 5 32 to 5 47 

Figures 

5 32 

5 33 

5 34 

5 35 

5 36 

5 37 

5 38 

5 39 

5 40 

5 41 
5 42 

5 43 

5 44 

5 45 

5 46 

5 47 

MEAN 
A 

10161 
11178 
105 35 

11891 
104 2 

106 82 

115 76 

116 18 
93 22 
114 05 
11150 
11751 
114 65 
116 47 
11581 
118 57 

B 
153 50 
144 92 
124 06 
140 72 
117 17 
11741 
137 67 

137 02 

134 03 

143 26 

131 12 

142 50 

139 16 

141 82 

132 06 

137 00 

STD 
A 

135 
13 16 

12 39 

12 29 

13 12 

13 19 

13 26 

14 81 
12 56 

13 59 

13 56 

13 70 

15 02 

1541 
14 34 

15 13 

B 
183 
18 47 

14 29 

14 48 

17 90 

19 51 

14 35 

16 17 
16 26 

18 36 

15 87 

17 99 

19 23 

18 29 

15 89 

16 26 

ENTROPY 

A 
7 03 

7 26 

7 25 

7 33 

7 41 
7 46 

7 37 

7 56 

7 29 

7 23 

7 34 

7 37 

7 34 

7 29 

7 53 

7 34 

B 
7 58 

7 68 

7 42 

7 53 

7 82 

7 78 

7 68 

7 83 

7 63 

7 60 

751 
7 66 

751 
7 54 

7 60 

7 68 

MI 
A 

2 94 

3 57 

3 94 

3 66 

3 44 

3 45 

3 17 

3 68 

3 84 

3 24 

3 88 

361 
3 23 

3 05 

3 70 

3 27 

B 
3 63 

5 44 

4 27 

4 28 

5 04 

5 57 

4 03 

5 16 

4 25 

5 43 

4 20 

5 09 

4 03 

4 07 

4 03 

4 42 

PSNR 

A 
14 16 
13 64 

13 84 

13 21 

14 12 
14 10 
14 12 
14 50 

15 22 

14 64 

13 92 

13 60 

14 18 
15 08 

14 39 

14 93 

B 
35 73 

35 73 

28 13 

28 33 

29 40 

29 15 

29 26 

29 64 

33 41 

36 17 

28 25 

30 10 

30 05 

30 94 

28 75 

28 90 

IQ 
A 
85 
90 
87 
97 
91 
97 
98 
97 
87 
99 
93 
96 
94 
99 
98 
99 

B 
94 
95 
96 
96 
94 
94 
98 
96 
83 
98 
99 
95 
96 
99 
97 
99 
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6. CONCLUSIONS AND FUTURE WORK 

In this dissertation, a database for visual and thermal images was created and 

several techniques were developed to improve image quality as an effort to address the 

illumination challenge in face recognition 

Firstly, two novel image enhancement algorithms were designed to improve the 

images' visual quality Experimental results showed that the enhancement algorithms 

performed well and provided good results in terms of both luminance and contrast 

enhancement In the luminance enhancement part, it has been shown that the proposed 

algorithms worked well for both dark and bright images In the contrast enhancement 

part, it was proven that the proposed nonlinear transfer functions could make unseen or 

barely seen features in low contrast images clearly visible 

Secondly, the IR and enhanced visual images taken from different sensors, 

viewpoints, times and resolution were registered A conespondence between an IR and a 

visual image was established based on a set of image features detected by the Harris 

Corner detection algorithm in both images A spatial transformation matrix was 

determined based on some manually chosen corners and the transformation matrix was 

utilized for the registration 

Finally, a continuous genetic algorithm was developed for image fusion The 

continuous GA has the advantage of less storage requirements than the binary GA and is 

inherently faster than the binary GA because the chromosomes do not have to be decoded 

prior to the evaluation of the cost function In addition, three cost functions were 

evaluated for the fusion and decided that the entropy is a good candidate for the fusion 
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Data fusion provides an integrated image from a pair of registered and enhanced 

visual and thermal IR images The fused image is invariant to illumination directions and 

is robust under low lighting conditions They have potentials to significantly boost the 

performances of face recognition systems One of the major obstacles in face recognition 

using visual images is the illumination variation This challenge can be mitigated by 

using infrared (IR) images On the other hand, using IR images alone for face recognition 

is usually not feasible because they do not carry enough detailed information As a 

remedy, a hybrid system is presented that may benefit from both visual and IR images 

and improve face recognition under various lighting conditions 

Future work includes further improving the quality of the fused images by finding 

a separate fusion weight for each of the pixels in the image pair and utilizing the fused 

images for face recognition An evaluation will be presented on whether the fused images 

can improve face recognition especially under extreme illumination conditions 
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