223 research outputs found

    Geometric nonlinear diffusion filter and its application to X-ray imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Denoising with edge preservation is very important in digital x-ray imaging since it may allow us to reduce x-ray dose in human subjects without noticeable degradation of the image quality. In denoising filter design for x-ray imaging, edge preservation as well as noise reduction is of great concern not to lose detailed spatial information for accurate diagnosis. In addition to this, fast computation is also important since digital x-ray images are mostly comprised of large sized matrices.</p> <p>Methods</p> <p>We have developed a new denoising filter based on the nonlinear diffusion filter model. Rather than employing four directional gradients around the pixel of interest, we use geometric parameters derived from the local pixel intensity distribution in calculating the diffusion coefficients in the horizontal and vertical directions. We have tested the filter performance, including edge preservation and noise reduction, using low dose digital radiography and micro-CT images.</p> <p>Results</p> <p>The proposed denoising filter shows performance similar to those of nonlinear anisotropic diffusion filters (ADFs), one Perona-Malik ADF and the other Weickert's ADF in terms of edge preservation and noise reduction. However, the computation time has been greatly reduced.</p> <p>Conclusions</p> <p>We expect the proposed denoising filter can be greatly used for fast noise reduction particularly in low-dose x-ray imaging.</p

    Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations

    Get PDF
    Astronomical applications of recent advances in the field of nonastronomical image processing are presented. These innovative methods, applied to multiscale astronomical images, increase signal-to-noise ratio, do not smear point sources or extended diffuse structures, and are thus a highly useful preliminary step for detection of different features including point sources, smoothing of clumpy data, and removal of contaminants from background maps. We show how the new methods, combined with other algorithms of image processing, unveil fine diffuse structures while at the same time enhance detection of localized objects, thus facilitating interactive morphology studies and paving the way for the automated recognition and classification of different features. We have also developed a new application framework for astronomical image processing that implements some recent advances made in computer vision and modern image processing, along with original algorithms based on nonlinear partial differential equations. The framework enables the user to easily set up and customize an image-processing pipeline interactively; it has various common and new visualization features and provides access to many astronomy data archives. Altogether, the results presented here demonstrate the first implementation of a novel synergistic approach based on integration of image processing, image visualization, and image quality assessment

    Non-local regularization of the reverse heat equation for digital images enhancement

    Get PDF
    In 1955 Kovasznay et al. proposed to enhance an image by reversing the heat equation. This process is highly unstable and blows up the noise. Thus an efficient deblurring depends crucially on accurate denoising. In this paper we investigate the use of neighborhood filters and of a recent variant, NL-means, to stabilize the reverse heat equation. We shall prove that adding to the heat equation a term involving the self-similarities of the image stabilizes the reverse heat equation. By experiments on good quality images, not artificially blurred, we will illustrate the feasibility of the method to reveal image details. In contrast with the various PDE’s for image enhancement, the non-local reverse heat equation thus introduced is linear

    Nonlinear diffusion filtering on surfaces

    Get PDF
    Nonlinear diffusion filtering is a PDE-based method to remove noise from images that has found much success. This dissertation looks at whether nonlinear diffusion filtering can be combined with the closest point method, a relatively new and novel method for solving partial differential equations on surfaces. The closest point method is an embedding method that uses a simple representation of surfaces. The theory and implementation of for the closest point method is presented. We perform convergence studies that show good agreement with theory.\ud \ud We discuss the use of linear and nonlinear diffusion for image processing, in particular the Perona{Malik and Gaussian schemes. We show that they can be combined with the closest point method to produce impressive results, visualised beautifully using an OpenGL raytracer designed for use with the closest point method. Some surprising and unexpected eects were discovered when moving from a plane to a three-dimensional surface. These effects are described and investigated

