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Summary

Multiresolution representations make explicit the notion of scale in images, and facilitate the 
combination of information from different scales. To date, however, image modelling and esti
mation schemes have not exploited such representations and tend rather to be derived from two- 
dimensional extensions of traditional one-dimensional signal processing techniques. In the 
causal case, autoregressive (AR) and ARMA models lead to minimum mean square error 
(MMSE) estimators which are two-dimensional variants of the well-established Kalman filter. 
Noncausal approaches tend to be transform-based and the MMSE estimator is the two- 
dimensional Wiener filter. However, images contain profound nonstationarities such as edges, 
which are beyond the descriptive capacity of such signal models, and defects such as blurring 
(and streaking in the causal case) are apparent in the results obtained by the associated estimators.

This thesis introduces a new multiresolution image model, defined on the quadtree data structure. 
The model is a one-dimensional, first-order gaussian martingale process causal in the scale 
dimension. The generated image, however, is noncausal and exhibits correlations at all scales 
unlike those generated by traditional models. The model is capable of nonstationary behaviour in 
all three dimensions (two position and one scale) and behaves isomorphically but independently 
at each scale, in keeping with the notion of scale invariance in natural images.

The optimal (MMSE) estimator is derived for the case of corruption by additive white gaussian 
noise (AWGN). The estimator is a one-dimensional, first-order linear recursive filter with a com
putational burden far lower than that of traditional estimators. However, the simple quadtree data 
structure leads to aliasing and 'block' artifacts in the estimated images. This could be overcome 
by spatial filtering, but a faster method is introduced which requires no additional multiplications 
but involves the insertion of some extra nodes into the quadtree. Nonstationarity is introduced by 
a fast, scale-invariant activity detector defined on the quadtree. Activity at all scales is combined 
in order to achieve noise rejection. The estimator is modified at each scale and position by the 
detector output such that less smoothing is applied near edges and more in smooth regions. 
Results demonstrate performance superior to that of existing methods, and at drastically lower 
computational cost. The estimation scheme is further extended to include anisotropic processing, 
which has produced good results in image restoration. An orientation estimator controls anisotro
pic filtering, the output of which is made available to the image estimator.
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CHAPTER 1 

INTRODUCTION

1.1 Introductory Remarks

Information-processing system s generally represent ‘real-world’ events or processes by 

the use of signals. A signal in this context is a function of a number of indices, the 

number being equal to the dimension of the signal space.

The transition from the actual, real event to its signal representation (for example the 

capture o f a light distribution and its conversion to an electrical representation by a telev

ision camera, or the transduction by sensors o f temperature or pressure into electrical sig

nals) necessarily involves som e input o f energy from the environment. At this stage, and 

in subsequent processing, the signal is liable to distortions which render it a poorer 

representation o f the original process.

Spurious energy in the environment, sensor noise and nonlinearities, and other distortions 

generated internally at later stages in processing combine to corrupt the signal. Physical, 

financial and technical constraints limit the degree to which such degradations may be 

avoided, and typically the information-processing system is bound to work with cor

rupted signals.

As an example, consider a satellite-mounted system which captures images and transmits 

them to a distant receiver. Distortions are introduced by thermal (Johnson) noise and 

nonlinearities in the sensor and transmitter, and by disturbances in the environment excit

ing the receiver along with the transmitted signal. This latter source of degradation could 

be tackled by increasing the transmitter power, but this has adverse implications for the
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life o f  the satellite batteries. A similar problem obtains in medical X-ray applications, 

where a better image w ould often result from increasing the power of the X-ray source, 

but the danger to the patient prohibits such a solution. In both examples, the subsequent 

analyser o f the images is compelled to accept corrupted data.

It may, however, be possible artificially to remove some o f the degradation from the sig

nal if the ‘true’ signal and the corruption effects can somehow be identified and 

separated. Clearly this requires a degree o f prior knowledge about their respective pro

perties or structures and furthermore that these structures be different. The design o f sys

tems for achieving such a  separation falls within the field o f signal restoration.

The goal o f signal restoration is to obtain the best possible estimate of the true signal 

from the available <Jata. The definition of ‘best’ here is crucial to the development o f  a 

restoration scheme and is  by no means unique. Different definitions are appropriate in 

different circumstances, and the choice has far-reaching implications for the tractability, 

computational complexity and ultimate utility o f a restoration scheme.

1.2 The Estimation Problem

The restoration task involves the estimation o f  the ‘true’ signal (henceforth referred to 

simply as the signal) from  a volume o f available observed datal7][25][99). As noted 

above, it is necessary th at the signal and the corruption (which will mean the difference 

between the signal and the data) be in some sense distinguishable.

Assuming that the signal carries useful information, it must be to some extent unpredict

able and hence its variation in each of its dimensions cannot be exactly known. The same 

will be true for the random  components o f the corrupting process.
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Accordingly, one is compelled to resort to more general statistical descriptions o f the sig

nal and o f the various degradations. These descriptions are referred to as models. Since 

the estimation scheme will be designed on the basis o f such models, their realism —  that 

is to say, how faithfully they describe their respective actual processes —  will affect 

strongly the ability of the scheme to achieve its goals.

Returning now to  the question of what constitutes the ‘best’ estimate o f the signal, it is 

natural to define as a starting point the estimation error, which is itself another signal, 

given as the difference between the ‘true’ and estimated signals. Clearly, were the esti

mation error to be identically zero, then the estimator would be unimprovable, and so the 

error signal is a meaningful quantity. It is then possible to define a cost function  which 

expresses the penalty or undesirability associated with a given value o f the estimation

It is here that various estimation strategies diverge. For example, the cost function may 

be simply the absolute value or the square of the error, it may be the m ean o f either of 

these quantities; it may be the maximum of either, it may depend also on the signal value 

such that the same error is more or less significant at different signal values, or it may 

depend on any number of functions o f the error and o f the signal. The raison d ’être of the 

cost function, however, is that it is the minimisation o f this function which yields the 

optimal estimator for the chosen signal and corruption models and the chosen cost func

tion.

The choice o f  the cost function is determined by what is known as the observer model. 

This is a description of the significance o f the estimation error signal to the ‘end-user’ or 

observer o f the restored signal. The observer model might, for instance, attach a large 

significance to  individual isolated large errors if the observer were a fast-responding air
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craft flight control system driven by restored trajectory estimates. In the same case, an 

overestimate o f altitude might be far more dangerous and undesirable than an underesti

mate, and either might be more significant at very low altitude. If the signal were an 

image such as a medical X-ray and the observer an automatic ‘tumour detector’, the 

failure to detect a tumour might be weighted more heavily than a false alarm. If the sig

nal were a  natural image and the observer a human visual system, the observer model 

might attem pt to include the known sensitivity o f the visual system[39][91] to oriented 

features such as lines and edges, and its relative insensitivity to noise in these areas. An 

even m ore sophisticated variant might include the particular perceptual tuning which 

man possesses for human faces and especially eyes.

As the above discussion hints, there is a danger that ever more sophisticated and realistic 

observer models can lead to complex cost functions which may render the associated 

optimal estimator computationally unfeasible or even totally intractable. This is espe

cially so for observers such as the human visual system which are very complicated in 

their sensitivity to errors.

Primarily as a result of its simplicity and tractability, by far the m ost commonly used cost 

function for estimation schemes has been mean squared error (MSE)[7][25][93][99], 

where the cost function to be minimised is the expectation over the signal probability 

space o f  a  quadratic in the estimation error. Thus the optimality criterion (which is sim

ply a statement of the objective of minimising the cost function) in this case is minimum 

mean squared  error (MMSE). This criterion is also known occasionally as the rm .s. 

(root m ean square) error criterion, since minimisation of the square root o f the MSE is 

equivalent, or as the Wiener criterion[84] after one of the pioneering contributors to the 

field! 143]. The term least-squares estimation is also used, being somewhat more easily 

enunciated than ‘minimum mean squared error estimation’.
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For the class of quadratic cost functions and a number o f others, it may be 

shown[7)[99][l 10] that the optimal estimator o f the signal from the available data is sim

ply the conditional mean (expectation over the governing probability space) of the signal, 

conditioned upon the data.

The conditional mean is in general a nonlinear function of the data, but in the important 

case where the data obey a jointly gaussian probability density function (pdf), the condi

tional mean may be shown[110] to reduce to a linear form. The associated optimal 

M M SE estimator is then a linear combination of the data, and the procedure is known as 

linear minimum mean squared error (LMMSE) estimation. Note that it is always possi

ble to  construct a linear estimate, but only for jointly gaussian processes will this esti

mate be optimal in the MMSE sense.

1.3 Image Models

Over the last 25 years or so, a number o f attempts have been made to model images with 

a v iew  to applications in restoration, enhancement and above all in coding. The very con

siderable redundancy (correlation) which exists in natural images[63] and to an even 

greater extent in sequences o f images such as television pictures] 105] suggested that 

models which captured this property implicidy or explicitly might yield huge reductions 

in the volume o f information which was required to be transmitted. This implies a com

m ensurate reducdon in the requisite bandwidth and so permits more television stations 

per unit o f electromagnetic spectrum.

Differential pulse code modulation (DPCM) coding applications[40][42][63] have usually 

taken the image in raster-scanned format and treated it as a one-dimensional signal with 

stationary statistics and high correlation between adjacent pixels. This model is implicit
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rather than explicit in the heuristic design of schemes such as delta modulation (DM)[41]. 

The model breaks down at sharp luminance discontinuities such as edges and the DM 

coder may saturate, but these effects were tolerated in view o f the simplicity of the coder 

structure. Vertical correlations in the image were ignored.

The raster scan imposes causality on the image model. Causality implies a (time) direc

tion which defines ‘past’, ‘present’ and ‘future’ regions o f an image. At the present 

pixel, one may make use only o f data from the present and past, since it is assumed that 

data from the future is unavailable.

A class of causal models, borrowed from the physics o f Brownian motion, is the causal 

autoregressive (AR) or Markov process[35][86][110][138]. The present pixel is modelled 

as a one-dimensional linear combination o f preceding pixels (which represents the 

minimu i-variance predictor[86] o f  the current pixel) and a white noise term; the combi

nation may be expressed as a finite difference equation known as the innovations 

representation [65][68][69] o f  the signal. This model leads to predictive coders with a 

white prediction error of minimum variance (i.e. minimum mean squared error 

(MMSE)), which is theoretically optimal for coding purposes[63]. The innovations 

representation of the model leads directly to causal recursive estimation strategies[67][69] 

which are linear shift-invariant (LSI) under assumptions o f  gaussian behaviour (hence 

linear) and stationarity (hence shift-invariant) in the statistics o f the causal prediction 

error. The number o f preceding pixels which are included in the difference equation 

defines the order o f the model. The higher the order, the greater will be the amount of 

computation required at each pixel. The model order reflects the distance over which 

correlations are presumed to exist in the signal.

A generalisation of AR signal models is the autoregressive moving-average (ARMA)



process! 18][110][133][ 138] which extends the AR process to the case where the driving 

term is a moving-average, coloured noise. Zeroes m ay appear in the spectral density 

function (SDF) o f ARMA processesll 10] in addition to the poles contributed by the AR 

component.

The above one-dimensional causal models may be extended to the noncausal case, where 

data from the ‘future’, in the sense described above, is available. This obviously has 

implications for the ‘real-time’ applicability o f such schemes, since at least a delay 

would need to be introduced.

Noncausal, one-dimensional AR models[62][63] express the current pixel as a predictive 

term which is given by a difference equation involving ‘past’ and ‘future’ pixels, com

bined with a prediction error term as in the causal case. Since more data is available to 

the predictor, the prediction error variance (i.e. the MSE) is smaller than for the causal 

model, but now the error term is non-white[63] and no innovations representation exists. 

The consequence of this is that there is not a recursive implementation for the 

predictor/estimator. This computational disadvantage often far outweighs the lower 

MSE achieved by noncausal prediction models.

In applications where the processing system has access to at least a few lines in advance 

of the current pixel and perhaps to the entire image, the restriction to one-dimensional 

models is fatuous since the signal is two-dimensional and is available in that form. 

Causality is a  particularly incongruous notion in the case o f two-dimensional signals such 

as images, which have no clearly-defined dominant axis or direction. However, many 

established and effective signal processing techniques were developed for one

dimensional signals, and there has been a desire to  extend their use to image data in 

expectation o f  similar benefits. This accounts for the attempts which have been made to
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extend the above models —  including one-sided and causal structures —  to two dimen

sions.

The AR models in two dimensions naturally use a two-dimensional prediction window. 

The geometry o f this window defines the model type.

If only ‘past’ pixels (in the sense o f the causality imposed by the raster scan) are 

included, the prediction window is termed non-symmetric half-plane (NSHP) 

[27][29][36][157]. The predictor may use any pixels from lines above the current line, and 

pixels on the current line prior to the present pixel. Driven by a noise process, the NSHP 

model generates a class of Markov random field (MRF), although Woods[157] remarks 

that not every M RF may be decomposed by spectral factorisation into a finite-order 

NSHP model. The NSHP model leads to recursive estimators[28][60][97][156] which are 

two-dimensional extensions o f  the well-established Kalman filter[69][70] [71 ] for one

dimensional signals.

I f  the prediction window includes pixels from  lines above the current line, and the 

current line itself with the exception of the present pixel, the model is termed semicausal 

since it has causal structure in one Cartesian direction (the vertical for conventional raster 

scan) and noncausal in the other. Jain[61][64] has developed difference equations and 

filtering schemes for models o f this type.

The ‘ultimate’ two-dimensional prediction model is the full-plane, noncausal variety in 

which the prediction window potentially includes the entire image. Such a model leads to 

a general Markov random field characterisation[135][153][154]. The availability of the 

entire image admits the various transform domains[5][65][66] in its representation; the 

optimal solution for least-squares filtering given stationary image statistics may economi
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cally be expressed in the frequency (Fourier) domain as the classical Wiener 

filterf6S][l 111(118].

Whilst as in the one-dimensional case such noncausal methods tend to achieve better 

results in terms o f error measures (M SE or other), they do not admit o f  recursive imple

mentations for the optimal predictor o r estimator, and for computational reasons there 

remains much interest in such causal structures for image restoration [121][134][152][155] 

despite the apparent and intuitive unsuitability of causal image models.

1.4 Least-Squares Estimation o f Images

As noted above, the least-squares o r MMSE criterion provides a tractable solution to the 

linear estimation problem. This is so because differentiation and minimisation of the 

mean squared error with respect to the model coefficients yields a system o f linear equa

tions with an analytic and unique solution. The system is known as the normal or Yule- 

Walker equations[86][ll0], and requires for its solution a knowledge only o f the second- 

order moments! 110] (i.e. the correlation structure) o f the signal and data joint probability 

density functions.

Thus an assumed or estimated correlation function for the signal and for the corrupting 

effects is sufficient to specify the optimal linear MMSE estimator, which will be identical 

to the (generally superior) nonlinear M M SE estimator if  the variates are gaussian. The 

tractability o f  linear schemes by comparison with their nonlinear counterparts motivates 

the development o f  linear estimators even for non-gaussian processes; an assumption o f  

gaussian behaviour may be implicit i f  a linear estimator or predictor is described as 

optimal rather than sub-optimal.
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The application of least-squares estimation to images, by way of Wiener filtering, dates 

from the late 1960s and early 1970s with the work of Slepian[128], Helstrom[47], 

Pratt[ 1181, Huang et al[52) and Hunt[57].

Nahi[102], Habibi[43], Nahi and Assefi[98] and Powell and Silverman! 117] extended the 

recursive methods o f  Kalman filtering to two dimensions. Nahi and HabibiflOl] intro

duced the first ‘multiple-model’ approach (see section 2.1) in an attempt to overcom e the 

blurring o f edges which is a consequence of linear shift-invariant (LSI) filtering. Nahi 

and Franco! 100] developed the vector scanning model and its associated Kalman filter.

Since that era, a num ber o f more sophisticated image modelling and estimation schemes 

have been introduced. Consideration o f these will be deferred until Chapter 2 , but it 

suffices to say that they may still be classified into essentially two approaches:

(i) causal models which yield causal and recursive estimators, and

(ii) noncausal models which yield noncausal and nonrecursive estimators.

1.5 The Nature of Images and of Vision

Natural images exhibit various general properties which are worthy of note, and  which 

provide some indication of what might constitute desirable properties of image models. 

