8 research outputs found

    Effective Image Restorations Using a Novel Spatial Adaptive Prior

    Get PDF
    Bayesian or Maximum a posteriori (MAP) approaches can effectively overcome the ill-posed problems of image restoration or deconvolution through incorporating a priori image information. Many restoration methods, such as nonquadratic prior Bayesian restoration and total variation regularization, have been proposed with edge-preserving and noise-removing properties. However, these methods are often inefficient in restoring continuous variation region and suppressing block artifacts. To handle this, this paper proposes a Bayesian restoration approach with a novel spatial adaptive (SA) prior. Through selectively and adaptively incorporating the nonlocal image information into the SA prior model, the proposed method effectively suppress the negative disturbance from irrelevant neighbor pixels, and utilizes the positive regularization from the relevant ones. A two-step restoration algorithm for the proposed approach is also given. Comparative experimentation and analysis demonstrate that, bearing high-quality edge-preserving and noise-removing properties, the proposed restoration also has good deblocking property

    Multi-spectral light interaction modeling and imaging of skin lesions

    Get PDF
    Nevoscope as a diagnostic tool for melanoma was evaluated using a white light source with promising results. Information about the lesion depth and its structure will further improve the sensitivity and specificity of melanoma diagnosis. Wavelength-dependent variable penetration power of monochromatic light in the trans-illumination imaging using the Nevoscope can be used to obtain this information. Optimal selection of wavelengths for multi-spectral imaging requires light-tissue interaction modeling. For this, three-dimensional wavelength dependent voxel-based models of skin lesions with different depths are proposed. A Monte Carlo simulation algorithm (MCSVL) is developed in MATLAB and the tissue models are simulated using the Nevoscope optical geometry. 350-700nm optical wavelengths with an interval of 5nm are used in the study. A correlation analysis between the lesion depth and the diffuse reflectance is then used to obtain wavelengths that will produce diffuse reflectance suitable for imaging and give information related to the nevus depth and structure. Using the selected wavelengths, multi-spectral trans-illumination images of the skin lesions are collected and analyzed. An adaptive wavelet transform based tree-structure classification method (ADWAT) is proposed to classify epi-illuminance images of the skin lesions obtained using a white light source into melanoma and dysplastic nevus images classes. In this method, tree-structure models of melanoma and dysplastic nevus are developed and semantically compared with the tree-structure of the unknown image for classification. Development of the tree-structure is dependent on threshold selections obtained from a statistical analysis of the feature set. This makes the classification method adaptive. The true positive value obtained for this classifier is 90% with a false positive of 10%. The Extended ADWAT method and Fuzzy Membership Functions method using combined features from the epi-illuminance and multi-spectral images further improve the sensitivity and specificity of melanoma diagnosis. The combined feature set with the Extended-ADWAT method gives a true positive of 93.33% with a false positive of 8.88%. The Gaussian Membership Functions give a true positive of 100% with a false positive of 17.77% while the Bell Membership Functions give a true positive of 100% with a false positive of 4.44%

    Pixel level data-dependent triangulation with its applications

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multiresolution image modelling and estimation

    Get PDF
    Multiresolution representations make explicit the notion of scale in images, and facilitate the combination of information from different scales. To date, however, image modelling and estimation schemes have not exploited such representations and tend rather to be derived from two- dimensional extensions of traditional one-dimensional signal processing techniques. In the causal case, autoregressive (AR) and ARMA models lead to minimum mean square error (MMSE) estimators which are two-dimensional variants of the well-established Kalman filter. Noncausal approaches tend to be transform-based and the MMSE estimator is the two- dimensional Wiener filter. However, images contain profound nonstationarities such as edges, which are beyond the descriptive capacity of such signal models, and defects such as blurring (and streaking in the causal case) are apparent in the results obtained by the associated estimators. This thesis introduces a new multiresolution image model, defined on the quadtree data structure. The model is a one-dimensional, first-order gaussian martingale process causal in the scale dimension. The generated image, however, is noncausal and exhibits correlations at all scales unlike those generated by traditional models. The model is capable of nonstationary behaviour in all three dimensions (two position and one scale) and behaves isomorphically but independently at each scale, in keeping with the notion of scale invariance in natural images. The optimal (MMSE) estimator is derived for the case of corruption by additive white gaussian noise (AWGN). The estimator is a one-dimensional, first-order linear recursive filter with a computational burden far lower than that of traditional estimators. However, the simple quadtree data structure leads to aliasing and 'block' artifacts in the estimated images. This could be overcome by spatial filtering, but a faster method is introduced which requires no additional multiplications but involves the insertion of some extra nodes into the quadtree. Nonstationarity is introduced by a fast, scale-invariant activity detector defined on the quadtree. Activity at all scales is combined in order to achieve noise rejection. The estimator is modified at each scale and position by the detector output such that less smoothing is applied near edges and more in smooth regions. Results demonstrate performance superior to that of existing methods, and at drastically lower computational cost. The estimation scheme is further extended to include anisotropic processing, which has produced good results in image restoration. An orientation estimator controls anisotropic filtering, the output of which is made available to the image estimator

