307 research outputs found

    Image based human body rendering via regression & MRF energy minimization

    Get PDF
    A machine learning method for synthesising human images is explored to create new images without relying on 3D modelling. Machine learning allows the creation of new images through prediction from existing data based on the use of training images. In the present study, image synthesis is performed at two levels: contour and pixel. A class of learning-based methods is formulated to create object contours from the training image for the synthetic image that allow pixel synthesis within the contours in the second level. The methods rely on applying robust object descriptions, dynamic learning models after appropriate motion segmentation, and machine learning-based frameworks. Image-based human image synthesis using machine learning is a research focus that has recently gained considerable attention in the field of computer graphics. It makes use of techniques from image/motion analysis in computer vision. The problem lies in the estimation of methods for image-based object configuration (i.e. segmentation, contour outline). Using the results of these analysis methods as bases, the research adopts the machine learning approach, in which human images are synthesised by executing the synthesis of contour and pixels through the learning from training image. Firstly, thesis shows how an accurate silhouette is distilled using developed background subtraction for accuracy and efficiency. The traditional vector machine approach is used to avoid ambiguities within the regression process. Images can be represented as a class of accurate and efficient vectors for single images as well as sequences. Secondly, the framework is explored using a unique view of machine learning methods, i.e., support vector regression (SVR), to obtain the convergence result of vectors for contour allocation. The changing relationship between the synthetic image and the training image is expressed as a vector and represented in functions. Finally, a pixel synthesis is performed based on belief propagation. This thesis proposes a novel image-based rendering method for colour image synthesis using SVR and belief propagation for generalisation to enable the prediction of contour and colour information from input colour images. The methods rely on using appropriately defined and robust input colour images, optimising the input contour images within a sparse SVR framework. Firstly, the thesis shows how contour can effectively and efficiently be predicted from small numbers of input contour images. In addition, the thesis exploits the sparse properties of SVR efficiency, and makes use of SVR to estimate regression function. The image-based rendering method employed in this study enables contour synthesis for the prediction of small numbers of input source images. This procedure avoids the use of complex models and geometry information. Secondly, the method used for human body contour colouring is extended to define eight differently connected pixels, and construct a link distance field via the belief propagation method. The link distance, which acts as the message in propagation, is transformed by improving the low-envelope method in fast distance transform. Finally, the methodology is tested by considering human facial and human body clothing information. The accuracy of the test results for the human body model confirms the efficiency of the proposed method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Deep Primal-Dual Network for Guided Depth Super-Resolution

    Full text link
    In this paper we present a novel method to increase the spatial resolution of depth images. We combine a deep fully convolutional network with a non-local variational method in a deep primal-dual network. The joint network computes a noise-free, high-resolution estimate from a noisy, low-resolution input depth map. Additionally, a high-resolution intensity image is used to guide the reconstruction in the network. By unrolling the optimization steps of a first-order primal-dual algorithm and formulating it as a network, we can train our joint method end-to-end. This not only enables us to learn the weights of the fully convolutional network, but also to optimize all parameters of the variational method and its optimization procedure. The training of such a deep network requires a large dataset for supervision. Therefore, we generate high-quality depth maps and corresponding color images with a physically based renderer. In an exhaustive evaluation we show that our method outperforms the state-of-the-art on multiple benchmarks.Comment: BMVC 201

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Data-Augmented Structure-Property Mapping for Accelerating Computational Design of Advanced Material Systems

    Get PDF
    abstract: Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of material representations and predictive PSP mappings while managing a small data acquisition budget. This dissertation thus focuses on developing learning mechanisms that leverage context-specific meta-data and physics-based theories. Two research tasks will be conducted: In the first, we develop a statistical generative model that learns to characterize high-dimensional microstructure samples using low-dimensional features. We improve the data efficiency of a variational autoencoder by introducing a morphology loss to the training. We demonstrate that the resultant microstructure generator is morphology-aware when trained on a small set of material samples, and can effectively constrain the microstructure space during material design. In the second task, we investigate an active learning mechanism where new samples are acquired based on their violation to a theory-driven constraint on the physics-based model. We demonstrate using a topology optimization case that while data acquisition through the physics-based model is often expensive (e.g., obtaining microstructures through simulation or optimization processes), the evaluation of the constraint can be far more affordable (e.g., checking whether a solution is optimal or equilibrium). We show that this theory-driven learning algorithm can lead to much improved learning efficiency and generalization performance when such constraints can be derived. The outcomes of this research is a better understanding of how physics knowledge about material systems can be integrated into machine learning frameworks, in order to achieve more cost-effective and reliable learning of material representations and predictive models, which are essential to accelerate computational material design.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    3D hand tracking.

    Get PDF
    The hand is often considered as one of the most natural and intuitive interaction modalities for human-to-human interaction. In human-computer interaction (HCI), proper 3D hand tracking is the first step in developing a more intuitive HCI system which can be used in applications such as gesture recognition, virtual object manipulation and gaming. However, accurate 3D hand tracking, remains a challenging problem due to the hand’s deformation, appearance similarity, high inter-finger occlusion and complex articulated motion. Further, 3D hand tracking is also interesting from a theoretical point of view as it deals with three major areas of computer vision- segmentation (of hand), detection (of hand parts), and tracking (of hand). This thesis proposes a region-based skin color detection technique, a model-based and an appearance-based 3D hand tracking techniques to bring the human-computer interaction applications one step closer. All techniques are briefly described below. Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on individual pixels. This thesis presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection technique on the popular Compaq dataset (Jones & Rehg 2002). The proposed technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images. Hand tracking is not a trivial task as it requires tracking of 27 degreesof- freedom of hand. Hand deformation, self occlusion, appearance similarity and irregular motion are major problems that make 3D hand tracking a very challenging task. This thesis proposes a model-based 3D hand tracking technique, which is improved by using proposed depth-foreground-background ii feature, palm deformation module and context cue. However, the major problem of model-based techniques is, they are computationally expensive. This can be overcome by discriminative techniques as described below. Discriminative techniques (for example random forest) are good for hand part detection, however they fail due to sensor noise and high interfinger occlusion. Additionally, these techniques have difficulties in modelling kinematic or temporal constraints. Although model-based descriptive (for example Markov Random Field) or generative (for example Hidden Markov Model) techniques utilize kinematic and temporal constraints well, they are computationally expensive and hardly recover from tracking failure. This thesis presents a unified framework for 3D hand tracking, using the best of both methodologies, which out performs the current state-of-the-art 3D hand tracking techniques. The proposed 3D hand tracking techniques in this thesis can be used to extract accurate hand movement features and enable complex human machine interaction such as gaming and virtual object manipulation

    Discriminative Random Field Segmentation of Lung Nodules in CT Studies

    Get PDF
    The ability to conduct high-quality semiautomatic 3D segmentation of lung nodules in CT scans is of high value to busy radiologists. Discriminative random fields (DRFs) were used to segment 3D volumes of lung nodules in CT scan data using only one seed point per nodule. Optimal parameters for the DRF inference were first found using simulated annealing. These parameters were then used to solve the inference problem using the graph cuts algorithm. Results of the segmentation exhibited high precision and recall. The system can be adapted to facilitate the process of longitudinal studies but will still require human checking for failed cases
    corecore