Such properties derive from a consideration of the properties o f the material w orld which 

is represented in such images.

Firstly, the world, and hence the visual environment, is composed in general o f  objects; 

that is to say, it is a particulate rather than a diffuse system. That this should be so is a
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consequence o f the cohesiveness o f matter.

A second property which follows from the first is that objects tend to have distinct and 

continuous boundaries. This observation may be encapsulated as the convexity o f  objects: 

matter does not tend to form agglomerates which are exotically-shaped with wildly irreg

ular boundaries —  rather it tends to prefer shapes which approximate the spherical.

From this property may be deduced another the convexity property holds o v er a wide 

range of scales, and the agglomeration process is substantially similar in character over 

such a range. Thus develops the notion o f scale invariance, which suggests that the first 

two properties may be observed to operate in the real world, and in its visual projection, 

over a wide range o f  scales. The concept o f  scale invariance in images im plies that the 

structure o f  a natural image may be expected (in a general sense and over a reasonable 

range) to be rather similar whatever the size or scale of the portion o f  im age under 

inspection. This notion will be taken up in more detail in Chapter 2.

The idea o f the scale invariance of images may be invoked to support the contention that 

at a given scale, some objects will be relatively ‘large’ and therefore their boundaries will 

be approximately one-dimensional when viewed at this scale. This assertion leads natur

ally to the characterisation o f edges in images as locally one-dimensional, w ith a well- 

defined position and orientation when viewed at an appropriate scale. Since the visual 

world may loosely be regarded as the sum of such region boundaries and their respective 

interiors (which are essentially isotropic by comparison with, and at the scale of, the 

edge) it may be postulated that such position and orientation information, when con

sidered over a  range o f  scales, might give a rather complete or at least functional descrip

tion of the image.
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The results o f a number o f physiological and psychophysical experiments[9][54][55][82) 

indicate that this information is indeed o f some utility; it appears that the mammalian 

visual system operates at its lower levels in very much the manner suggested, with detec

tors tuned for particular orientations and scales of structure (i.e. edges) in the retinal 

image.

The work on artificial neural systems of Linsker[85] and others has also shown, rather 

surprisingly, that a simulated layered network of elements possessing only the barest 

functional resemblance to visual neurons will, when trained with a  set o f input patterns 

(even random noise), develop detectors with size and orientation tuning. The learning 

rule is simple and essentially maximises the variance or information at the output o f a 

given element. This is not to imply that vision necessarily works in this way, but it does 

suggest that there is valuable information in such a representation.

1.6 Limitations of Least-Squares Image Estimation

As noted in section 1.3, many image models are defined on causal structures, and this 

restriction while leading to recursive least-squares estimation schem es is not of prima 

facie  suitability in representing image data.

Furthermore, the assumption of stationary statistics while again simplifying the estima

tion strategy is clearly violated by the presence in images o f edges. This mismatch 

accounts for the blurring o f edges which is a consequence of shift-invariant processing.

The discussion o f the choice o f estimator cost function in section 1.2 indicates that the 

optimality criterion o f the visual system is somewhat complicated in its sensitivity to 

errors. In particular, errors are known[105][129] to be less visible in regions o f high
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intensity or high intensity gradient. In sharp contrast, the least-squares (MMSE) criterion 

is non-contextual and weights equally any error o f a given magnitude, irrespective of 

where in the image it occurs and of the behaviour of the image in the locality.

It is not surprising given the major differences between the tw o optimality criteria that 

estimation schemes which are optimal under the MMSE criterion perform rather badly 

when evaluated subjectively, i.e. by the visual system of a hum an observer.

The above discussion leads to something of a dilemma in the design philosophy of a res

toration scheme. One may either persist with linear shift-invariant least-squares estima

tion in the knowledge that the resulting computational structure will be simple and tract

able but will produce less than excellent visual results, or one m ay abandon least-squares 

estimation in favour of more complicated strategies or heuristic approaches which make 

no claim of optimality but are justified in an ad hoc manner by the subjective quality of 

their results.

The median filter[34][53][104] is one example of a nonoptimal but effective ‘ad hockery’ 

which suppresses large excursions in the data by assigning to its output the local median 

value o f the data within its support. The filter is clearly nonlinear, but for modest window 

(support) dimensions is computationally manageable and tends by virtue o f  its nonlinear

ity to avoid the blurring o f edges in images which is associated with linear filtering.

As section 1.2 suggests, it may be possible to obtain optimal estimation strategies which 

are better suited to the properties of both images and observers by utilising a more 

sophisticated error cost function. The problem here is the complexity or even intractabil

ity o f the associated optimal estimator. It may however be possible to incorporate the 

added complexity into the signal model, and then to use a relatively simple error criterion
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such as least-squares. The result should be a tractable but m ore appropriate estimator.

This proposition underlies the development o f the ‘signal-equivalent’ modelling 

approach adopted by Abramatic and Silverman[2][3] and extended by Knutsson, Wilson 

and Granlund[75], which will be considered further in C hapter 2.

1.7 Principal Modifications to the Least-Squares Method

Bearing in mind the points raised in the preceding sections, it is possible to enumerate a 

minimal set of modifications to the conventional shift-invariant least-squares technique 

which might render it better suited to the problem o f  image restoration. Such 

modifications include the following:

(i) Noncausality —  as has been pointed out above, the notion o f causality is alien and 

inappropriate for the modelling of image data. (It is actually a  model o f a particular 

acquisition method, not of the data itself.) However, there is  no question that the recur

sive filter implementations which follow from many causal models are desirable; one 

would nevertheless prefer a ‘fast’ filtering method based on a noncausal scheme if such 

could be developed. Noncausal approaches tend to be based on Wiener filtering and are 

computationally rather expensive, requiring at each pixel a  number o f  multiply- 

accumulate operations equal to the size of the filter mask o r equivalently forward and 

inverse two-dimensional discrete Fourier transforms.

(ii) Nonstationarity —  linear shift-invariant (LSI) filtering takes no account o f  precisely 

those image details such as lines and edges which are known to be of considerable 

saliency in the cost function or optimality criterion of the visual system. Some degree of 

spatial adaptivity has long been recognised as vital if  such features are adequately to be
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preserved, and so a spatially variant strategy is a fundamental requirement. The compu

tational cost of shift-variant processing must, however, be taken into account. The nons- 

tationary and noncausal Wiener technique of Abramatic and Silverman[3] is an example 

where the computational burden is reduced by the deploym ent of the signal-equivalent 

model formulation.

(iii) Scale Invariance —  as noted in section 1.5, scale invariance is a property o f  natural 

images, but it does not fit easily into the structure o f m any existing image modelling or 

estimation schemes. A strategy capable o f incorporating this property would be desirable.

(iv) Computation —  section (ii) mentions the generally computation-intensive nature of 

nonstationary schemes. This is compounded in the case o f  noncausal approaches by the 

lack o f a recursive implementation. Unfortunately, tw o o f  the features listed above as 

desirable are noncausality and nonstationarity. Thus the development o f a restoration 

strategy along the lines proposed should be guided also by the need to avoid the emer

gence o f a computationally cumbersome implementation.

1.8 Thesis Outline

This work will treat the points raised thus far and attempt to provide workable solutions 

to some o f the difficulties.

1.8.1 The Image Model

A new noncausal image model based on a multiresolution or pyramidal data structure 

will be introduced. The model is naturally scale-invariant in form and handles small- and
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large-scale structure in identical ways. An alternative view  is that at a given scale, 

objects constitute large-scale structure whilst their boundaries constitute small-scale 

structure. The model accounts for each type o f data.

1.8.2 The Estimator

The least-squares optimal estimator associated with the m odel is developed for the case 

o f  corruption by additive white gaussian noise (AWGN). The estimator emerges in the 

form of a one-dimensional causal first-order recursive filter which has a very fast imple

mentation, despite the fact that the image model itself is  noncausal in the usual sense. 

The estimator is easily extended to the nonstationary case where the operator is modified 

according to local image activity. A fast, scale-invariant edge or ‘activity’ detector pro

vides the contextual information.

1.8.3 Generalisation to Vector Data

The model and estimator are extended to the case where the input data is a  vector-valued 

field with two indices, and is shown to be applicable to N-dimensional vector fields (i.e. 

fields with N indices). The scheme is applicable to vector restorations such as o f mul- 

tispectral data or parametric texture descriptors.

1.8.4 Further Modifications Motivated by Vision

The vector estimator is applied to the restoration of local orientation information com

puted from noisy images. The restored orientation data is then used to introduce local 

anisotropy into the estimation strategy.
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1.9 Experimental and Display Conditions

‘Real-world’ images (original, noisy and restored images) are  truncated to the eight bit 

integer values (0 to 255) used by the source material and the framestore. This means that 

for noisy images which contain values below zero or above 255 due to noise excursions, 

these values are displayed as 0  or 255 respectively. Note that this applies for display pur

poses only; all arithmetic was performed in single- or double-precision floating-point as 

appropriate.

This does, however, imply that the noisy images would appear somewhat worse were 

their full range to be displayed.

White gaussian noise was generated by the polar method[741 using the nominally 

uniformly-distributed output from the UNIX* random num ber generator randomQl 1391. 

The results were photographed with a Dunn Instruments Multicolor unit on Kodak 

TMAX 100 ASA monochrome film on the green channel with a nominal exposure time 

o f 2.36 seconds.

All photographic figures are prefixed with ‘P’ (for example figure P23), and are situated 

at the end o f the thesis. Other figures are indexed by chapter (for example figures 5.1 to

5.4 in chapter 5) and are located at the end o f each chapter.

t  U N IX  is  a trademark o f  A T & T  B e ll I ahoraUiries.
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CHAPTER 2

QUADTREE STRUCTURE AND NEW IMAGE MODEL

2.1 Motivation

As noted in Chapter 1, the minimum mean squared error (M M SE) criterion provides a 

tractable basis for the design of optimal estimation schemes. I t is  a goal of the present 

work that such MMSE optimality be retained, but in a form o f estim ator (and underlying 

image model) which is better suited to the problem o f image restoration than the models 

discussed in Chapter 1.

A noncausal model and estimator are sought on the grounds that:

(i) Causality is not an appropriate attribute for image models i f  it is not mandated by 

‘real-time’ considerations such as arise in on-line raster-scanned applications;

(ii) Noncausal estimators based on noncausal signal m odels achieve lower mean 

squared error than do corresponding causal models for a  given class of signal. This 

results from the fact that the estimator is able to use ‘fu ture’ as well as ‘past’ input 

values and so has more data on which to base the estimate.

Causal estimators, however, frequently give rise to recursive structures (such as the Kal

man filter[69]) which are computationally more efficient than their noncausal counter

pans. The causal models on which they arc based often admit the so-called innovations 

representation (68] which is the key to the coercion of the resulting estimator into the 

recursive form.
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Another desirable property of image models is nonstationarity. Natural images contain 

profound statistical nonstationarities such as lines and edges, and a realistic image model 

should account for this fact.

A stationary image model under stationary degradation (blur o r  noise) will give rise to a 

shift-invariant estimator which necessarily performs the same operations at every point in 

the image. This is clearly less than ideal in the context of natural images which tend to 

contain smooth regions with sharp edges, since a spatially-invariant restoration scheme 

which aims to smooth out noise is bound also to smooth salient linear features in the 

image.

Such features are known additionally to be of great importance to the visual system. 

Much evidence now exists[9][54][55][82] for the presence in the lower levels o f the visual 

system o f nerve cells (neurons) which function as linear feature (line and edge) detectors, 

implying that detection o f such features constitutes an early and fundamental stage of 

visual perception. As a consequence, image modelling and estimation schemes which are 

based on stationary statistics are bound to produce visually unsatisfactory results.

The limitations of stationary modelling and estimation schemes suggest that a nonstation- 

ary approach is to be preferred. However, nonstationary schem es are apt to be computa
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tionally expensive since they generally involve the optimisation o f the estimator at each 

point in the image.

This computational expense has led to the development of ‘m ultiple-m odel’ strategies 

which combine a fixed number of stationary models in a spatially-variant manner, in 

order to achieve some degree o f spatial adaptivity without the need fo r the comprehen

sive recalculation at every image pixel o f the model and its associated optim al estimator.

The multiple-model approach o f Woods[152][157], for example, following the original 

work of Lebedev and Mirkin[83], uses five different stationary (M arkov random field) 

causal models and switches between them on the basis of a controlling, higher-level 

model (a Markov chain) which governs the conditional probabilities o f  the transitions 

(see also [59]).

The computational and memory requirements are still rather demanding, since the 

method o f  [152] involves running a large number (25) o f Kalman filters in parallel, each 

o f which must carry forward its own state information; in addition, the  selection of the 

currently operative model requires the calculation and sorting o f the sam e number (25) o f 

the a posteriori probabilities o f each model, conditioned on the data, at each pixel.

Unfortunately, the parameters of both the higher- and lower-level m odels in [152] are 

estimated from uncorrupted versions o f the source images, noisy versions o f  which are to 

be restored, and it is not clear how the system would perform given only the noisy data as 

would probably be the case in any practical application.

There is additionally a problem of system identification which restricts the ability of such 

causal multiple-model systems to switch quickly to the correct model, since the use of
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the ‘wrong’ model has to continue for a finite period before it is possible reliably to 

detect that a change is required. The system o f [152] exhibits this ‘inertial’ tendency for 

the currently-selected model to persist for some time after it has ceased adequately to 

represent the data.

Kashyap[72] has used another multiple-model approach, termed the ‘m ultivariate random 

field’, in which small segments (blocks) of an image are assumed homogeneous and each 

modelled by a stationary random field; the variation of the model parameters from one 

block to the next is described by a higher-level (vector) random field.

W hilst multiple-model approaches have achieved better results than the use  o f  single 

models, the problems mentioned above restrict their effectiveness particularly in  regions 

o f abrupt and pronounced nonstationarity such as edges, and this is precisely where pro

cessing adaptivity is most required. The use o f causal strategies is bound to lead  to poor 

results in edge regions, even in multiple-model schemes.

A more ‘continuously variable’ modelling approach was introduced by Abram atic and 

Silverman[3], who defined a ‘signal-equivalent’ model which aims to incorporate the 

linear feature sensitivity o f the visual system into a modified image representation. The 

image is modelled essentially as a combination of stationary lowpass and nonstationary 

highpass components, and the optimal (Wiener) filter for the lowpass component is com

bined in a spatially-variant manner with an identity operator such that less smoothing is 

applied to the noisy image in edge regions.

Knutsson, Wilson and Granlund[75] extended this method by recognising that an  obvious 

and defining attribute o f linear features (and again one which is important to  the visual 

system) is orientation, and that an anisotropic term may profitably be incorporated into



the estimation operator. This leads to an estimation strategy which is both nonstationary 

and anisotropic, matching more closely both the properties o f natural image features and 

the known mechanisms o f  vision.

However, the further one moves away from a purely stationary image estimation scheme 

toward ‘full’ nonstationarity (as opposed to the limited nonstationarity o f multiple-model 

approaches) and even anisotropy, the greater in general is the computational burden. In 

the present work, it is desired that ‘full’ nonstationarity be available, but that the associ

ated computational overheads be kept to the bare minimum.

Another property o f natural images which might profitably be incorporated in a more 

realistic image model is scale invariance (see section 1.5). The structure of the natural 

world often looks similar over a number o f different scales! 150]. (Consider, for example, 

the observation that in an electron micrograph o f a particle surface one sees ‘hills’, ‘val

leys’ and so on). Edges in particular may exhibit some degree of fractal structure[87], and 

thus it would seem appropriate for the model to possess such properties.

Finally, the ‘end-user’ o f  processed images is often the (human) visual system, and its 

fidelity criterion is very different from minimum mean squared 

errorfl0][27][88][124][129][132]. As noted above and in Chapter 1, the visual system 

places much mote emphasis on oriented features such as lines and edges.

Associated with this phenomenon are effects such as the visual masking effect[13][105] 

which describes the reduced sensitivity o f the visual system to noise in the vicinity of 

such features. It has also been shown[75] that directionally-filtered noise which is 

oriented parallel to a nearby feature is far less disturbing visually than the same noise 

oriented in the perpendicular direction.
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Hence the fidelity criterion of the visual system is at least nonstationaiy and anisotropic, 

and probably difficult to encapsulate in a mathematical form which both provides a com

plete description o f its properties and admits a tractable form o f optimal estimator.