    Connecting mathematical models for image processing and neural networks

    Get PDF
    This thesis deals with the connections between mathematical models for image processing and deep learning. While data-driven deep learning models such as neural networks are flexible and well performing, they are often used as a black box. This makes it hard to provide theoretical model guarantees and scientific insights. On the other hand, more traditional, model-driven approaches such as diffusion, wavelet shrinkage, and variational models offer a rich set of mathematical foundations. Our goal is to transfer these foundations to neural networks. To this end, we pursue three strategies. First, we design trainable variants of traditional models and reduce their parameter set after training to obtain transparent and adaptive models. Moreover, we investigate the architectural design of numerical solvers for partial differential equations and translate them into building blocks of popular neural network architectures. This yields criteria for stable networks and inspires novel design concepts. Lastly, we present novel hybrid models for inpainting that rely on our theoretical findings. These strategies provide three ways for combining the best of the two worlds of model- and data-driven approaches. Our work contributes to the overarching goal of closing the gap between these worlds that still exists in performance and understanding.Gegenstand dieser Arbeit sind die Zusammenhänge zwischen mathematischen Modellen zur Bildverarbeitung und Deep Learning. Während datengetriebene Modelle des Deep Learning wie z.B. neuronale Netze flexibel sind und gute Ergebnisse liefern, werden sie oft als Black Box eingesetzt. Das macht es schwierig, theoretische Modellgarantien zu liefern und wissenschaftliche Erkenntnisse zu gewinnen. Im Gegensatz dazu bieten traditionellere, modellgetriebene Ansätze wie Diffusion, Wavelet Shrinkage und Variationsansätze eine Fülle von mathematischen Grundlagen. Unser Ziel ist es, diese auf neuronale Netze zu übertragen. Zu diesem Zweck verfolgen wir drei Strategien. Zunächst entwerfen wir trainierbare Varianten von traditionellen Modellen und reduzieren ihren Parametersatz, um transparente und adaptive Modelle zu erhalten. Außerdem untersuchen wir die Architekturen von numerischen Lösern für partielle Differentialgleichungen und übersetzen sie in Bausteine von populären neuronalen Netzwerken. Daraus ergeben sich Kriterien für stabile Netzwerke und neue Designkonzepte. Schließlich präsentieren wir neuartige hybride Modelle für Inpainting, die auf unseren theoretischen Erkenntnissen beruhen. Diese Strategien bieten drei Möglichkeiten, das Beste aus den beiden Welten der modell- und datengetriebenen Ansätzen zu vereinen. Diese Arbeit liefert einen Beitrag zum übergeordneten Ziel, die Lücke zwischen den zwei Welten zu schließen, die noch in Bezug auf Leistung und Modellverständnis besteht.ERC Advanced Grant INCOVI

    Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing : Framework and Applications

    Get PDF
    We review recent methods based on diffusion PDE's (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate and generic tensor-driven formulation, able to regularize images while specifically taking the curvatures of local image structures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and gives regularization results where important image features can be particularly well preserved compared to its competitors. A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution technique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines. Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a subpixel accuracy and preserves then thin image structures much better than classical finite-differences discretizations, usually chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE's for multi-channel image regularization - in terms of speed and visual quality - with various applications and results on color images, including image denoising, inpainting and edge-preserving interpolation

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Discretization schemes and numerical approximations of PDE impainting models and a comparative evaluation on novel real world MRI reconstruction applications

    Get PDF
    While various PDE models are in discussion since the last ten years and are widely applied nowadays in image processing and computer vision tasks, including restoration, filtering, segmentation and object tracking, the perspective adopted in the majority of the relevant reports is the view of applied mathematician, attempting to prove the existence theorems and devise exact numerical methods for solving them. Unfortunately, such solutions are exact for the continuous PDEs but due to the discrete approximations involved in image processing, the results yielded might be quite unsatisfactory. The major contribution of This work is, therefore, to present, from an engineering perspective, the application of PDE models in image processing analysis, from the algorithmic point of view, the discretization and numerical approximation schemes used for solving them. It is of course impossible to tackle all PDE models applied in image processing in this report from the computational point of view. It is, therefore, focused on image impainting PDE models, that is on PDEs, including anisotropic diffusion PDEs, higher order non-linear PDEs, variational PDEs and other constrained/regularized and unconstrained models, applied to image interpolation/ reconstruction. Apart from this novel computational critical overview and presentation of the PDE image impainting models numerical analysis, the second major contribution of This work is to evaluate, especially the anisotropic diffusion PDEs, in novel real world image impainting applications related to MRI
    • …
    corecore