339 research outputs found

    The second order local-image-structure solid

    Get PDF
    Characterization of second order local image structure by a 6D vector ( or jet) of Gaussian derivative measurements is considered. We consider the affect on jets of a group of transformations - affine intensity-scaling, image rotation and reflection, and their compositions - that preserve intrinsic image structure. We show how this group stratifies the jet space into a system of orbits. Considering individual orbits as points, a 3D orbifold is defined. We propose a norm on jet space which we use to induce a metric on the orbifold. The metric tensor shows that the orbifold is intrinsically curved. To allow visualization of the orbifold and numerical computation with it, we present a mildly-distorting but volume-preserving embedding of it into euclidean 3-space. We call the resulting shape, which is like a flattened lemon, the second order local-image-structure solid. As an example use of the solid, we compute the distribution of local structures in noise and natural images. For noise images, analytical results are possible and they agree with the empirical results. For natural images, an excess of locally 1D structure is found

    A Rule Based Segmentation Approaches to Extract Retinal Blood Vessels in Fundus Image

    Get PDF
    The physiological structures of the retinal blood vessel are one of the key features that visible in the retinal images and contain the information associate with the anatomical abnormalities. It is accepted all over the world to judge the cardiovascular and retinal disease. To avoid the risk of visual impairment, appropriate vessel segmentation is mandatory. Here has proposed a segmentation algorithm that efficiently extracts the blood vessels from the retinal fundus image. The proposed segmentation algorithm is performed Lab and Principle Component (PC) based gray level conversion, Contrast Limited Adaptive Histogram Equalization (CLAHE), morphological operations, Local Property-Based Pixel Correction (LPBPC). For appropriate detection proposed vessels correction algorithm LPBPC that check the feature of the vessels and remove the wrong vessel detection. To measure the appropriateness of the proposed algorithm, the experimental results are compared with the corresponding ground truth images. The experimental results have shown that the proposed blood vessel algorithm is more accurate than the existing algorithms

    A Novel Image Descriptor Based on Anisotropic Filtering

    Get PDF
    International audienceIn this paper, we present a new image patch descriptor for object detection and image matching. The descriptor is based on the standard HoG pipeline. The descriptor is generated in a novel way, by embedding the response of an oriented anisotropic derivative half Gaussian kernel in the Histogram of Orientation Gradient (HoG) framework. By doing so, we are able to bin more curvature information. As a result, our descriptor performs better than the state of art descriptors such as SIFT, GLOH and DAISY. In addition to this, we repeat the same procedure by replacing the anisotropic derivative half Gaussian kernel with a compu-tationally less complex anisotropic derivative half exponential kernel and achieve similar results. The proposed image descriptors using both the kernels are very robust and shows promising results for variations in brightness, scale, rotation, view point, blur and compression. We have extensively evaluated the effectiveness of the devised method with various challenging image pairs acquired under varying circumstances

    Stereo Correspondence with Local Descriptors for Object Recognition

    Get PDF

    Fast restoration for out-of-focus blurred images of QR code with edge prior information via image sensing.

    Get PDF
    Out-of-focus blurring of the QR code is very common in mobile Internet systems, which often causes failure of authentication as a result of a misreading of the information hence adversely affects the operation of the system. To tackle this difficulty, this work firstly introduced an edge prior information, which is the average distance between the center point and the edge of the clear QR code images in the same batch. It is motivated by the theoretical analysis and the practical observation of the theory of CMOS image sensing, optics information, blur invariants, and the invariance of the center of the diffuse light spots. After obtaining the edge prior information, combining the iterative image and the center point of the binary image, the proposed method can accurately estimate the parameter of the out-of-focus blur kernel. Furthermore, we obtain the sharp image by Wiener filter, a non-blind image deblurring algorithm. By this, it avoids excessive redundant calculations. Experimental results validate that the proposed method has great practical utility in terms of deblurring quality, robustness, and computational efficiency, which is suitable for barcode application systems, e.g., warehouse, logistics, and automated production

    Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI

    Full text link
    We develop a general analytical and numerical framework for estimating intra- and extra-neurite water fractions and diffusion coefficients, as well as neurite orientational dispersion, in each imaging voxel. By employing a set of rotational invariants and their expansion in the powers of diffusion weighting, we analytically uncover the nontrivial topology of the parameter estimation landscape, showing that multiple branches of parameters describe the measurement almost equally well, with only one of them corresponding to the biophysical reality. A comprehensive acquisition shows that the branch choice varies across the brain. Our framework reveals hidden degeneracies in MRI parameter estimation for neuronal tissue, provides microstructural and orientational maps in the whole brain without constraints or priors, and connects modern biophysical modeling with clinical MRI.Comment: 25 pages, 12 figures, elsarticle two-colum

    Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data

    Get PDF
    Segmentation of anatomical regions of the brain is one of the fundamental problems in medical image analysis. It is traditionally solved by iso-surfacing or through the use of active contours/deformable models on a gray-scale magnetic resonance imaging (MRI) data. We develop a technique that uses anisotropic diffusion properties of brain tissue available from diffusion tensor (DT)-MRI to segment brain structures. We develop a computational pipeline starting from raw diffusion tensor data through computation of invariant anisotropy measures to construction of geometric models of the brain structures. This provides an environment for user-controlled 3-D segmentation of DT-MRI datasets. We use a level set approach to remove noise from the data and to produce smooth, geometric models. We apply our technique to DT-MRI data of a human subject and build models of the isotropic and strongly anisotropic regions of the brain. Once geometric models have been constructed they can be combined to study spatial relationships and quantitatively analyzed to produce the volume and surface area of the segmented regions

    Application of the Least Squares Solutions in Image Deblurring

    Get PDF
    A new method for the reconstruction of blurred digital images damaged by separable motion blur is established. The main attribute of the method is based on multiple applications of the least squares solutions of certain matrix equations which define the separable motion blur in conjunction with known image deconvolution techniques. The key feature of the proposed algorithms is reflected in the fact that they can be used only in symbiosis with other image restoration algorithms
    corecore