In the light of the above, a choice is forced in the design process (see section 1.6). Either 

the MMSE criterion is abandoned in favour o f heuristic methods (such as the median 

filter[34]) or, if  it is desired that the basis o f optimality be retained, the error criterion or 

equivalently the signal model must be modified to incorporate some or all of the desired 

characteristics.

In this work, it is desired that the MMSE criterion be retained as the basis for optimisa

tion. What is sought is a noncausal, nonstationary image model giving rise to a non- 

causal, nonstationary but fast (i.e. computationally efficient) optimal estimator which is 

capable o f incorporating modifications suggested by visual system properties.

2.2 Quadtree Structure and Applications

The quadtree[58][136] is the simplest of a class of pyramidal data structures which have 

found increasing application in image processing and computer vision work. Its introduc

tion by Tanimoto and Pavlidis[136] in 1975 was the first attempt to provide a data struc

ture matched to the ‘multiresolution’ representation o f images, which has become recog

nised as valuable in a number o f application contexts.

The concept o f the pyramid arises because versions o f  an image at successively lower 

resolutions require fewer spatial samples for their representation and are thus ‘smaller’. If 

the planes corresponding to these different resolutions are visualised as being stacked up 

so that the plane o f highest resolution (the original image) is at the base, then the
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structure resembles a square-based pyramid. It is common for each higher level to be of 

half the linear dimension (one quarter of the area or number o f nodes) of its predecessor. 

Note, however, that the term ‘quadtree’ specifically implies that each node is linked only 

with four nodes on the level below and with one on the level above —  a more general 

structure in which lateral and/or other vertical interactions occur is not a quadtree.

In image coding, the multiresolution approach offers the possibility of separating in some 

sense those components o f  an image which are o f  different scales. Not only does this pro

vide a substantial decorrelation of the data, but it allows ‘coarse’ features to be encoded 

economically and transmitted before the finer detail. Such ‘progressive transmission’ 

techniques[73] build up what may be an adequate partial form o f the image at the 

receiver with minimal information transfer.

Wilson[148] has used a quadtree method for predictive image coding, where the data at a 

node is formed by simple averaging over the four nodes to which it is linked on the level 

below. Quantisation and transmission commences with the top level (a single node) and 

proceeds in a recursive manner, with the difference between the value at a node and the 

quantised value at its parent being encoded. This scheme illustrates the general philoso

phy o f pyramid coders and indeed of the present work; the data structure permits the use 

o f simple predictive (DPCM) coding without constraining the coder to be causal in the 

image plane as is the case in conventional DPCM  systems.

Burt and Adelson[ll] introduced a multiresolution data structure in which each pyramid 

level is generated by gaussian filtering o f the preceding level, giving a series o f increas

ingly ‘lowpass’ images. The difference taken between appropriately interpolated ver

sions o f  two contiguous levels constitutes a bandpass (Laplacian-filtered) image which 

may be encoded for transmission should the degree of detail represented in the given
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band be required. The representation is invertible in that the original image may be 

recovered exactly (neglecting quantisation) from the data in all of the levels of the 

pyramid.

Adelson et al[4] have more recently discussed variants on the pyramid coder, including 

hexagonal and quincunx geometries and the use o f quadrature mirror filter (QMF) ker

nels for the generation of the pyramid. Good reconstruction quality at a respectable data 

compression ratio was reported.

Cohen, Landy and Pavel[21] among others have applied quadtree coding to binary (car

toon) images. Here the node value is a binary attribute, and a node is labelled with the 

attribute if  any o f the nodes to which it is linked on the level below possesses it. The cod

ing scheme is similar to that of W ilson mentioned above except for the binary nature of 

the data. Sparse cartoon images are particularly well suited to this type o f coding, since 

for much o f the image there will be no activity and in such regions the coding procedure 

may terminate economically at a  high level of the quadtree.

Another major application area is the field of object/background or texture segmentation.

Burt, Hong and Rosenfeld[12] have developed a pyramidal scheme which achieves seg

mentation by forming links between nodes on adjacent levels, the link strength depend

ing on the similarity in the node values. These values may simply be gray levels in the 

case o f compact object segmentations, or alternatively they may be descriptors computed 

from a texture field which is to be segmented. T he  method is iterative, and the link 

strengths are adjusted until the given (predetermined) number of classes emerge. A mul

titude o f  similar strategies and extensions have been developed by Hong and Rosen- 

feld[49], Hong, Narayanan, Peleg, Rosenfeld and Silberberg[48], Pietikainen and Rosen-
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feld[114], Hong and Shneier[50], and Hong, Shneier and Rosenfeld[51] among others. 

The latter work deals with edge extraction by the use of edge data in such a pyramid 

rather than region interiors. Chen and Pavlidis[17] have used a pyramid data structure for 

their ‘split and merge’ segmentation algorithm. Cohen and Cooper[20] use a modified 

quadtree for their hierarchical texture segmentation method, which is based on a Marko

vian texture model. Peleg at al[l 12] have studied the properties o f  textures in multiresolu

tion representations from the viewpoint of random fractals[87], by considering the rate of 

increase o f the area of a texture surface as the measurement resolution increases.

Spann and Wilson[130] have developed a quadtree-based segmentation method. This first 

involves smoothing by forming the quadtree o f the image by averaging, and then 

classification at an upper level of the quadtree using a ‘local centroid’ clustering algo

rithm! 147]. The classes thus obtained are propagated downward, with the positions o f the 

interclass boundaries being estimated at each level such that a t the image plane, the 

boundaries are only one or two pixels wide. This work addresses explicidy the problem 

of uncertainty[146][149], which limits the performance of m any signal and image pro

cessing techniques in that it defines a bound on the degree to which global properties, 

such as statistical or frequency-domain parameters, and local spatial properties may 

simultaneously be effective. In segmentation, for example, the uncertainty principle dic

tates that certainties in class membership and in position are incompatible and that a 

tradeoff must exist. The same principle limits the degree to which edges may be localised 

in the presence of noise; this problem will be addressed in a  subsequent chapter.

Multiresolution methods provide a means of handling explicidy the constraints imposed 

by the uncertainty principle; processing may be carried out over a  range o f scales and the 

information combined in a useful manner as the segmentation method described above 

illustrates.
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Ranade and Shneier[122] have used a multiresolution (quadtree) adaptive smoothing 

technique. A quadtree is formed by averaging, and the smoothing process seeks to 

preserve edges in the image by proceeding downward in the quadtree until a node is 

reached below which there is little activity in the image, and assigning to all nodes below 

it the average value at the given node. Active regions such as edges are therefore 

assigned an average computed over a small region. The method is, however, somewhat 

ad hoc and makes no claim of optimality.

The properties of pyramid generating kernels have been considered by Meer, Bauer and 

Rosenfeld[92] and more recently by Watson[142], Wilson and Spann[150], and Wilson 

and Calway[145]. These workers note that simple spatial averaging will lead in the 

absence o f  explicit lowpass filtering to distortion caused by alias components! 120] 

induced by the reduction in sampling rate as the pyramid is ascended. This is undoubt

edly true o f any kernel which exhibits less than total (and unrealisable) attenuation at 

spatial frequencies above half of the newly reduced sampling rate[142]. The introduction 

o f lowpass (‘anti-alias’) filtering involves a considerable computational overhead, how

ever, and it will be shown in Chapter 4 that this precaution may in certain cases be 

unnecessary.

2.2.1 Quadtree Sructure

The quadtree is a pyramidal structure in which image data is represented on a number of 

different levels. A given level /  consists of (/i/X /i/) nodes (l , i , j ) where 

i , j ,  0 £  i , j  <, /i/ — 1 are the position coordinates o f the node within the level.

Each node (l , i , j ) on level / is linked to four nodes ( / + on level /+ 1 , where 

p' -  ?P + 0 . « «(0,1). p  «(»,/) .
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Level /+1 is conceptually below level / .  The node ( l , i , j )  is known as the ‘father’ o f the 

four nodes (/+1, f , f )  (its ‘children’). Level /+1 comprises (2 nt x  2nt ) = (n /+1 x  n /+1) 

nodes.

Level 0  contains just one node, known as the ‘root’ o f the tree; this is the node (0,0,0). 

The bottom level is level Y  and is o f the same dimension as the image data (in the 

present case nY = 512 and Y  = 9 ).

The structure is depicted in figure 2.1.

A data value at a node is denoted as, for example, S[ ¡ j  or x tt ¡ j .  The term ‘for all i , j  ’ 

will imply O S i , . /  ¿ n ;  - l i f  the level index / is clear from the context.

2.2.2 Ancestor and Descendant Sets

For a given node ( /,  / ,  j  ) in the quadtree, two sets o f  related nodes may be defined.

The ancestor set  is defined as

AU J  = [ ( k , p , q ) : 0 Z k  * l  ,

2 '-*p  S I  < 2l~*(p  + 1) ,

2 '-»«  S J  c ï ' - ' l q  + 1 ) )  , (2.1)

and the descendant set as

D , j j  = (0f c . p . f ) : /  ,
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2 * - 'i S p  < 2 * - '( i  +  1) .

2 * -'y s , <2*-'U + l))  . (2.2)

Note that (l , i t j ) e A lti j  and (l , i , j ) e D l i j . The ancestor and descendant sets are 

illustrated in figure 2.1.

The set o f all nodes in the quadtree may be denoted by D0>o,o •

The lowest common ancestor (LCA) of two nodes ( /,  i . j )  and ( k , p , q ) is given by

L C A ( l , i , J ; k , p , q )  = ( r . m . n )  (2.3)

where

( r ,m ,  n ) e ( A i , i j r \ A k p q) 

and

( r + l , s , t ) 4 ( A i ' i j n A k'P' q ) 

for any s , t . The symbol r> denotes the intersection set.

2.3 A New Image Model

An image model, based on the quadtree structure, is defined as

*1. 1. J =  E  $ k ,p ,q  Wk .p .q  • (2.4)
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f .

where Wk,p.q has a gaussian probability density function (pdf) and

(2.5)

where bs t is the Kronecker delta function.

The model characterises an image as being generated by a random process defined on the 

quadtree. The process operates ‘vertically’ down the tree starting at the root node (0,0,0)

This representation o f the model expresses a child node in terms only o f its father and a 

gaussian variable. The form of the model is illustrated in figure 2.2.

The fik.p.q arc the parameters o f the model and in general vary with p , q  (i.e. with spa

tial position on level k).  For the present, attention will be restricted to the spatially 

invariant form o f  the model, where Pk.p.q ~  P* • The spatially variant model will be

and expresses the image as a sum o f gaussian random variables o f variance P2

The model o f (2.4) may be expressed in the recursive form

si + i , r , f  -  + P/+i,r,/w/+i,r,/ *

(/+l,r,/)€D<>it>

0 £  /  £  Y - 1 , (2.6)

with initial condition

•*0.0,0 -  Po,o,ow'0,0,0 • (2.7)
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considered in Chapter 4.
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2.4 Properties o f  the Model

2.4.1 Noncausality

The model (2.6) is a martingale [110] causal in the level index / .  However, as a conse

quence o f its vertical nature, there is no preferred causal direction in the horizontal (spa

tial) plane and in the context o f  the image (as generated at level Y  of the quadtree) the 

model is noncausal.

There is no temporal order on the image pixels such as that imposed by raster scanning, 

which gives rise to spatially causal models and causal estimators such as the Kalman 

filter[69].

The equation (2.6) may be considered to be a causal minimum variance representation 

(MVR) [86] o r innovations representation [68] for s .....  and so the model retains the sim

ple causal structure provided by these representations while not restricting the image 

Sy,.,. to be a  causal signal.

2.4.2 Scale Invariance

Data S i ' i j  at a node (l , i , j ) projects on to the image plane (level T ) at all pixels 

( Y , p , q ) e D l i J  in the descendant set o f ( /,  i , j ) .  A feature at ( /,  i , j ) thus projects on 

to 4r ~‘ nodes ( Y , p , q )  in the image (see figure 2.1).
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Since the m odel o f (2.6) is clearly isomorphic at all levels, it generates features in the 

image-plane projection Sy p q at all scales. Thus the model may be seen to be scale- 

invariant.

The values p/ at higher (smaller / )  and lower (larger / )  levels of the tree control the gen

eration o f larger and smaller image features respectively. This relates in an obvious way 

to the notion o f  scale invariance in natural images[150] (see section 1.5). Marr[91] com

ments, indeed, that

‘The spatial organisation of a  surface’s reflectance function is often generated by a 

num ber o f  different processes, each operating at a different scale.’

The model is  formulated in such a way as to incorporate not only the basis of scale 

invariance, but also this notion o f ‘scale independence’.

There is also some relation to the fractal concepts of Mandelbrot[87] which are based in 

notions o f scale invariance. The ‘partial’ images generated at different levels by this 

model bear comparison with random fractal functions, and sections —  consisting of the 

same num ber o f pixels —  from different levels o f the tree would appear similarly ‘rough’ 

given similar P parameters. A texture field as generated by the model might be character

ised by its P parameters by analogy with the fractal-based texture description scheme of 

Peleg et al[ 112] mentioned in section 2.2.

The realistic appearance o f many o f Mandelbrot’s synthetic ‘natural’ scenes provides 

further evidence that image descriptions related to activity over a range of scales are 

potentially very valuable (see also [103],[113]).
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2.4.3 Correlation Properties

The general correlation function for signals / ......and g ........is defined as

I . J ' . k . P . « )  = • <2-*>

Then from (2.4) and (2.S), the following three correlation functions may be defined:

0 ) R - w ( ......... : .......... )

(2.9)

(H ) R s w ( ......... ; ...........)

Rsw( l t i , j i r , m , n ) = E s i j j W r m n

-  Z  PkKwwi* 'P '  <r* r , m , n )

= Z $k&k.r&p.m&q.n •

Thus

/?„»(/, i . j ; r , m , n)

Pr , ( r , m , n ) e A i %ij  , 

0  , (r , m , n ) 4 A i j j  .
(2. 10)

(iii) / ? * ( ......... ; .......... )
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R „ ( l , i , j ; r , m , n ) =  Eslt

= Z Z P k ^ d ^ w k ,p ,q wd ,a ,b
( k .p .q )  ( d .a .b )
e A , ' , j  •A r,m,a

= Z Z PitPdSi.rfôpaŜ /,
<*.#>.«) W.«.*)eAl.,J € Ar tm,m

or

m £  P? (2.11)
( k .p .a ) e

Note that the expected energy E s f t i j  increases monotonically with the level index / :

E * b . i  -  K m V . t . w . t . n

= P j +  • •• + P? . (2.12)

It is possible following (2.11) to define a cumulative correlation function 

B ( l , i , j ; k , p , q ) = £  R „ ( k , a , b ; k , p , q )  ,
( k .a .b )

k Z l  . (2.13)

This function represents the sum o f the correlations between a node sk p q and all o f the 

descendants o f the node ( / , / , / )  which are on level k .

Now if ( k , p , q ) 4 D lt¡ j  then

R „ ( k , a , b - , k , p , q ) = Ru ( l , i , j \ k , p , q )  ,
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0k , a , b ) e D l i ' j  , (2.14)

and so

B ( l , l . j ; k , p . q )  -  . (2.15)

Alternatively, i f  ( k , p , q ) e D i i j  then

B U . i . J - . k . p . q )  = 4‘ - ' / i „ ( i . i . J ; / . i . y )  +  4 * - '-1p? .1+ + ( tf  (2.16) 

or. by (2.12).

4 )  =  4 * - '(P 2 +  ■ + P ?) +  4 * - '- ‘P ? .,+  + (2.17)

It is also possible to define a one-dimensional average correlation as a function o f dis

placement parallel to one o f the spatial coordinates on a level / :

T ( l , p )  “  TT Z  R „ ( l . m . n ; l , m * p , n )  . (2.18)
™ (/. m, n)€D0.o.o :

(l,m+p,n)eDo.ofi

where W is the number of terms inside the summation.

Evaluation o f (2.18) yields

T ( t , p ) £
k=0 *=0

(2.19)

where n ( p  ) is defined by

2"('>  i p  < 2"(' )+l (2.20)
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and n  (0) = -1  . 

