109,907 research outputs found

    Modeling Camera Effects to Improve Visual Learning from Synthetic Data

    Full text link
    Recent work has focused on generating synthetic imagery to increase the size and variability of training data for learning visual tasks in urban scenes. This includes increasing the occurrence of occlusions or varying environmental and weather effects. However, few have addressed modeling variation in the sensor domain. Sensor effects can degrade real images, limiting generalizability of network performance on visual tasks trained on synthetic data and tested in real environments. This paper proposes an efficient, automatic, physically-based augmentation pipeline to vary sensor effects --chromatic aberration, blur, exposure, noise, and color cast-- for synthetic imagery. In particular, this paper illustrates that augmenting synthetic training datasets with the proposed pipeline reduces the domain gap between synthetic and real domains for the task of object detection in urban driving scenes

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia

    Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades

    Get PDF
    Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labelling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.Comment: 10 pages, 6 figures in Frontiers in Neuromorphic Engineering, special topic on Benchmarks and Challenges for Neuromorphic Engineering, 2015 (under review

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

    Full text link
    Selective weeding is one of the key challenges in the field of agriculture robotics. To accomplish this task, a farm robot should be able to accurately detect plants and to distinguish them between crop and weeds. Most of the promising state-of-the-art approaches make use of appearance-based models trained on large annotated datasets. Unfortunately, creating large agricultural datasets with pixel-level annotations is an extremely time consuming task, actually penalizing the usage of data-driven techniques. In this paper, we face this problem by proposing a novel and effective approach that aims to dramatically minimize the human intervention needed to train the detection and classification algorithms. The idea is to procedurally generate large synthetic training datasets randomizing the key features of the target environment (i.e., crop and weed species, type of soil, light conditions). More specifically, by tuning these model parameters, and exploiting a few real-world textures, it is possible to render a large amount of realistic views of an artificial agricultural scenario with no effort. The generated data can be directly used to train the model or to supplement real-world images. We validate the proposed methodology by using as testbed a modern deep learning based image segmentation architecture. We compare the classification results obtained using both real and synthetic images as training data. The reported results confirm the effectiveness and the potentiality of our approach.Comment: To appear in IEEE/RSJ IROS 201
    corecore