5,833 research outputs found

    A preliminary experiment definition for video landmark acquisition and tracking

    Get PDF
    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Wide area detection system: Conceptual design study

    Get PDF
    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis

    Auto-video Tracking System: Performance Evaluation

    Get PDF
    Automatic target tracking systems are employed in a wide variety of missions and tracking environment such as fire control, guidance, navigation, passive range estimation, and automatic target discrimination. The tracker performance depends upon target size, contrast,  speed, and signal-to-noise ratio. The evaluation of a tracker system involves lengthy field trials and measurements. In the present article, a method for quick evaluation of tracker system and working out selection criteria for different tracking algorithm for various target and background combinations have been suggested. Performance measures such as aiming point error, durationof successful tracking, number of tracking losses, indication of confidence, and system reaction time have been used to evaluate the performance of a tracking system.Defence Science Journal, 2008, 58(4), pp.565-572, DOI:http://dx.doi.org/10.14429/dsj.58.167

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Autonomous flight and remote site landing guidance research for helicopters

    Get PDF
    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test

    Purkinje image eyetracking: A market survey

    Get PDF
    The Purkinje image eyetracking system was analyzed to determine the marketability of the system. The eyetracking system is a synthesis of two separate instruments, the optometer that measures the refractive power of the eye and the dual Purkinje image eyetracker that measures the direction of the visual axis

    Motion capture based on RGBD data from multiple sensors for avatar animation

    Get PDF
    With recent advances in technology and emergence of affordable RGB-D sensors for a wider range of users, markerless motion capture has become an active field of research both in computer vision and computer graphics. In this thesis, we designed a POC (Proof of Concept) for a new tool that enables us to perform motion capture by using a variable number of commodity RGB-D sensors of different brands and technical specifications on constraint-less layout environments. The main goal of this work is to provide a tool with motion capture capabilities by using a handful of RGB-D sensors, without imposing strong requirements in terms of lighting, background or extension of the motion capture area. Of course, the number of RGB-D sensors needed is inversely proportional to their resolution, and directly proportional to the size of the area to track to. Built on top of the OpenNI 2 library, we made this POC compatible with most of the nonhigh-end RGB-D sensors currently available in the market. Due to the lack of resources on a single computer, in order to support more than a couple of sensors working simultaneously, we need a setup composed of multiple computers. In order to keep data coherency and synchronization across sensors and computers, our tool makes use of a semi-automatic calibration method and a message-oriented network protocol. From color and depth data given by a sensor, we can also obtain a 3D pointcloud representation of the environment. By combining pointclouds from multiple sensors, we can collect a complete and animated 3D pointcloud that can be visualized from any viewpoint. Given a 3D avatar model and its corresponding attached skeleton, we can use an iterative optimization method (e.g. Simplex) to find a fit between each pointcloud frame and a skeleton configuration, resulting in 3D avatar animation when using such skeleton configurations as key frames

    Report on active and planned spacecraft and experiments

    Get PDF
    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries
    corecore