525 research outputs found

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    FASTLens (FAst STatistics for weak Lensing) : Fast method for Weak Lensing Statistics and map making

    Full text link
    With increasingly large data sets, weak lensing measurements are able to measure cosmological parameters with ever greater precision. However this increased accuracy also places greater demands on the statistical tools used to extract the available information. To date, the majority of lensing analyses use the two point-statistics of the cosmic shear field. These can either be studied directly using the two-point correlation function, or in Fourier space, using the power spectrum. But analyzing weak lensing data inevitably involves the masking out of regions or example to remove bright stars from the field. Masking out the stars is common practice but the gaps in the data need proper handling. In this paper, we show how an inpainting technique allows us to properly fill in these gaps with only NlogNN \log N operations, leading to a new image from which we can compute straight forwardly and with a very good accuracy both the pow er spectrum and the bispectrum. We propose then a new method to compute the bispectrum with a polar FFT algorithm, which has the main advantage of avoiding any interpolation in the Fourier domain. Finally we propose a new method for dark matter mass map reconstruction from shear observations which integrates this new inpainting concept. A range of examples based on 3D N-body simulations illustrates the results.Comment: Final version accepted by MNRAS. The FASTLens software is available from the following link : http://irfu.cea.fr/Ast/fastlens.software.ph

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Unsupervised Learning from Shollow to Deep

    Get PDF
    Machine learning plays a pivotal role in most state-of-the-art systems in many application research domains. With the rising of deep learning, massive labeled data become the solution of feature learning, which enables the model to learn automatically. Unfortunately, the trained deep learning model is hard to adapt to other datasets without fine-tuning, and the applicability of machine learning methods is limited by the amount of available labeled data. Therefore, the aim of this thesis is to alleviate the limitations of supervised learning by exploring algorithms to learn good internal representations, and invariant feature hierarchies from unlabelled data. Firstly, we extend the traditional dictionary learning and sparse coding algorithms onto hierarchical image representations in a principled way. To achieve dictionary atoms capture additional information from extended receptive fields and attain improved descriptive capacity, we present a two-pass multi-resolution cascade framework for dictionary learning and sparse coding. This cascade method allows collaborative reconstructions at different resolutions using only the same dimensional dictionary atoms. The jointly learned dictionary comprises atoms that adapt to the information available at the coarsest layer, where the support of atoms reaches a maximum range, and the residual images, where the supplementary details refine progressively a reconstruction objective. Our method generates flexible and accurate representations using only a small number of coefficients, and is efficient in computation. In the following work, we propose to incorporate the traditional self-expressiveness property into deep learning to explore better representation for subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the ``self-expressiveness'' property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. However, Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. We propose two methods to tackle this problem. One method is based on kk-Subspace Clustering, where we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. This in turn frees us from the need of having an affinity matrix to perform clustering. The other way starts from using a feed forward network to replace the spectral clustering and learn the affinities of each data from "self-expressive" layer. We introduce the Neural Collaborative Subspace Clustering, where it benefits from a classifier which determines whether a pair of points lies on the same subspace under supervision of "self-expressive" layer. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. In summary, we make constributions on how to perform the unsupervised learning in several tasks in this thesis. It starts from traditional sparse coding and dictionary learning perspective in low-level vision. Then, we exploit how to incorporate unsupervised learning in convolutional neural networks without label information and make subspace clustering to large scale dataset. Furthermore, we also extend the clustering on dense prediction task (saliency detection)
    corecore