The coefficient

o f p* in (2.19) is monotonically nonincreasing with p .

By way of example, the average correlation between two nodes on level 8 o f the quadtree 

at a  separation of 30 nodes is given by

The function T ( l , p ) may be seen from (2.19) to be a strictly nonincreasing function of 

P-

Taking the z transform o f T ( l , p )  in the variable p  yields, assuming nonnegative 

definiteness of T ( l , p ), a spectral density function (SDF) as

( 2 .22)

and that between nodes on level 5 at a separation o f 7 is given by

r<5,7) -  do2 + -if-P? + ■ (2.23)

and frequency response on the unit circle in the z plane as
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$ ( « '“ )
l - 2 k- ‘p ]
1 -2 ~‘p  J

cospco . (2.25)

2.4.3.2 Long-Range Structure

Unlike most com m on image models such as the Markov random field (MRF) [153], the 

present model exhibits structure (i.e. correlation) over considerable distances in the 

image. This follow s because any two image nodes with a given lowest common ancestor 

(LCA) have the same correlation as any other two nodes with the same LCA. One may 

therefore speak o f  image ‘blocks’ being correlated.

This is loosely analogous to the periodic multivariate random field model of 

Kashyap[72], in  which blocks o f an image are each described by a model and the rela

tionship betw een these models is governed by a vector random field. In the present case 

each block has an ‘internal’ model —  the martingale of (2.6) below some level / —  and 

the relationship between blocks is governed by the same martingale above the level / .
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2.4.3.3 Dyadic Shift Invariance

The correlation function o f  (2.11) is invariant to permutation o f the spatial positions of 

the descendants of the nodes ( /,  i , j )  or ( r , m , n ) within their respective descendant sets 

DU  j  and Dr m n .

Such a permutation corresponds to a dyadic shift of blocks within the image, and hence 

the image correlation function is dyadic shift invariant[5].

2.4.4 Analogy with Fractal Surfaces

If a level / of the quadtree as generated by the model is visualised as a solid composed of 

rectangular blocks, each w ith height s ^ i j  (which may be negative) and base area 4 1 

then as / increases, the surface o f this solid becomes increasingly subdivided and its area 

also increases.

As / becomes arbitrarily large, and assuming nonzero values of P/ , the surface area 

increases without bound while its projection on the horizontal plane (the total base area) 

remains fixed.

In this sense the surface is  a random fractal[87] and must have a fractal dimension of 

between 2 and 3. In fact, since the process is gaussian and that density admits of arbi

trarily large values (albeit with probability P(°°)  —♦ 0 )  the surface must, as / —* ° ° , fill 

the entire three-dimensional volume above and below the base in the sense that any point 

in that volume is approached arbitrarily closely by the surface. Thus its fractal dimension 

must be 3.
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Note that, like the area, the average energy of a node on the surface as given by (2.12) is 

unbounded as / —>«»>.

If, however, only a finite number o f  the P; are nonzero then the surface has finite area 

and a fractal dimension of 2.

It seems likely that the intermediate case, where Py -♦  0  as / -»  , would give a fractal

surface of dimension between 2 and 3, the exact value depending presumably on how fast 

P/ approaches zero.

2.4.5 Range of the Model

The image generated by the model possesses a block structure, with blocks o f all scales 

superimposed. The parameters P/ determine the expected degree of activity at each scale. 

A few degenerate cases illustrate the  range of the model.

•  If P; = 0  for / > 0  , the m odel generates an image which consists o f a uniform gray 

level.

•  If pj = 0  for / < Y  , the m odel generates a gaussian white noise field of variance

p f .

•  If, for some k , P/ = 0  for /  *  k  and P* *  0  , the model generates a pattern of 

‘block’ white noise at a scale which depends on k  . The smaller the value of k ,  the 

larger is the block size of the generated pattern.
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Thus the model represents the image as ( T + l)  superimposed ‘block white noise’ images, 

with scales ranging from the entire image to single pixels, with varying weights. The 

similar but separate treatment of different scales corresponds to the twin notions o f scale 

invariance and scale independence alluded to  in section 2.4.2.

There is a correspondence with ‘progressive refinement’ or ‘progressive transmission’ 

algorithms, as applied to image coding[73], in  that as the quadtree is descended the image 

becomes increasingly complicated with sm aller and smaller structure. The intermediate 

levels o f the quadtree resemble the block-structured images used by Harmon[45] in his 

work on the recognition o f faces.

2.5 Examples o f Model-Generated Images

Figures PI to P3 show examples of im ages synthesised by the model o f (2.4) or (2.6). 

The upper photograph in each figure show s level Y of the quadtree and the lower shows 

levels 0  (at the bottom) to Y —1.

In figure PI, the model parameters (3/ are  equal, P2 = 1 . In figure P2, p2 = (3 /2 / and 

in figure P3, P2 =  (2 /3 / . The values o f  P 2 for each level / in each figure are given in 

table 2.1.

The same gaussian random number generator and seed were used for each o f the three 

figures. The gray levels were scaled so that each image occupies the entire brightness 

range (black = 0, white = 255) o f the framestore.
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Figure PI P2 P3

0? = > (3/2)' (2/3)'

L evel/ P?

1 1 1.500 0.6667

2 1 2.250 0.4444

3 1 3.375 0.2962

4 1 5.063 0.1975

5 1 7.594 0.1317

6 1 11.39 0.0878

7 I 17.09 0.0585

8 1 25.63 0.0390

9 1 38.44 0.0260

T a b le  2 .1

V alues o f p 2 fo r  F ig u r e s  P I  —  P3

2.6 Comments on the Model-Generated Examples

The block structure o f the generated images is apparent from figures PI to P3. The block 

edges coincide with boundaries in the quadtree. Since the same (pseudo-)random gen

erator and seed (initial condition) were used fo r each of the three figures, the wt>tj  o f  

(2.4) or (2.6) are identical in each figure and the differences between the figures are due 

solely to the values o f P/ employed.

If the P parameters were spatially variant, P = Pl , l , j  • onc would expect the degree of 

structure at any given scale to vary across the image.
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Obviously, many natural images do not possess such sim ple geometric structure and an 

inexpensive method for reducing the blocking effect will be introduced in Chapter 4.

However, natural images are often represented very poorly by such models as the Mar

kov random field, which tend to generate textures with structure at a particular scale 

which depends on the model order.

In the examples of figures PI to P3, it is apparent that structure exists at all scales and 

hence, for the larger scales, over sizeable distances in the image. In this sense the model 

captures an important property o f natural images (see sections 1.5 and 2.4.2).

The ‘vertical’ causality o f the model may be seen by following a feature from one of the 

upper quadtree levels (lower in the figures) through the larger and successively more 

complicated images to level Y,  the image plane.

2.7 Digital Filtering Interpretation of the Model

Figure 2.3 depicts the recursive form of the model (2.6) as a  time-varying recursive digi

tal filter. The time direction corresponds to the level index /  o f the quadtree. Neglecting 

the time-varying multiplier, the filter has a pole at z =  1 and is thus marginally stable.

2.8 Correlation Transforms

Only the one-dimensional case will be considered for the sake of clarity.

The model in one dimension may be written in the spatially-invariant case as
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si+1. r - si, i + P/+iw/+i. r •

A correlation matrix m ay then be defined as

= EsltisltJ = Rm( l , i ; l , j )  .

Now since

it follows that

R 1+1 -  c ! ® /?/ + p/2+i//+i

where

and 11 is the (2l x 2 l ) identity matrix and <8> denotes the Kronecker product[37].

2.8.1 Hadamard Transform

The Hadamard transform matrix[5] is given recursively by

H u i .

where

H ,

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Theorem —  the correlation matrix is diagonalised by the Hadamard transform. 

Proof —  it may be shown that if Ht diagonalises Rt , i.e.

H,R,H, = A,

where A/ is diagonal, then H i+1 diagonalises R [+x.

From (2.29) and (2.31),

H  ¡+iR /+\H /+1 -  ( H M  .

By the mixed product rule [37] for Kronecker products, (2.34) may be written as 

Hu\Ri+\Hi+i  = H xC i H i  ® H tRiHi  + P/2+i//+i

=  2 ^  ® A, + P/2+i//+i

= A/+1 ,

where

r  J 10l
r «> "  I 0  0  I •

The initial condition is given by

/ / , * , / / ,  = A,
p? 0

0  Pf

(2 .3 3 )

(2 .3 4 )

(2 .3 5 )

(2 .3 6 )

(2 .3 7 )

(2 .3 8 )

(2 .3 9 )
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and the proof is complete.

2.8.2 Haar Transform

The Haar transform matrix[5] is given recursively by

T u  i
c0®r,

£>o®//

where

C 0 = 2-w [ l  l ]

and

Theorem —  the correlation matrix is diagonalised by the Haar transform.

Proof—  it may be shown that if  T/ diagonalises R[ , i.e.

T, R ,T j  -  A,

where A/ is diagonal, then T /+, diagonalises R ,+l .

From (2.29) and (2.40), and noting that 2 C j C 0 = C 1 ,

Co® 7/

(2.40)

(2.41)

(2.42)

(2.43)

Tu\Ru\Tj+\
D0 ® I,

(2 C iC o ® * /)[c i ® r r  I Of ® /,)  +»K,Ti„ t L i (2.44)



l C 0CTa C a <&T,R, 

2D o C jC o ® * ,
[cj ® tJ I Z>o ® // j +Pf«/w

46

but C gC i = ( l) a n d D o C i =  C qD J  = (0 ), so (2.45) may be written as

1 l+lf t l+l1l+l
2T ,R ,T l  0,

0, 0, t  P?+i(

2roo ® A, + P/2+i//+i

where again

I1 0
r» = 0 0

and where 0/ is a zero matrix of appropriate dimension. 

The initial condition is given by

T lR lT l = A,
2p$ + P? 0 

0 P?

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

and the proof is complete.



2.9 Implications o f the Model for Estimation

As noted in Chapter 1, the estimator which is optimal under the criterion o f minimum 

mean squared error (MMSE) reduces to a linear functional o f  the available data for 

processes which are normal (i.e. with jointly gaussian probability density functions). 

Since the model is gaussian, the MMSE estimator will be linear.

The form o f the model o f (2.4) suggests that a one-dimensional estimator which is causal 

in the vertical (/)  index may be an appropriate scheme. The innovations representation 

(2.6) o f  the model further suggests a recursive form for the estimator by analogy with 

causal innovations representations o f time series with increasing data support, which 

often yield recursive (Kalman) estimators. Such estimators are computationally simple 

but the price paid is the restriction to causality. In the present case, however, the image is 

noncausal and the (causal) estimator would operate in a direction ‘normal’ to the image 

plane. The use o f a one-dimensional estimator would avoid the problem of two- 

dimensional spectral factorisation[27][28][29] which can yield NSHP factors of infinite 

spatial order.

The benefits o f such a scheme would additionally include the ability to estimate informa

tion at different scales in a uniform, isomorphic way. Typical causal estimators have an 

order —  equal to the order o f the underlying signal model —  which determines the scales 

at which they are effective. Structure at smaller scales is blurred (the estimator order 

being too large to follow fast fluctuations) and noise processes at larger scales pass 

unsmoothed (the estimator order being too small to affect slowly-varying signals). The 

causal direction is often all too obvious by virtue o f blurring and streaking 

effects! 109][127][157] produced at edges normal to it, as the estimator adjusts to the non- 

stationarity in the input at the edge.
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2.10 Generalisations

2.10.1 Generalisation of the Model

The model o f (2.6) expresses the image as a sample o f a martingale process, causal in the 

level index / of the quadtree. An obvious generalisation of this model is the first-order 

Markov process! 110], where the propagated term in (2.6) is multiplied by a spatially- 

variant coefficient a i+1 f f ,

si+i.r,f -  aM . r . / si,i , j  + »

</+l , r , f ) * D U J  ,

OS / S T - 1  . (2.51)

This model may be constructed in such a way that at the image plane, the images gen

erated by (2.51) and (2.6) are identical. This is accomplished by suitable choice of the (3 

parameters. At higher levels in the quadtree, however, the ‘partial’ images are different.

A further generalisation may be introduced by the use of a  more general Ith -order Mar

kov model to represent the signal on level /+1,

s M , r , f  =  Z  a k * p ‘q * S k .p .q  +  P l + l . f . / W M .  1*,/ •
tk.P.q)
• A i.i.j

< / + i . r . / ) « D U j  .

O S / S T - l  . (2.52)

Again, this model may be rendered equivalent to the model o f (2.4) or (2.6) in the sense
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of the generated image by appropriate choice of the P parameters. This is apparent by 

consideration of the nonrecursive form (2.4) o f  the model. The ‘partial’ images on levels 

other than the image plane are different again from those produced by the original model 

or those produced by the model o f (2.51).

2.10.2 Generalisation to N-Dimensional Signals

The model generalises to N dimensions if a  ‘2 ^ -tree’ structure is defined. A noncausal 

signal in this N-dimensional space may be obtained by the one-dimensional martingale 

model operating in a hyperspace of dimension N+l and causal in the extra dimension. 

The N-dimensional signal space is then the projection of this (N+l)-dimensional struc

ture on to the N-dimensional hyperplane, ju st as the 3-dimensional structure o f  the quad

tree projects on to the 2-dimensional image plane.
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Level Y

Figure 2.1 —  Quadtree Structure



SI

Level 0

L evel/

Level /+1

Level Y

Root (0,0,0)^$0,0.0 -  ßo.o.o*'o.o.o

W . P . q )  /  sY.p,q

Figure 2.2 —  Model Structure
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CHAPTER 3 

THE ESTIMATOR

3.1 Problem Statement

Given noisy image data uitj ,  0 £  i , j  £  2r  — 1, the general linear estimator (the optimal 

minimum mean squared error (MMSE) estimator was noted in Chapter 1 to be linear for 

normal processes) is given by

i .j  -  2  ■ (3.1)
m, n

In general, calculation o f the estimate is computationally cumbersome, requiring in the 

worst case 4y multiply-accumulate operations per image pixel and both calculation of 

and allocation o f storage for 4y coefficients a ^ n per pixel. In any practical scheme, this 

burden would have to be substantially reduced, for example by assuming that correla

tions between pixels are significant only at short distances (the effect being that most of 

the a lmin are then zero) or that the statistics of the signal are stationary (implying that 

am!n = )• As noted in Chapters 1 and 2, however, each o f these measures has

adverse implications for the realism o f the image model.

What is sought in this work (see section 2.9) is an optimal (i.e. MMSE) linear estimator 

with the benefits o f the causal recursive structure o f  the model o f Chapter 2 and, like the 

model, capable o f  scale-invariant and possibly spatially-variant (i.e. nonstationary) 

operation.

Thus it is desired to retain the advantages o f  MMSE estimation (tractability o f the
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optimal solution, linearity for normal processes, innovations representation leading to 

computationally simple causal recursive estimation) but in the context o f a more realistic 

image model (noncausal, nonstationary, scale invariant) and at low computational cost 

(one-dimensional recursive implementation).

3.2 LMMSE Estimation and the Orthogonality Principle

If a (one-dimensional) signal s (n )  is estimated as f (n ) ,  two important definitions 

immediately result.

The estimation error e (n ) is defined as

e(rt) = s ( n ) - s ( n )  (3.2)

and the mean squared error (MSE) as

P .  -  E e2(n ) = E [ s (n )  — £(n)]2 . (3.3)

It can be shown[7][99][110] that the MSE Pn is minimised when the estimate s (n)  is the 

conditional expected value o f the signal s (n )  given the available datax(fc),

f ( / i )  «  E ( j ( / I ) | x ( * ) , * € * / „ )  , (3.4)

where M n is the region o f support o f the available data for the estimate.

The discrete linear form of the estimator is given by

H n )  = £  a t x ( k )  .
k*M,

(3.5)
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The solution for the optimal coefficients is given by the orthogonality principle [110], 

which states that the estimation error e(n ) should be orthogonal to all o f the data x  (k ):

Ee(n )x (k )  = £ [ 5 ( * ) - j (« )]x (*) = 0  ,

k e M n . (3.6)

Application of the orthogonality relation for each datum generates the normal or Yule- 

Walker equations[86][110], solution o f which yields the coefficients of the optimal esti

mator (see section 1.4).

