567 research outputs found

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV

    Get PDF
    Several and distinct Unmanned Aircraft Vehicle (UAV) applications are emerging, demanding steps to be taken in order to allow those platforms to operate in an un-segregated airspace. The key risk component, hindering the widespread integration of UAV in an un-segregated airspace, is the autonomous component: the need for a high level of autonomy in the UAV that guarantees a safe and secure integration in an un-segregated airspace. At this point, the UAV accurate state estimation plays a fundamental role for autonomous UAV, being one of the main responsibilities of the onboard autopilot. Given the 21st century global economic paradigm, academic projects based on inexpensive UAV platforms but on expensive commercial autopilots start to become a non-economic solution. Consequently, there is a pressing need to overcome this problem through, on one hand, the development of navigation systems using the high availability of low cost, low power consumption, and small size navigation sensors offered in the market, and, on the other hand, using Global Navigation Satellite Systems Software Receivers (GNSS SR). Since the performance that is required for several applications in order to allow UAV to fly in an un-segregated airspace is not yet defined, for most UAV academic applications, the navigation system accuracy required should be at least the same as the one provided by the available commercial autopilots. This research focuses on the investigation of the performance of an integrated navigation system composed by a low performance inertial measurement unit (IMU) and a GNSS SR. A strapdown mechanization algorithm, to transform raw inertial data into navigation solution, was developed, implemented and evaluated. To fuse the data provided by the strapdown algorithm with the one provided by the GNSS SR, an Extended Kalman Filter (EKF) was implemented in loose coupled closed-loop architecture, and then evaluated. Moreover, in order to improve the performance of the IMU raw data, the Allan variance and denoise techniques were considered for both studying the IMU error model and improving inertial sensors raw measurements. In order to carry out the study, a starting question was made and then, based on it, eight questions were derived. These eight secondary questions led to five hypotheses, which have been successfully tested along the thesis. This research provides a deliverable to the Project of Research and Technologies on Unmanned Air Vehicles (PITVANT) Group, consisting of a well-documented UAV Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV II navigation algorithm, an implemented and evaluated navigation algorithm in the MatLab environment, and Allan variance and denoising algorithms to improve inertial raw data, enabling its full implementation in the existent Portuguese Air Force Academy (PAFA) UAV. The derivable provided by this thesis is the answer to the main research question, in such a way that it implements a step by step procedure on how the Strapdown IMU (SIMU)/GNSS SR should be developed and implemented in order to replace the commercial autopilot. The developed integrated SIMU/GNSS SR solution evaluated, in post-processing mode, through van-test scenario, using real data signals, at the Galileo Test and Development Environment (GATE) test area in Berchtesgaden, Germany, when confronted with the solution provided by the commercial autopilot, proved to be of better quality. Although no centimetre-level of accuracy was obtained for the position and velocity, the results confirm that the integration strategy outperforms the Piccolo system performance, being this the ultimate goal of this research work

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    1999 Flight Mechanics Symposium

    Get PDF
    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers
    corecore