115,869 research outputs found

    Interactive Image Data Labeling Using Self-Organizing Maps in an Augmented Reality Scenario

    Get PDF
    Bekel H, Heidemann G, Ritter H. Interactive Image Data Labeling Using Self-Organizing Maps in an Augmented Reality Scenario. Neural Networks. 2005;18(2005 Special Iss.):566-574.We present an approach for the convenient labeling of image patches gathered from an unrestricted environment. The system is employed for a mobile Augmented Reality (AR) gear: While the user walks around with the head-mounted AR-gear, context-free modules for focus-of-attention permanently sample the most “interesting” image patches. After this acquisition phase, a Self-Organizing Map (SOM) is trained on the complete set of patches, using combinations of MPEG-7 features as a data representation. The SOM allows visualization of the sampled patches and an easy manual sorting into categories. With very little effort, the user can compose a training set for a classifier, thus, unknown objects can be made known to the system. We evaluate the system for COIL-imagery and demonstrate that a user can reach satisfying categorization within few steps, even for image data sampled from walking in an office environment

    Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

    Get PDF
    In this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function) networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented

    CTex - an adaptive unsupervised segmentation algorithm based on color-texture coherence

    Get PDF
    This paper presents the development of an unsupervised image segmentation framework (referred to as CTex) that is based on the adaptive inclusion of color and texture in the process of data partition. An important contribution of this work consists of a new formulation for the extraction of color features that evaluates the input image in a multispace color representation. To achieve this, we have used the opponent characteristics of the RGB and YIQ color spaces where the key component was the inclusion of the self organizing map (SOM) network in the computation of the dominant colors and estimation of the optimal number of clusters in the image. The texture features are computed using a multichannel texture decomposition scheme based on Gabor filtering. The major contribution of this work resides in the adaptive integration of the color and texture features in a compound mathematical descriptor with the aim of identifying the homogenous regions in the image. This integration is performed by a novel adaptive clustering algorithm that enforces the spatial continuity during the data assignment process. A comprehensive qualitative and quantitative performance evaluation has been carried out and the experimental results indicate that the proposed technique is accurate in capturing the color and texture characteristics when applied to complex natural images
    corecore