3.3 Kalman Estimation and Innovations[68][86][110]

3.3.1 Causal Prediction on Increasing Data Support

Suppose that the task at hand is the linear prediction of the ‘present’ value x  (n ) of a sig

nal in terms of a linear combination o f its causal past x (k ) ,  0 <. k  ^  n  — 1. The predic

tor is denoted by x  (n ), and the mean squared prediction error is then given by

Pn =  £ [ * ( » ) - i ( n ) ) 2 . (3.7)

This quantity is minimised if the predictor satisfies the orthogonality principle,

E [ x ( n ) - i ( n ) ] j r ( m )  =  0 ,

0  £  m  £  n -  1 . (3.8)

The solution for the optimal predictor is simplified if x ( n )  is expressed in terms of its 

Kalman innovations ix (n )  [110]. This signal is orthonormal,
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Eix (n)ix ( m ) =  8n m  , (3.9)

and is derived from x ( n )  by an invertible, causal linear transformation known as the 

Gram-Schmidt orthonormalisation[l][110]. This expresses ix (n ) as a linear combination 

o f x  (k ) for 0  £  k <. n,

¡An)  = £ t f * ( * )  • (310)
k=0

The inverse relation expressesx ( n )  as a linear combination of ix (k)  for 0  <, k  <. n,

x ( n )  = £ / ? / * ( * )  . (3.11)
k=0

The processes x ( n )  and ix ( n ) are said to be linearly equivalent , since one may be 

derived from the other by the above causal linear transformations. The causal, time- 

varying linear filter with coefficients o f (3.10) is known as the Kalman whitening filter 

[110] of x  (n ), and that o f (3.11) with coefficients /£ is known as the Kalman innovations 

fil ter [110] o fx (n ) .

From the relations (3.10) and (3.11) it is apparent that the estimate x  (n ) of x  (n ) in terms 

o f x  ( k ), 0  £  k  ^  n — 1 may be expressed as a linear combination of the innovations 

ix(k ) for 0 £  k £  n — 1,

¿ ( " )  -  I V W  • <3.12)
k=0

because these data are linearly equivalent to x  (k)  for 0  £  k  £  n -  1.

The orthogonality relation o f  (3.8) may then be written in terms o f the innovations,
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E [ x ( n ) - i ( « ) ] / , ( m )  =  0  ,

OiS m £  n -  1 . (3.13)

It follows from (3.11) and (3.12) that (3.13) is satisfied if 

= % .

0 £  k  £ n - 1  , (3.14)

and the optimal predictor is then given as

i ( n )  =  x ( n ) - £ i x (n)  . (3.15)

Thus the signal x ( n )  may be expressed as

x ( n )  = i («) + /" ix (n ) . (3.16)

This description is known as a minimum variance representation (MVR) [86] of the sig

nal x  (n ) since it takes the form o f a  sum of the optimal predictor plus the minimum mean 

squared (i.e. minimum variance) error in the prediction.

The prediction error is

e„ = x ( n ) - x ( n )  = £ / , ( * )  (3.17)

which is a nonstationary white noise, proportional to the Kalman innovations ix (n ) with 

mean squared value

Pn = Ee* = (O2 . (3.18)
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The innovations signal ix (n ) may therefore be considered to represent that part of x (n )  

which is ‘unpredictable’, and represents the ‘new information’ in x ( n )  assuming 

knowledge o f all previous x ( k )  , 0 ^  k < n.

3.3.2 Kalman Estimation in White Noise

Section 3.3.1 describes the innovations approach to the solution of (3.5) by the ortho

gonality relation (3.6) for the case where s (n )  = x ( n )  and Mn = { * :( ) :£ £ £  n - 1 } .  

The estimator is the predictor o f x ( n )  in terms o f its past.

Suppose now that it is desired to obtain an estimate s (/t)  of s (n )  in terms of x (k )  for 

0  £  k  £  n where the x ( k )  are noisy observations of the signal s ( n ), and the corrupting 

noise is white and orthogonal to the signal,

x ( n )  = s (n )  + v (n )  , (3.19)

Ev(/*)v(m ) = Qv(n)bn,m . (3.20)

£ j(n )v (m )  = 0  . (3.21)

In the terms o f (3.5), Mn = {£: 0 ^  k <. n } . Since s (n )  *  x (n ) ,  the problem is now 

one o f filtering rather than o f prediction. The data support Mn now includes the ‘present’ 

(k = n )  as well as the ‘past’ ( 0  <. k  £  n -  1).

As in the case o f the predictor o f section 3.3.1, it will be shown that the derivation o f the 

optimal (MMSE) estimator m ay be simplified if the estimator is expressed in terms of the 

Kalman innovations /*(/») o f  the data x(n ) .  It will further be shown that the estimator
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may be coerced into a recursive form which simplifies its computation.

Lemma 1 [110]

The difference x ( n )  — s ( n )  between the present noisy observation x ( n ) and the present 

MMSE estimate i ( / i )  is proportional to the present value of the Kalman innovations 

/*(«):

x ( n ) - s ( n )  = Jn ix (n) ■ (3.22)

Proof

By the orthogonality relation o f (3.6), for the estimate s (n )  to be MMSE it follows that

£ [ j ( / t )  — i ( / i ) ]x (m )  = 0 ,

0 Z m i  n . (3.23)

Now from (3.19), (3.20) and (3.21), it follows that (3.23) may be rewritten in terms of 

x ( n )  - s ( n )  as

E [ x ( n ) - s ( n ) \ x ( m )  = QM 'fc n.m  •

0  S m £  n , (3.24)

and so the differencex ( n ) - s ( n )  is orthogonal to x ( m ) for 0  £  m <. n -  1,

£ [ * ( * ) - f ( / t ) ] x ( m )  = 0  .

0  £  m £  n - 1 . (3.25)



60

Now since the innovations signal ix (m ) is a linear combination of the data x (k )  for 

0  £  k  £  m , it follows that x ( n ) - s ( n )  must be orthogonal to the innovations ix (m ) for 

0  £  m S» n  — 1,

E [x (/ i)-s ( /» )]  ix (m) = 0 ,

0  £  m Z n -  1 . (3.26)

However, x  (n ) and s (n )  (and so also their difference) may be expressed as linear combi

nations o f the innovations ix (m)  for 0 £  m <. n , and (3.22) follows from  this fact and 

(3.26).

From (3.9) and (3.22), the coefficient Jn is given by

J l  =  E [*< iO -j'(n> ]2. (3.27)

An important assumption is now made regarding the model for the signal s  (n ). The sig

nal will be assumed to be a martingale (c.f. the model of (2.6)) o f the form

j( n + l )  = j ( / i )  + w (n + l)  , (3.28)

E w (n ) w ( m ) = Qw(n)bn m  . (3.29)

This model is a special case of a p 'h -order Markov model (in this case p  = 1).

Lemma 2

The difference x ( n + l ) - s ( n )  between the ‘next’ noisy observation x ( n + 1) and the
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present MMSE estimate s (n )  is proportional to the ‘next’ value ¿*(«+1) of the Kalman 

innovations:

• x ( / i+ l ) - i ( / i )  = H n+1ix (n+l) . (3.30)

Proof

The left hand side o f (3.30) may be written as

* ( n + l ) - i ( / i )  = [ s ( / i ) - i ( / i ) ]  +  w (n + l)  +  v ( / i+ l )  . (3.31)

The bracketed term on the right is orthogonal to x (m )  fo r  0<, m <, n by (3.23), 

repeated here:

£ [ j ( . ; ) - i ( n ) ] x ( m )  = 0  ,

0 m <, n (3.23)

From (3.28) and (3.29) it follows that w (n + l)  is orthogonal to  x (m )  over the same range 

o f m ,

E w ( n + \ ) x ( m )  = 0 ,

0 S m £ / i  . (3.32)

and furthermore from (3.19) —  (3.21), v (/i+ l)  is also orthogonal to x (m )  over this 

range,

E v ( n + l ) x ( m )  = 0  ,

()<. m <, n (3.33)
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Thus it can be seen that the left hand side o f (3.30) or (3.31) is orthogonal to x ( m )  for 

0 £  m £  n ,

E [ x ( n + l ) - i ( n ) ] x ( m )  = 0  ,

0  <, m <, n . (3.34)

To prove Lemma 2, an argument similar to that o f the proof of Lemma 1 above is 

invoked.

Since the Kalman innovations ix (m ) are a linear combination o f the data x ( k )  for 

k  <. m , it follows that the difference x ( n + l ) - s ( n )  is orthogonal to ix (m ) for 

0 <, m £  n,

£ [ j c ( n + l ) - i ( « ) ] i x (m )  =  0 ,

0 < m <1 n  (3.35)

N o w x (n + l)  may be expressed as a linear combination of the Kalman innovations ix (m ) 

for 0 £  m £  n+1. Also, i ( n )  may be expressed as a linear combination of the innova

tions ix (m ) for 0  :S m  £  n . Thus the difference x  (n+1) -  s ( n ) may be written in terms 

o f ix (m)  for 0  < m < n+1.

But since x ( n + l ) - f ( n )  is orthogonal to /x(m ) for m £  n by (3.35), then (3.30) 

follows and the proof is complete.

The value o f H n+j is given, from (3.9) and (3.30), as

H l , \  -  £ [ x ( n + l ) - f ( * ) l2 . (3.36)

62
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It now remains to coerce the estimator into a recursive form.

Lemma 3

The ‘next’ estimate f (n + l)  may be expressed in terms only of the ‘present’ 

s(n  ) and the ‘next’ noisy observation jc(n+ l),

i ( n + l )  =  a „ +i S(n) + b n t l  jt(/i +1) .

Proof

From the proof of Lemma 1 above,

i ( n + l )  =  x ( n + l ) - J n+iix (n+\)  

and, substituting (3.30) into (3.38),

i (n + l )  »  * (« + 1 )  -
Mn+l

where

• '.+  i

estimate

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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and

^ n + l -  1 ~an+1 (3.42)

which completes the proof.

The important consequence o f  this result is that the ‘next’ optimal (MMSE) estimate of 

the signal given all of the data m ay, for this class o f data, be reduced to a combination of 

the ‘present’ estimate and the ‘next’ datum which involves only two multiplications per 

estimate rather than the linearly increasing operation count which would be required for 

the ‘brute force’ linear combination o f all the available data.

3.4 Corruption by Additive W hite Gaussian Noise

In Chapter 2, the (‘clean’) image data is modelled as sYti j  as generated by the model of

(2.6) where Y  is the level index o f  the image plane in the quadtree.

In order to design the optimal estimator of the image given corrupted data, a model o f the 

corrupting process is also required.

In this work, this process is modelled as additive white gaussian noise (AWGN) with 

zero mean and of known variance. This model was chosen because

(i) It frequently leads to mathematically highly tractable equations in the design of 

MMSE estimation schemes for smoothing, filtering and prediction o f signals in

noise;
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(ii) When a number o f  independent sources o f noise operate additively, their sum may 

be shown by the Central Limit TheoremfllO] to possess asymptotically gaussian 

statistics, largely irrespective of the densities of the individual sources. The approx

imation is observed! 110] to be rather good even for relatively few sources.

Real physical system s such as the electronic equipment used for capturing, process

ing, transmitting o r  displaying images tend to contain large numbers o f  active dev

ices each of which contributes (generally non-white) noise. In addition, resistances 

(be they resistors by design, junction resistances in active devices, leakage resis

tances in reactive components or any other type) contribute white (Johnson) noise. 

To a first approximation, the combined effect o f all these sources is their linear sum, 

thus admitting the Central Limit Theorem in its statistical description.

(iii) Additive white gaussian noise has been found in practice adequately to represent 

many of the forms o f  degradation observed in real physical systems which are (at 

least by design) linear. Nonlinear systems tend to give rise to various forms of mul

tiplicative noise, the analysis o f which is often difficult, but most systems of the 

type discussed in (ii) above are designed to be linear in their treatment of the sub

stantive signal. T h is  qualification is necessary because devices such as modulators 

and demodulators are nonlinear but their combination is usually intended to 

‘appear’ linear o r  transparent.
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3.4.1 The Model for the Noisy Image

Using the AWGN noise model as discussed above and the image model o f  Chapter 2, the 

combined model for the noisy observed image is given by
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“ i.y  *  sr.l.j +vi.J (3.43)

where the probability density function (pdf) of v is gaussian and

E v i . j v k . l  = * i . k * j , l (3.44)

and

E s Y , i . j v k , l  ~  0 • (3.45)

It is assumed that the only available data is the noisy image u i t j  and that the noise vari

3.5 Data Sets and Vertical Operations

The optimal (MMSE) estimator o f (3.1) will be some type of generally nonstationary 

spatial linear operator. The estimate may be calculated at each image pixel by a 

multiply-accumulate operation at each point in the support (most generally the entire 

image) of that operator.

The computationally intensive nature of estimators which use some form of nonstation

ary spatial linear operator was mentioned in section 3.1.

In the present work, given the points above and the ‘vertical’ nature o f the image model 

of (2.4) or (2.6), it is specifically desired that spatial operations be avoided. Accordingly, 

only vertical operations (i.e. those which are defined along the links in the quadtree struc

ture) will be permitted. This prevents the estimator solution from emerging in the form of 

(3.1) although it may be expressed in that form as noted above. It will be shown that this

ance a?  is known or can be estimated.
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restriction does not adversely affect the optimality of the resulting estimator, because the 

constraint is matched to the structure o f the model on which the estimator is based.

The implication is that all data flow in the estimation will be constrained to be along the 

links in the quadtree, and so at any node the ‘data set’ available for processing will be 

restricted to the ancestor and descendant sets for the given node.

The recursive form (2.6) o f the model further suggests the development of a recursive 

form  o f  the estimator based on the Kalman estimator which was developed in section 

3.3.2. In this case, the data set might be further reduced (c.f. the remark at the end o f  sec

tion 3.3.2).

3.6 T he Average-Value Data Quadtree

Given the noisy image u{j  as defined in (3.43), (3.44) and (3.45), a quadtree m ay be 

form ed wherein each node (l , i , j ) contains the average value o f its four children 

(/+ 1 , * " , / ) ,  (/+1, i ' , f ) e D i  i J  and the nodes on the image plane, level Y,  are set 

equal to the values o f  the noisy data. The nodes o f  this tree will be denoted by x .......

Then

* r . t j  -  “«.> -  +  .

OS I J  S 2 r  - 1  , (3.46)

and

x l. i , j  = T  £  TE,x l+l,2i+p,2j-Hf . 4 p - o , « o
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0 £  / ¿ l r - l  ,

O S / , ;  £ 2 ' - 1  . (3.47)

It follows from (3.46) and (3.47) that the root node (0,0,0) contains the average value 

(gray level) o f the entire image, while its four children each contain the average value of 

one quadrant o f the image and so on.

This average-value quadtree will be o f  utility in the derivation of the optimal estimator in 

a subsequent section.

3.6.1 Correlation Properties

From the equations (2.1) to (2.4) and (3.43) to (3.47), and proceeding as in section 2.4.3, 

a number o f correlation functions relating the data x ....... , the signal s ......... and the sig

nal innovations w ....... may be derived. The process is somewhat tedious, and so the

derivations have been omitted; all the results follow, however, from the equations listed 

above.

G) * „ ( . . . . ; ......... )

J i k . p . q )  -  Ex/.i.yw«, ,

or

A  ■ ( k . p , g ) € A ,  i j  ,

A
4*-'

i k . p . q ) s D , j j  , (3.48)

0  , (4 , p , i .
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( « ) * „ ( ......... ; .......... )

Ra O , i , j - . k , P , q )  =

R „ ( l , t . j ; k , p , q )  . < .k .p ,q ) *D U J  ,

R a ( I . I . J ; k , p . q )  +
P h\ ( k . p .q ) e D ,

Thus

R x s d . i J - . k ' P ' Q )

X P,2(r.m.n)e
(Ai.U^k.p.q)

( k , p , q ) 4 D l i J  ,

(3.49)

(k , p t q ) m D U J  .