    Bayesian edge-detection in image processing

    Get PDF
    Problems associated with the processing and statistical analysis of image data are the subject of much current interest, and many sophisticated techniques for extracting semantic content from degraded or corrupted images have been developed. However, such techniques often require considerable computational resources, and thus are, in certain applications, inappropriate. The detection localised discontinuities, or edges, in the image can be regarded as a pre-processing operation in relation to these sophisticated techniques which, if implemented efficiently and successfully, can provide a means for an exploratory analysis that is useful in two ways. First, such an analysis can be used to obtain quantitative information relating to the underlying structures from which the various regions in the image are derived about which we would generally be a priori ignorant. Secondly, in cases where the inference problem relates to discovery of the unknown location or dimensions of a particular region or object, or where we merely wish to infer the presence or absence of structures having a particular configuration, an accurate edge-detection analysis can circumvent the need for the subsequent sophisticated analysis. Relatively little interest has been focussed on the edge-detection problem within a statistical setting. In this thesis, we formulate the edge-detection problem in a formal statistical framework, and develop a simple and easily implemented technique for the analysis of images derived from two-region single edge scenes. We extend this technique in three ways; first, to allow the analysis of more complicated scenes, secondly, by incorporating spatial considerations, and thirdly, by considering images of various qualitative nature. We also study edge reconstruction and representation given the results obtained from the exploratory analysis, and a cognitive problem relating to the detection of objects modelled by members of a class of simple convex objects. Finally, we study in detail aspects of one of the sophisticated image analysis techniques, and the important general statistical applications of the theory on which it is founded

    Bayesian edge-detection in image processing

    Get PDF
    Problems associated with the processing and statistical analysis of image data are the subject of much current interest, and many sophisticated techniques for extracting semantic content from degraded or corrupted images have been developed. However, such techniques often require considerable computational resources, and thus are, in certain applications, inappropriate. The detection localised discontinuities, or edges, in the image can be regarded as a pre-processing operation in relation to these sophisticated techniques which, if implemented efficiently and successfully, can provide a means for an exploratory analysis that is useful in two ways. First, such an analysis can be used to obtain quantitative information relating to the underlying structures from which the various regions in the image are derived about which we would generally be a priori ignorant. Secondly, in cases where the inference problem relates to discovery of the unknown location or dimensions of a particular region or object, or where we merely wish to infer the presence or absence of structures having a particular configuration, an accurate edge-detection analysis can circumvent the need for the subsequent sophisticated analysis. Relatively little interest has been focussed on the edge-detection problem within a statistical setting. In this thesis, we formulate the edge-detection problem in a formal statistical framework, and develop a simple and easily implemented technique for the analysis of images derived from two-region single edge scenes. We extend this technique in three ways; first, to allow the analysis of more complicated scenes, secondly, by incorporating spatial considerations, and thirdly, by considering images of various qualitative nature. We also study edge reconstruction and representation given the results obtained from the exploratory analysis, and a cognitive problem relating to the detection of objects modelled by members of a class of simple convex objects. Finally, we study in detail aspects of one of the sophisticated image analysis techniques, and the important general statistical applications of the theory on which it is founded
    corecore