22,344 research outputs found

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    Image Retrieval based on Macro Regions

    Get PDF
    Various image retrieval methods are derived using local features, and among them the local binary pattern (LBP) approach is very famous. The basic disadvantage of these methods is they completely fail in representing features derived from large or macro structures or regions, which are very much essential to represent natural images. To address this multi block LBP are proposed in the literature. The other disadvantage of LBP and LTP based methods are they derive a coded image which ranges 0 to 255 and 0 to 3561 respectively. If one wants to integrate the structural texture features by deriving grey level co-occurrence matrix (GLCM), then GLCM ranges from 256 x 256 and 3562 x 3562 in case of LBP and LTP respectively. The present paper proposes a new scheme called multi region quantized LBP (MR-QLBP) to overcome the above disadvantages by quantizing the LBP codes on a multi-region, thus to derive more precisely and comprehensively the texture features to provide a better retrieval rate. The proposed method is experimented on Corel database and the experimental results indicate the efficiency of the proposed method over the other methods

    MIMIC: a Multi Input Micro-Influencers Classifier

    Get PDF
    Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performance of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.98 with our best performing model

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Interactive real-time three-dimensional visualisation of virtual textiles

    Get PDF
    Virtual textile databases provide a cost-efficient alternative to the use of existing hardcover sample catalogues. By taking advantage of the high performance features offered by the latest generation of programmable graphics accelerator boards, it is possible to combine photometric stereo methods with 3D visualisation methods to implement a virtual textile database. In this thesis, we investigate and combine rotation invariant texture retrieval with interactive visualisation techniques. We use a 3D surface representation that is a generic data representation that allows us to combine real-time interactive 3D visualisation methods with present day texture retrieval methods. We begin by investigating the most suitable data format for the 3D surface representation and identify relief-mapping combined with Bézier surfaces as the most suitable 3D surface representations for our needs, and go on to describe how these representation can be combined for real-time rendering. We then investigate ten different methods of implementing rotation invariant texture retrieval using feature vectors. These results show that first order statistics in the form of histogram data are very effective for discriminating colour albedo information, while rotation invariant gradient maps are effective for distinguishing between different types of micro-geometry using either first or second order statistics.Engineering and physical Sciences Research (EPSRC
    • …
    corecore