....;.... )

R „ ( l , l , j \ k , p , q )  *  ExU J xktP ^

R „ ( l , i , j , k , p , q ) , (k , p , q ) 4 ( A l ' i ' j y jD U J ) ,

P/2+i P?
/?« < /.l . J . k . p . q ) * - ^ *  + • & . P - q ) * D l' t ' j

P*+i Pr
R u ( U J \ k ' P > q )  + —£ - +  •• + ^ F T  + - ^ T  • (-k ’P ' (l ^ e A i . i . j

and so
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Ra ( l . t . j . k , p , q )  =

Py q?
4 y_* 4y-* *

( k , p , q ) e A U J

(3.50)

3.6.2 The Optimal Upward Estimator

As a preliminary to the development o f the optimal MM SE estimator, consider an esti

mator s“ i j  of Si i j  in terms only o f data xk p q in the descendant set D{ ¡ j  of the 

node ( /, i , j ) ,

It is apparent from the definitions (2.4), (2.6) of the model and (3.46), (3.47) of the 

average-value quadtree that:

(i) Since those nodes (k , p , q ) e D U j  contain averages o f  the nodes 

(Y , p , q ) e D l i j  in the image plane, this estimate may be expressed in terms only 

o f the latter nodes.

f i l l . /  •  L (3.51)

(
(3.52)
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Thus 0  <,at <. 1, and the LMMSE estimate f “ ¡ j  of in terms o f all its descendants 

xk,p,q > ( * ,P , <7) e £*/,»,; in the average-value quadtree is just a positive fraction of the 

average x t ,• j  at that node.

For estimation from a noiseless image (a* = 0), (3.57) shows that the estimate is a 

larger positive fraction of which is now the average value o f the ‘clean’ image

block Sy.p.q »(Y , p , q ) e D i  i j . Note that even in the noiseless case, in

general for 0  £  /  £  K - l .

3.7 The General Optimal Estimator

It is now desired to find the optimal MMSE estimator ¡¡j j  in terms o f all the data 

xk%p%q in the average-value quadtree. The restriction to vertical operations described in 

section 3.5 implies that only those values xk%p%q , (k , p  ,q )&{Al i j K j D l i j )  may be 

used in the estimate.

However, by an argument similar to that of section 3.6.2, this will still constitute the 

optimal estimator of $/,;,y in terms o f all the xy tPtq (i.e. all of the noisy data) since the 

correlations between the j  j  and the xY p q are invariant within image blocks by 

(3.49) and so the contribution of a given block to the estimate may be expressed in terms 

only of the average value of the block.

Given that the optimal upward estimate Sf ¡ j  is simply a fraction o f the average value 

xi, i , j  (scc section 3.6.2), it seems reasonable to enquire as to whether the optimal esti

mate in terms o f xk<p q , ( k , p , may be expressed as a combina

tion o f  xk p q , ( k , p , q ) e A u j  only. (Recall that (l , i , J ) e A i j j  and so the average
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value Xit ¡ 1  is included in the proposed set of available data for the estimate.)

As noted in sections 2.9 and 3.5, the innovations representation (2.6) o f the model sug

gests that a recursive form of the estimator might be derived, which would achieve a 

further reduction in the size o f the data set for the estimate.

The next few sections and appendices 1 and 2 address the derivation o f the optimal 

MMSE estimator.

The recursive form o f the estimator will be defined directly, in section 3.7.1, and shown 

to be optimal. Section 3.7.2 addresses the initial condition. Section 3.7.3 considers the 

estimation o f the signal innovations process. A brief summary is given in section 3.7.4.

Appendix 1 derives the inverse o f  the data correlation matrix by recursion on the quad

tree level index / and the nonrecursive form of the optimal estimator as the solution to 

the Yule-Walker equations. The recursive form o f the estimator is then derived in a 

manner analogous to the algorithm o f Levinson[84][l 10] which expresses the coefficients 

of the optimal predictor o f order N + l  of a given process in terms of those o f its optimal 

predictor o f order N .

Appendix 2 presents a derivation of the estimator which is analogous to that given in sec

tion 3.3.2. In that case the noise was white and uncorrelated with the signal. In the 

present scheme such is not the case, but a similar recursive implementation of the estima

tor may nevertheless be obtained by using the innovations derived from the Kalman whi

tening filter o f the data. Appendix 2 presents the whitening filter and the associated 

derivation o f the recursive form o f the estimator. The inverse o f the data correlation 

matrix o f Appendix 1 is shown to be given by the product of the Kalman whitening filter



74

and its matrix transpose. A similar decomposition of the correlation matrix as a product 

of the Kalman innovations filter and its matrix transpose is given. Both analyses consti

tute Cholesky factorisations! 110] o f their respective matrices into causal and anticausal 

factors.

3.7.1 Definition and Proof o f Optimality

Theorem 1

The recursive estimator

S i + i . r . f  = S i . i . j  +  P / + i* 7 + i. i \ /  »

( / + l , / ' , / ) e D / | i J  , (3.58)

o f sl+lt r  f  is optimal in the MMSE sense with respect to all o f  the data 

x Y,p,q »( Y , p ,  q ) e D 0,0'0 • if h , i , j  an<̂  *7+1,f , /  are similarly optimal estimates of 

Si ¡ j  and respectively.

Proof

The orthogonality relation for the MMSE optimality o f the estimate i/+ \ , e . f  rnay be 

written as

E ^ l + \ , r , f x Y ,p ,q  -  E s M , r . / X Y , p .q  •

(Y , p . q ) e D 0<00 , (3.59)
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or

E ^ l . i , j X Y . p . q  +  P /+ l£ * 7 + l  , i , J x Y . p . q  -  E s M , r . f X Y , p . q  »

( Y , p , q ) e D 0,0.0 ■ (3.60)

As a consequence of the assumed optimality o f  S/ti j  and »V/+1,,-*,/. these estimators 

satisfy their respective orthogonality relations

E S l . i . j X Y . p . q  =  E s l . i . j x Y , p .q  »

( Y , p , q ) e D 0,0.0 . (361)

for and

E ^ M . r , / x Y , p , q  -  E w l + \ , i , f x Y , p , q

( Y ,p ,q ) e D o ,o ,o  » (3.62)

fo r  * i + i .  r . f  ■

Substituting these relations into the left side o f (3.60), and then the model of (2.6) into 

both sides, gives (3.59) and the proof is complete.

In order to utilise the result (3.59), two further estimators are required.

The first is the optimal estimator f 0 0jo of the root node Sq.o.o in terms of all of the data

X Y . p . q ■

The second is the optimal estimator vv/+1 o f the signal innovations process w/+1 f  j
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in terms o f all of the data x Y p q .

3.7.2 Estimation of the Root Node

From section 3.6.2 it follows that the optimal MMSE estimator i 0,o.o o f Jo.o.o *n terms of 

all o f the data xY<pq , ( Y , p , q ) e D  000 is the upward estimate fo.0,0 of (3.54),

•s0.0.0 = 0̂,0,0 = aoX 0,0,0

where, from (3.57), a 0 is given by

3.7.3 Estimation o f the Innovations Process

The optimal MMSE estimator of the signal innovations process

wl+ \ , r , f  -  sM , r , f  is required.

Theorem 2

The required MMSE innovations estimator is given by

$ 1+1 , r , /  “  c / + i( * m , r , f

(/+!,r./)mDUJ .
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Proof

The orthogonality condition for the optimality of the estimate may be written as 

£ * 7+1 , r . f x Y , p , q  -  £ * 7 + 1, «*, f x Y, p , q  *

( Y , p , q ) e D 0A0 , (3.66)

or

c M ( E x M , r , f x Y , p , q  ~ E x l . i , j x Y , p , q i  =  E w l + l . Y , f x Y , p , q  »

( Y , p , q ) s D 0fi%0 . (3.67)

By the optimality o f ¡ j  , it follows that the term £?/, ¡ jX y  p q may be replaced by

E s i . i . j * r .p . q ■

Equation (3.67) may then be written in terms of the correlation functions introduced in 

section (3.6.1) as

( r , p , q ) e D 0,w  . (3.68)

Considering first the case where ( Y , p , q ) e D t + l t f , (3.68) yields

+ ' + +  4 r - / - i |  = P '» ' • (369)

and so (3.67) is satisfied for ( Y , p , q ) e D t+it f r  if
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P/+1

p ?*i
P?+2 P?

4 y -/ -i aY-i-i

Treating now the case where (Y , p , q ) 4 Dl+l r tf  , (3.68) yields

Z  Pr -  Z  P,
( r ,m ,n )e  ( r . m . n ) e

(Ai*i.r./r*^r.p.t) (Ai.i.jf^Ar.p.i)

But from the definition o f the ancestor set,

= A i ' i j  u  ( / + l , r , / )  

and

( / + I . r . / ) n i 4 r , , t ,  = 0

where 0  is the empty set.

Hence the parenthesised term in (3.71) is zero, and

(0 )c /+1 = 0  ,

( Y > p > q ) 4 D i + \ ,e , f  •

to which the solution is arbitrary.

Hence the optimal MMSE innovations estimator is given by

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

&i+i.r,f - ci+1 (•*/+!,e.f -Si.i.j) (3.75)
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with c /+1 as given by (3.70).

Com bining (3.70) and (3.65) gives

s i + \ , r , f  ~  s i , i , j
P/2+i

P/V
P?+2 P?

( * /+ i, r , f  ~ s i . i . j )

(3.76)

or

Si+i.r.f - ei+ih.i.i + 0 ~ei+Oxi+i,r,/ •

where

e l+ \

P?.2 Py o?
4r - i - i  +  4r - / - i

+ _?i_ + _?L4r - / - i  ^  4r - / - i

(3.77)

(3.78)

or

(3.79)

It is apparent from (3.77) and (3.78) that the optimal MMSE estimate £/+i , r , /  a n°de

sl + i , r , f  *s a weighted average o f the optimal estimate st ¡ j  at its father and the (noisy) 

average value */+i a t  the node itself. As the variance O? of the corrupting noise 

increases, the estimator coefficient e /+i increases toward unity. This implies that there



will be a greater contribution from the father node (i.e. more smoothing) and a lesser 

contribution from the noisy average at the current node as the noise variance increases.

The estim ator coefficient at the bottom level (the image plane, level Y )  of the quadtree is 

given by (3.79) as

eY = (3.80)

and so i f  the  data is noiseless (a*  = 0) then the coefficient eY is zero, the estimate sY, ¡ j  

is equal to  the data x Y i j  = sY i j  and the error in the estimation o f the image plane is 

zero, as w ould be expected, irrespective o f values o f (3/ at higher levels o f  the quadtree.

3.7.4 Sum mary

It has been shown that for the image model o f Chapter 2 as given by (2.4) or (2.6), the 

recursive estimator o f (3.77) and (3.78), defined on the quadtree structure and causal in 

the level index, is optimal in the minimum mean squared error (MMSE) sense with 

respect to  a ll o f the noisy image data.

The estim ator equations are reproduced below; note that .

The estim ator is given by the recursion

+ 3 /+ i^ /+ l ,f , /  (3.58)

with initial condition (estimate at the root node)
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S0,0.0 -  a 0 *0,0,0 (3.63)

and innovations estimate

" M . r . f  -  c m ( xm . e . f - h . i . j )  ■ (3.65)

Combining (3.58) and (3.65) gives a more directly useful form of the estimator,

*  e l*\§t ,l ,i  +  0  - * u \ ) x u \ , r , r  • (3.77)

In the above equations, the various coefficients are given in terms of the parameters p/ of 

the image model as

(3.64)

ft

ft2*.

(3.70)

(3.79)

3.7.5 Digital Filtering Interpretation o f the Estimator

The recursive estim ator of (3.77) may be represented as a time-varying digital filter as 

shown in figure 3.1. The time variable for the filter corresponds to the level index / for
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the quadtree. The filter is clearly causal and recursive.

Neglecting the time variation o f the multipliers, the filter effectively has a single pole on 

the real axis in the z -plane at z = e, . Since 0  £  el £  1 , the filter is stable in the 

bounded-input, bounded-output (BIBO) sense.

Comparison with figure 2.3 shows that the estimator and the underlying image model 

have similar structures as might be expected.

3.8 Computational Burden

The recursive form (3.77) o f  the estimator requires on average 5/4 = 1.25 multiplica

tions per node to calculate s l+ \ t r , f  » since the first product e ¡+1 s t  ¡ j  needs to be com

puted only once for all four of the children (l + l , f , f )  and the second term 

(1 -  « /+i)■*/+!, f , /  requires one multiplication per child.

Since there are approximately 4N /  3 nodes in the quadtree for an image of N  pixels, the 

average multiplication count per image pixel is

(3.81)

The formation of the average-value quadtree requires only additions and trivial multipli

cations by 1/4 , which m ay be implemented by a double right-shift in a fixed-point binary 

format o r by a double decrem ent o f the exponent in a floating-point format.

The combined operation count o f  5/3 multiplications per pixel compares very favourably 

indeed with that of o ther image estimation schemes and represents a reduction over a
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(15 x  15) element spatial operator, as used by the authors o f [75], of a factor o f  135, or 

more than two orders o f magnitude. Over even a small (5 x  5) spatial operator, the 

acceleration is by a factor o f 15.

These figures do not include the overheads involved in other tasks such as the computa

tion o f the estimator coefficients (one per level o f  the quadtree in the spatially invariant 

case) or addressing.

The vertical structure o f the algorithm renders it highly appropriate for parallel computa

tion by an array of processing elements, which is not true o f common causal image esti

mation schemes where the causality is in, rather than ‘normal’ to, the image plane. On 

the other hand, conventional noncausal estimators, whilst amenable to parallel computa

tion, tend to be computationally expensive as the examples above demonstrate.

Thus the present scheme both eliminates the sequential processing demanded by tradi

tional causal methods, and dramatically reduces the computational load associated with 

noncausal techniques. The computational burden in terms o f operation count per pixel is 

significantly lower than that o f even a fairly low-order causal scheme.

3.9 Estimation of the Estimator Coefficient

The optimal estimator coefficient et for level / o f  the quadtree is given by (3.79) in terms 

of the model parameters p*.

Since no prior knowledge of these values is assumed, the estimator coefficient must itself 

be estimated from the noisy image data x k p q in the average-value quadtree.
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Now (3.79) may be rewritten as

" m
4N,

(3.82)

N  a.
P?

From (3.50) it follows that the Nk may be written in term s o f 

Fk -  E x l , , '

(3.83)

(3.84)

N k+i ~  RgX( k + \ , m , r r , k + \ , m , n )  -  R ^ i k . a , b \ k ,  a , b )  ,

-  "  Ft  •

0 S A S K - 1  . (3.85)

which is just the difference between the expected energies o f nodes on levels k+\  and k 

o f  the average-value quadtree.

I f  N r+ , is defined as

N,., « 3  0 ?  (3.86)

then (3.82) holds additionally for / = Y .
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The statistics Nk are now required in order to calculate the optimal estimator coefficients. 

These expected values are not available and must be estimated from the noisy  data.

The obvious and consistent estimator of the expected energy F, = /? „  ( / ,  i , j  ; / ,  i , j )  is 

simply the sample average

F, (3.87)

o f the energies o f all the nodes on level / of the quadtree.

Then

W/+i -  F , +i - F t , 

O S / S K - 1  , (3.88)

is  the estim ator o f  A//+ ], and

i , AN,

i s / s r - i  , (3.89)

is the estimator o f e,  for 1 £  / £  Y - l  .

The estimator o f eY is given by

(3.90)
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with N y+j as defined by (3.86).

3.9.1 The Probability Density Function for the Estimator Coefficient

The probability density function (pdf) of the (estimated) optimal estimator coefficient êt 

is a function o f those o f the Nm o f (3.89).

These quantities may be expressed in terms o f the differences between father and child 

nodes since

*Ki ,r,f 
/) -  * h , j 4 o + i . r . f )

eDi.i.j

(3.91)

where

mu \ . r , f  = x i+\.r . f  ~  x l , i . j  (3.92)

is the difference between the values o f  a child and its father, and the Nk are spatial aver

ages of the squares of these differences by (3.87) and (3.88).

It follows from (3.46), (3.47) and (3.92) that the difference >s a gaussian vari

able since it is a linear combination o f other gaussian quantities. Its mean is zero and its 

variance will be denoted a ^ ( i .

Then assuming independence of these terms, the pdf of N l+l is a chi-square (x2) den- 

sity[8] with 4/+l degrees of freedom and variance parameter o £ (il. This follows from 

(3.87), (3.88), (3.91) and (3.92) which together allow fV/+1 to be expressed as an average



87

of 4/+1 squares of gaussian variables m/+1> each of which has variance a%M •

Similarly, Nt has a x 2 density with 41 degrees o f freedom and variance parameter c £ ( .

Since ¿i is the ratio (3.89) o f these two x2 variables, its density is the so-called F den

sity^] which is characteristic of a ratio o f x 2 variables. Appendix 3 provides a full 

derivation.

The variance of el increases with decreasing quadtree level / (i.e. as the pyramid is 

ascended) as the sample size (the number o f nodes on the level /)  is reduced.

Fortunately the problem is well conditioned in that the et on the upper (small / )  levels, 

while prone to larger errors in estimation, have a correspondingly smaller effect on the 

final image estimate, as is evident from the recursion o f (3.77).

The estimate et of C/ is consistent in that as / increases, et  ̂ ► et as the variances of 

the Nm approach zero.

3.10 Examples of Estimated Images

The estimator was applied to noisy versions of the ‘girl’ and ‘blobs’ images, the clean 

originals o f which appear in figures P4 and P5. The images were processed at an input 

signal-to-noise ratio of OdB. The noisy images are shown in quadtree form in figures P7 

and P8, and the estimated images in figures P9 and P10, as indicated in table 3.1. All 

estimated images displayed in this work are scaled to the same variance as the original 

uncorrupted image.
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Image •Girr ‘Blobs’

Clean P4 P5

Noisy (OdB) P7 P8

Estimated P9 PIO

SNR o f estimate 10.9dB 11.4dB

T a b le  3.1

E s tim a tio n  R e su lts

3.10.1 Comments on the Estimated Examples

It is clear from figures P9 and P10, and from the SNR figures given in table 3.1, that the 

estimator achieves some degree o f noise reduction. However, the immediate subjective 

impression is that of the pronounced block structure o f the estimated images. This is a 

consequence of:

(i) the quadtree structure and the lateral isolation between nodes which it provides;

(ii) the use o f the simple averaging procedure of (3.47) which gives rise to alias distor

tion when the data on level /+1 is averaged and the spatial sampling rate reduced in 

the calculation o f the data on level l ;

(iii) the form (3.77) o f the downward estimation process which, because of the definition 

of the model and estimator on the quadtree, maintains the isolation referred to in (i) 

above.
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There is also some blurring of the image; this is due to the use of the spatially-invariant 

form o f the estimator, which results in an inability adequately to handle nonstationarities 

(i.e. edges) as discussed in section 2.1.

These problems will be addressed in Chapter 4, which introduces both an inexpensive 

method o f  reducing the blocking effect and also the spatially-variant form of the estima

tor.

The SNR improvement (10.9dB and 11.4dB for the ‘girl’ and ‘blobs’ images respectively 

at input SNR of OdB) is very reasonable, however, and represents performance numeri

cally superior to that o f many existing restoration schemes[61][156]. This suggests that 

even the spatially-invariant form of the quadtree image model is a  fairly effective statisti

cal description o f the two images under consideration.
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CHAPTER4

ADAPTATION OF THE ESTIMATOR TO VISUAL CRITERIA

4.1 Motivation

As noted at the end o f Chapter 3, the estimator as it stands suffers from two key defects.

The first is evident in the blocking effects in the estimated images, which are a conse

quence of the structure o f the quadtree and the nature o f the upward averaging and down

ward estimation processes (involved in calculation o f the data and estimated quadtrees 

respectively). Other than the upward averaging process, there is no explicit lowpass 

( ‘anti-alias’) filtering of the data prior to reduction o f the sample density o f the sort 

which is commonly designed into sampled-data systems because of this effect. Indeed, 

this kind o f spatial operator has been deliberately avoided in order to reduce the compu

tational complexity o f  the scheme. The averaging process constitutes a zero-order hold 

(ZOH) lowpass operator which possesses sidelobes o f significant energy in the frequency 

domain and hence is a rather poor lowpass filter. The downward estimation, which is 

where the blocking effects become apparent, suffers again as a result of the isolation 

between nodes which do not share immediate ancestors.

It will be shown in this chapter that the problem may be largely solved, and the blocking 

effect dramatically reduced, by the inexpensive expedient of inserting relatively few 

additional nodes into the quadtree structure. Spatial filtering is not required, and the com

putational burden is only marginally increased.

Secondly, the use o f  the spatially-invariant form o f the model and estimator leads to
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blurring o f salient image features such as lines and edges, which are profoundly space- 

variant features. The estimator performs the same operations at every node on any given 

level of the quadtree and so cannot adjust the degree of smoothing applied in different 

regions o f the image.

This can be considered as a combination of defects in both the spatially-invariant signal 

model and the MMSE error criterion (see section 1.6). However, these effects are not 

easily isolated and the design of a globally optimal estimator for a signal model and error 

criterion which are both significantly more complicated is likely to prove difficult as 

noted in section 1.6. Instead, a more pragmatic approach will be followed; adaptations 

will be introduced which preserve the efficient tree-based structure of the estimator.

This chapter will introduce the spatially-variant or nonstationary form o f  the estimator. 

Contextual information concerning the local structure o f the image will be extracted by a 

computationally efficient ‘edge detector’ (actually a more general scale-invariant activity 

detector) which operates on the quadtree. This information will be used to modify the 

degree o f smoothing which the estimator effects in the locality and at the given scale.

By a process of backward ‘extrapolation’, the corresponding spatially-variant form of the 

image model may be derived. This is effectively a ‘signal-equivalent’ technique analo

gous to those o f Abramatic and Silverman[3] and Knutsson, Wilson and Granlund[75].

The combined system will be shown to offer the benefits of scale-invariant, noncausal 

and nonstationary estimation but at very low computational cost.
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4.2 Reduction of Blocking and Alias Distortion

The structure o f  the quadtree, and the definitions (3.47) and (3.77) of the upward averag

ing and downward estimation processes respectively, give rise to  noticeable block edge 

artifacts in the estimated image.

Nothing can be done about this effect without sacrificing to some extent the strictly verti

cal nature of the algorithm.

However, in the present scheme it has been found that a dramatic reduction o f the scale 

of this problem can be achieved with little such sacrifice by the inexpensive expedient of 

inserting some extra nodes into intermediate positions in the quadtree structure.

Figure 4.1 shows the locations of these extra nodes, which will be referred to as intersti

tial nodes. The existing nodes are known as original nodes.

On a level / ,  l £ l £ Y - l  in the quadtree there are (2/ )2 original nodes 

st . i , j  » O S / ,y  £2* — 1. Between these nodes are inserted (2, - l ) 2 interstitial nodes 

Pi.m .n  . 0 £ m , n £  2l -  2 , such that each p ltm n lies centrally between the four origi

nal nodes , 5 ,  r e  ( 0 ,1 ) .

The children o f an interstitial node P/tm>n are then the four original nodes 

i /+ i,2/n+i+*,2/i+i+i . i , r e { 0 , 1) , which lie closest to its downward projection on to 

level /+1. The interstitial node is referred to as the interstitial fa ther  of each of these four 

children; each child also has an original father, the four respective original fathers being 

the four original nodes on level / between which the interstitial node was inserted.
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Figure 4.1 demonstrates that the interstitial node Pi%m%n straddles a pair o f block edges 

on level /+1.

Note that if the unmodified quadtree contained N  nodes, then there are approximately 

N /4  new interstitial nodes, which together straddle all the block boundaries in the tree.

The computation is modified as follows:

(i) When forming the average-value quadtree, the value y ......of an interstitial node is

defined simply as the average of its four (original) children, just as in the case o f an 

original node:

(ii) The downward estimation as given by (3.77) is modified such that the information 

propagated downward is now the average of estimates at the original and interstitial 

fathers o f the node being estimated,

1 S /S K - 1  ,

0 i i , > S 2 ' - 2  . (4.1)

(4.2)

where Pi> s , is the interstitial father of ¡¡+ f tf  .
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(iii) The interstitial nodes are estimated as

P l.i .i  =  ‘ l i i . i . i  + <4-3)

where g i ,i , j  is an average of the estimates of the four original nodes which sur

round the interstitial node Pi j j  • The value g i j j  may be considered as an esti

mate of a hypothetical father o f the interstitial node, which does not have a father in 

the sense that an original node does and so one must be created.

There are effectively two interdependent estimation problems, one concerning the origi

nal and the other the interstitial nodes. The approach adopted is suboptimal in that it 

addresses each independently, and in that no attempt is made to derive the globally 

optimal solution, which would lack the computationally efficient recursive form since the 

interstitial node structure is nonrecursive.

The insertion o f the interstitial nodes reduces the blocking effect by partially destroying 

the complete isolation which exists between the descendants o f neighbouring nodes on 

any given level o f  the unmodified quadtree.

In the context o f  the upward averaging process, the modification may be expressed in 

terms of the theory relating to the reduction in the two-dimensional spatial sampling den

sity which occurs as the tree is ascended. The averaging method o f  forming the data 

quadtree, while computationally simple, does not involve any other lowpass filtering 

before the data is resampled at the next level at a lower rate. This resampling corresponds 

to a two-dimensional decimation [120][142] and, without prior lowpass filtering, induces 

frequency components in the downsampled representation which were not present at the 

higher sampling rate. This is the phenomenon o f aliasing [120][142] familiar from 

discrete-time signal processing theory.
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Watson[142] and Meer, Bauer and Rosenfeld[92] have considered the frequency-domain 

properties o f  pyramid-generating kernels. Both papers point out that the averaging 

method will lead to aliasing since the kernel has a (s in x ) lx  form in the frequency 

domain. However, the present modification to the quadtree structure cheaply eliminates 

the filtering which would be required in both the upward averaging and downward esti

mation stages. A scheme such as the Laplacian pyramid o f Burt and Adelson [11] which 

uses lowpass filtering prior to the decimation will not significantly exhibit the 

phenomenon o f aliasing, but will be accordingly of increased computational complexity 

and will necessarily involve spatial operations. If the structure were to be used for esti

mation, spatial filtering (interpolation) would be required at the downward estimation 

stage as well.

The addition o f the interstitial nodes in the present scheme and the geometry of the 

modified structure cause a cancellation (to a first-order approximation) of the alias com

ponents. This is so because the interstitial nodes on a given level form a lattice which is 

displaced from the lattice of original nodes by half o f the sampling interval in each spa

tial coordinate. An alias is generated by the averaging o f (4.1) in the same fashion as in 

the unmodified structure, but at the opposite phase for components o f the signal above 

half the new sampling frequency. The use o f the average o f (4.2) in the downward esti

mation causes these components to cancel with those generated by the lattice of original 

nodes, and hence the aliasing is eliminated without recourse to conventional spatial filter

ing.

Note that this method does not achieve total cancellation because the only linear direc

tions in which the sampling density is doubled by the addition of the interstitial nodes are 

the two diagonals. In the unmodified scheme, the number of nodes decreases by a factor 

o f four from one level to the next, whereas in the modified scheme this factor is reduced
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effectively to two. (The ‘missing’ factor of 2 lies in the fact that when calculating the 

next level, only data at the original nodes on the current level are used. There is still a 

factor of 4 fewer nodes at each successive higher level). A factor of unity would be 

required in theory for totally alias-free operation in the absence o f an ideal lowpass filter.

The modified form of the estimator is derived heuristically as noted above and is not 

optimal in the MMSE sense for the given signal model. Nonetheless, it achieves a 

significant improvement o f the estimate both subjectively and numerically, and may be 

regarded as a response to a defect in the original signal model.

4.3 Examples o f Images Estimated with Interstitial Nodes

Examples of images estimated with the modification o f section 4.2 are shown in figures 

PI 1 and P12. The noisy input images are the same as were used in the examples o f sec

tion 3.10, the only difference being the inclusion o f the interstitial nodes in the present 

cases.

Table 4.1 provides a key to the figures and, for comparison, to the figures presented in 

section 3.10. The present estimates are referred to in the table as ‘modified’ estimates.
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Image ‘Girl’ ‘Blobs’

Clean P4 P5

Noisy (OdB) P7 P8

Estimated (sec. 3.10) P9 P10

Modified estimate P l l P12

SNR (sec. 3.10) 10.9dB 114dB

SNR (modified) 12.6dB 13.OdB

T a b le  4.1

E s tim a tio n  R esu lts  w ith  In te rs titia l N odes

It is clear from the figures that the insertion of the interstitial nodes and the modification 

o f the estimation scheme as detailed in section 4.2 have completely removed (at least to 

below the threshold of visibility) the problem of blocking which was so evident in the 

unmodified estimates.

The further improvement o f  about 1.6dB in the SNR of the restorations by comparison 

with the unmodified scheme o f section 3.10 demonstrates that the modification, while 

departing from the optimality o f the method, does nevertheless address a defect o f the 

original signal model despite its heuristic derivation.

The modification is retained throughout the rest o f the work described in this thesis, but 

will not generally feature in the mathematics for reasons of notational clarity. It should, 

however, be borne in mind that the same principle as described in (i) to (iii) in section 4.2 

is used everywhere that data is passed up or down the quadtree, be it gray level data or 

any other kind.
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Those figures which show all levels o f the quadtree will henceforth show two images for 

each o f levels 1 to Y —1, the additional image being that formed at the interstitial nodes 

on each level. The images formed at the original nodes will appear in the left half o f each 

figure, while those at the interstitial nodes will appear in the right half.

Note that there are no interstitial nodes on levels 0 (the root) o r Y (the image plane).

With the removal o f  the blocking effect, it becomes rather easier to see the problem of 

the blurring of edges which remains. The estimator, in its spatially-invariant form, 

applies the same degree of smoothing everywhere in the image. Inevitably this implies 

excessive smoothing in the vicinity o f  nonstationarities such as edges and inadequate 

smoothing in regions o f near-constant gray level. The former gives rise to blurring at 

nonstationarities while the latter allows excessive noise breakthrough in smoother 

regions. These complementary symptoms o f the spatially-invariant processing are each 

visible —  and objectionable to the viewer —  in figures PI 1 and P12.

The following sections deal with the solution to this problem, which requires the intro

duction of spatially-variant processing.

4.4 Edge Preservation —  Motivation

A problem with the estimator as it stands is that like most estimation schemes designed 

to remove noise, it tends to blur salient features such as lines and edges in the image. 

These features are knownI9][54][55][56] to be of particular importance to the visual sys

tem, and an image in which the edges have been preserved will usually appear to the 

viewer to be of a higher quality than one in which the edges have been blurred. This may 

be true even when the blurred image has a superior signal-to-noise ratio (SNR).

99
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A related visual phenomenon is the masking effect [13][1Q5][158], which describes a 

reduction in the visibility o f noise in the vicinity o f rapid luminance changes such as 

edges.

A number o f  estimation schemes have been devised (see section 2.1) which attempt to 

take account o f these effects. They seek to preserve edges by reducing the degree to 

which the image is smoothed in the vicinity o f those edges. More noise therefore ‘breaks 

through’ the estimation near the edge, but the masking effect states that it will be less 

visible to the viewer precisely because o f the sharpness of the preserved feature. (Aniso

tropic processing offers the prospect of increasing further the degree of noise smoothing 

without blurring edges —  this will be treated in Chapters 5 and 6.)

However, edge detection plays an important role in image processing which is by no 

means confined to the adaptation of estimation strategies to visual characteristics as 

described above.

Many schemes for segmentation[51][130][131], feature extraction and ‘image understand

ing’ based on object-oriented descriptions! 15][ 106], for example, use edge detection in 

some form, often as a ‘front-end’ or preprocessing system.

An effective edge detector, particularly one which is capable of some degree of noise 

rejection, is therefore a valuable tool in its own right, and one which could find wide 

applicability.

Many edge detectors(31)[123][126] begin by calculating a luminance (gray level) gradient 

function across the image, and label as an edge any pixel at which this function is, for 

example, above a given threshold or at a local maximum.
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Alternatively, they may calculate a second spatial derivative[901 and use its zero- 

crossings to define edge points. This method always gives edge maps in the form of 

closed contours! 106].

M ore sophisticated systems[33] may estimate the local orientation of an edge (which is 

perpendicular to the direction of the local maximum luminance gradient) and, for exam

ple, attempt to link labelled nodes along the oriented direction and across gaps.

The bane of edge detectors, however, is noise[32][123]. Edges are rapidly-varying signals 

in the spatial domain and thus have significant components at high spatial frequencies. 

These properties unfortunately characterise noise rather well too, and a differential 

operator such as that used to extract the luminance gradient will respond enthusiastically 

to noise, often signalling false edges.

The edge detector may for this reason be preceded by (or, if  it is linear, combined with) 

lowpass filters o f one or more scales which smooth both the offending noise and the 

edge. As Canny! 14J remarks, this provides a  tradeoff between signal-to-noise ratio (SNR) 

at the output of the (linear) edge detector and its ability to localise the edge. Wilson and 

Granlund[146] observe that the same tradeoff is forced in segmentation, where it is mani

fested as a tradeoff between certainty o f class membership and certainty in position. Both 

papers derive lower bounds on the product of the two competing parameters in the expli

cit form o f the uncertainty principle(46].

Witkin[151] has considered the treatment of the scale at which edges are detected in 

images by proposing a ‘scale-space’ edge representation which makes explicit the rela

tionship between components of an edge at different scales.



102

The use o f  edge detection operators of various scales is postulated by Marr[91] and Marr 

and Hildreth [90] as a model for edge detection in the visual system. They argue that if  an 

edge (as indicated by a zero-crossing in the output of a second-spatial-derivative, or 

Laplacian, filter) is present over a range o f scales (i.e. filter sizes) then it is probably 

genuine and not an artifact o f the processing o r  a  result of noise. This idea is taken up in 

section 4 .5 .2  below.

Eklundh e t  al [26] and Schunk[125] have adopted similar strategies in their use o f m ulti

ple gaussian filters (Marr-Hildreth operators) o f  different bandwidths for edge detection.

All o f  the above-mentioned edge or gradient detectors utilise spatial operators which 

must be convolved with the noisy image data. This procedure involves a number of 

multiply-accumulate operations per image pixel which is equal to the size o f the operator 

mask.

In the l igh t o f the computational savings achieved by using a quadtree-based vertical esti

mator, the question arises as to whether it is  possible to design an adequate quadtree- 

based, vertical edge detector. In the following discussion, an heuristic argument is used 

to establish the general form o f the system.

4.5 A F ast Vertical Edge Detector

Some heuristic requirements may be stated as follows:

(i) The method should possess a scale-invariant and recursive structure appropriate for 

implementation on the quadtree;
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(ii) The subsequent modification o f the estimator coefficients should preserve the range 

(from zero to unity) which those coefficients occupy;

(iii) The m odified estimation scheme should preserve the basis of MMSE optimality 

from the spatially-invariant case.

4.5.1 Two Indices of Local Image Activity

(i) A Simple Index

At a node ( / + l , i ' , / )  in the quadtree, an index o f activity or ‘busyness’ may be 

defined as

--------------5--------------  .
N 1+1

< / + l .

0 S / S T - 1  . (4.4)

This index represents the energy of the link between a child and its father in the 

quadtree o f  noisy data if the link is considered to have a value equal to the differ

ence between the values o f the nodes. The index is normalised with respect to the 

average energy in all of the links between the two levels / and /+1 in question, 

which is given a sN ,+l by (3.88), (3.91) and (3.92).

Thus a node which exhibits activity ‘typical’ o f  its level will have an activity index 

o f unity. A  node in a region of constant gray level will have an activity index close 

to zero, and a node which is in a ‘busy’ region such as an edge will have a high 

value o f  activity index.
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(ii) A Propagated Index

A more complicated ‘propagated’ activity index m ay be defined. This index, at a 

given node, is  a function of the ‘simple’ indices at nodes in the ancestor set of the 

given node and is defined recursively:

a /+ i . f . /  “  (a / . i . / )  (K/+ l . f . / )

O S / S M  , (4.5)

with initial condition

«o.o.o -  1

and where 0 /+i , 0  £  0/+i SI 1 is a weighting exponent which depends on the 

signal-to-noise ratio (SNR) of the noisy image (see below).

Taking logarithms in (4.5),

'o g < V n .r . /  “  « w l o i O / . i j + O - S i t O 'o g i c , . , . ) . . /  , (4.6)

a form which bears considerable resemblance to the linear estimator o f (3.77).

A logarithmic domain for the measurement of image activity seems appropriate on the 

basis o f the Weber-Fechner law[105] which observes that visual contrast (i.e. activity) 

sensitivity is a logarithmic type of measure, constant over many decades o f illuminution 

strength, as AI I I  =  K  where A/ is the detectable intensity change given a background 

intensity / ,  and A  is a constant. The logarithmic domain has also proved useful in 

homomorphic signal processing! 1071(108]. Knutsson, W ilson and Granlund|75] use an



exponent o f 0.5 in th eir  ‘linear feature’ activity detector, which is not in practice dissimi

lar from the above logarithmic form. However, they employ only a single resolution of 

the detector.

4.5.2 Use of W eighted Geometric Mean for Noise Rejection

The propagated activity  index of (4.5) is a weighted geometric mean (WGM) of

the ‘simple’ activity index Ku \ , r , f  at the current node and the propagated activity index 

O-i i j  at its father.

The WGM was chosen  in preference to, for instance, an arithmetic (linear) combination 

on the basis (see section 4.5) that an edge persists over a  number o f contiguous levels of 

resolution (i.e. levels of the quadtree) whereas activity due to noise is reduced as the 

quadtree is ascended by the action of the averaging process. In order to achieve noise 

rejection, activity indices from different levels should therefore be combined in an 

‘AND’ (geometric) rather than an ‘OR’ (arithmetic) fashion, and the WGM is indeed a 

weighted ‘AND’ combination.

The propagated activity  index of (4.5) is affected by the combination exponent 0* in such 

a way that the index is  influenced more (less) by activity on upper levels o f the tree if the 

SNR of the image da ta  is lower (higher). Hence if the image is noisy, less account is 

taken of activity on the lower levels and more of activity on the upper levels in calcula

tion o f the propagated index.

The exponent 0/+j estimates that proportion of the ‘sim ple’ activity index K/+1_ r j -  

which is due to noise, and decreases at higher levels (smaller / )  as the noise is progres

sively averaged out,
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(4.7)

This value results from (3.83), which indicates that N  l+l contains a term 

(3/4)(Oy / 4y_/_1) which is due to the corrupting noise. (4.7) represents a normalisation of 

this term with respect to the sample estimate N /+1 of N l+i.

The form o f the propagation ensures that activity at a node will be represented in the pro

pagated activity index to a greater extent if the ancestors o f  the node are also active, and 

to a lesser extent i f  they are not (the suspicion in this case being that the activity is due to 

noise).

For a noiseless im age (a* = 0), (4.7) gives 0/+i = 0  , 0  £  /  ^  T - l  . In this case there is 

no downward propagation and the propagated and ‘simple’ activity indices are equal at 

every node.

The exponentiation operation in (4.5) and the initial value o f  unity for oto.o.o • together 

with the normalisation in (4.4), ensure that a ‘typical’ node with an activity index

K.....  = 1 , all the ancestors of which are also ‘typical’, will have a propagated activity

index a  = 1 . The desirability of this will shortly become apparent.

Note that the activity index is a continuous variable. No attempt is made to assign binary 

labels ( ‘edge’/ ‘not edge’) to any node since ‘edginess’ is intuitively a continuous attri

bute and is also a function of the scale o f  examination.
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4.6 The Spatially-Variant Form of the Estimator

It now remains to determine how the propagated activity index a ¡ ¡ j  should affect the 

estimation. As noted in section 4.4, it is desirable to effect less smoothing of the image 

data in the vicinity o f  edges in order that those edges are not blurred. The penalty 

incurred is that more noise will remain in edge regions, but the masking effect indicates 

that its visibility will be reduced by the presence o f the edge in close proximity.

Considering the recursive form of the estimator given in (3.77), it is apparent that in 

order to reduce the degree of smoothing it is necessary to reduce the estimator coefficient 

e l+i , thus propagating less information ¡ ¡ ¡ j  from above and retaining more o f the 

noisy observation x /+Ji r . f -

Conversely, in smooth regions o f the image where noise is at its most visible, it is desir

able to increase the degree o f smoothing and hence the estimator coefficient.

These objectives are achieved by replacing the spatially-invariant estimator coefficient 

£ /+i o f (3.77) by a modified, spatially-variant coefficient

e/+ i , r . /  = ( * / + .  (4.8)

Neglecting the propagation of the activity index and considering the case where

a ......= ic....... = (xc —Xj )2 /N  where xc is the child o f the father Xj and N  is the

appropriate average o f the link energies, there is a correspondence between the exponen

tiation o f (4.8) and a gaussian form such as

e = e
(* -M«)1 

0*
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which may be considered as similar to the probability P (xc é S E) o f  the node xc not 

being in an edge region. However, this notion has been avoided in the development, 

since ‘edginess’ has been felt to be a continuous attribute as noted above.

(4.8) implies that for ‘typical’ nodes in the sense o f section 4.5.1 which have 

a l+ i,r .f  =  1 » the estimator coefficient is unchanged, while at m ore active nodes for 

which Q -i+ i't,f > 1  it is reduced toward zero and at less active nodes for which 

a /+i, r . f  < 1 it is increased toward unity.

This illustrates the desirability o f  the forms o f (4.4), (4.5) and (4.8) in that:

(i) a ‘typical’ node is still estimated using the original optimal MMSE estimator 

coefficient e /+1 and so the modification preserves the existing basis o f MMSE 

optimality from the spatially-invariant case;

(ii) The (hypothetical) extreme values of the activity index (i.e. 0  and ®o ) map on to 

appropriate extreme values o f the modified estimator coefficient (i.e. 1 (total 

smoothing) and 0  (no smoothing)) with no risk o f possible values of the activity 

index causing inadmissible values of the estimator coefficient (i.e. ei+1 < 0  or 

ei+ l.r .f  > 1 )• Such values are inadmissible because, as is apparent from equation 

(3.79), this would imply negative values of |3* . Thus the modification of the estima

tor coefficient is required to be a mapping [0,1] -»  [0,1] o f the closed unit interval; 

this is achieved by (4.8).

There is a marked correspondence with the ‘masking function’ and the ‘visibility func

tion’ introduced by Anderson and Netravali[6] and used by Abramatic and Silverman[3] 

as the means o f introducing spatial adaptivity into their filtering scheme. The present
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activity index is analogous to their masking function, and their visibility function was 

used in much the same way as the estimator coefficient here in that it controlled the pro

portions o f  filtered and unfiltered data in the final estimate. They achieved the mapping 

of the masking function (MF) on to the visibility function (VF), confined to the unit inter

val [0,1], by using a mapping of the form

which is  very similar to the present mapping of the activity index on to the estimator 

coefficient.

Appendix 4 contains a conference paper[19] which presents the nonstationary estimator; 

the derivation of the stationary method is similar to that o f Appendix 1. The paper 

represents an early stage o f development, however, and many of the indices have subse

quently been altered.

4.7 The ‘Signal-Equivalent’ Spatially-Variant Model 

Equations (3.78) and (4.8) are reproduced for reference:

l+ y (M F )

4 4 Y - 1 - 1 T  4 Y - 1 - 1

Ri n 2
(3.78)

®/+i, r . f  ~  ( e u l )a ' , i r  / (4.8)

Following (3.78), it is possible to introduce a ‘signal-equivalent’ characterisation of the
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edge information (as expressed in the form of the modified estimator coefficient B/+it ? 

o f  (4.8)) which is analogous to that o f  Abramatic and Silverman[3] and Knutsson, Wilson 

and Granlund[75]. This involves the replacement of the spatially-invariant model parame

ters Pl  with spatially-variant parameters P'* m „ such that (suppressing position indices 

o n  P '..... for clarity)

which is the solution to the MMSE estimation problem for the spatially-variant model of 

(2.6) with P /+ i,f, /  replaced by p •

Note that for eY, m. n »(4.9) gives

e/+ i , r , f  =  (« /+ i)< w , /  =
4

P i  . Oy
(4.9)

a tr2
ey.m.

P'
(4.10)

and from (3.79),

Of
(4.11)

Eliminating eY gives P r ,m.„ 85

1 (4.12)

In edge regions where eYtm.n < eY • follows from (4.10) and (4.11) that
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P'y  m n > Py • and so in edge regions the spatially-variant model coefficients are larger 

than the spatially-invariant coefficients.

Conversely, in smooth image regions where Ey.m.n > eY » (4.10) and (4.11) yield 

p 'y  m „ < Py , and the values o f the spatially-variant model coefficients are smaller than 

in the spatially-invariant case.

F or ‘typical’ nodes (Y , m , n ) with activity index o.y%m%n = 1, (4.10) gives e = eY 

and (4.12) gives P'y, m, „ = Py, unchanged from the spatially-invariant case.

W ith the P'y determined as in (4.12), it is possible to calculate the P 'y -i,.,. from 

Ey_l and ey_i and so on, giving a backward recursion for the spatially-variant model 

parameters P '..... ..

4.8 Edge Detector Examples

Examples of the operation of the edge detector are shown in figures P13 to P15 (see 

Table 4.2).

Figure PI 3 shows the ‘simple’ (unpropagated) activity index K ...... as given by (4 .4 )  for

the ‘blobs’ image at an input signal-to-noise ratio of OdB. In the display, black 

corresponds to zero and white corresponds to the maximum value attained on the entire 

quadtree.

Figure P14 shows the propagated activity index a ......of (4.5) for the same source image

and display conditions. The reduction in the level o f spurious responses due to noise as 

compared to the ‘sim ple’ index is evident.
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Figure PI 5 shows the estimator coefficient as modified according to (4.8) on a scale 

where black corresponds to zero and white to unity. The reduction of the estimator 

coefficient in edge regions is apparent.

Simple index, OdB P13

Propagated index, OdB P14

Estimator coefficient, OdB P15

T a b le  4.2

E dge D e te c to r E xam ples

The edge detector evidently trades off resolution (equivalent to the measures of edge 

localisation used by Canny[14] or Wilson and Granlund[146]) against noise. At poorer 

input SNRs, the weighted geometric mean o f (4.5) is constructed in such a way that the 

combination favours activity detected at larger scales, which is apparent for example in 

the spreading o f  the edges on the lower quadtree levels (i.e. toward the image plane) in 

figure P14.

The weighted geometric mean has an effect upon the propagated activity index which is 

rather similar to that of the estimator proper on gray level data as regards the increased 

smoothing (corresponding to poorer localisation of edges) which is applied at poorer 

signal-to-noise ratios. The performance of the system in the presence o f noise is thus lim

ited by a form o f  uncertainty relation as discussed in section 4.4.
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4.9 Advantages o f the Edge Detector

The edge detector described above inherits many o f the advantages which accrue to the 

estimator as a result of its definition on the quadtree structure. It operates vertically and 

does not require the use o f a spatial operator as do most edge detection schemes 

extant[3U[90][ 123][ 126).

The computational burden amounts to three multiplications, one division and one 

exponentiation per node for calculation of the propagated activity index. Modification of 

the estimator coefficient demands a further exponentiation at each node.

If calculation o f the activity indices is performed in the log domain, the requisite compu

tations are one logarithm, 3/4 multiplications on average, and one exponentiation per 

node. Again, the modification of the estimator coefficient requires an additional exponen

tiation.

Calculation o f the ‘simple’ activity index K ......may be performed in parallel at all nodes

in the quadtree simultaneously. Calculation of the propagated index a .....  may be per

formed in parallel at all nodes on a particular level, there being a level-to-level ‘causal

ity’ analogous to that of the gray-level estimator due to the downward propagation of 

information.

The estimator coefficients may all be modified simultaneously.

Thus the edge detector, like the estimator, is highly amenable to parallel computation.

The notions of scale invariance and scale independence from the image model and esti
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mator also apply to the edge detector, which detects ‘candidate’ edges at different scales 

isomorphically and then combines the information to achieve noise rejection.

The structural similarity o f the edge detector and im age model/estimator results in their 

being easily combined to yield the spatially-variant ( ‘signal-equivalent’) form o f the 

model, for which the modified estimator is the optimal MMSE solution.

Calculation of the edge information and the gray-level estimate at a given node may be 

combined into one conceptual ‘operation’ which is identical in structure at every node.

4.10 Estimation Results for the Full Implementation

The results referred to in this section were obtained using the estimator with both of the 

improvements (interstitial nodes and activity detection controlling spatially-variant esti

mation) described in this chapter.

4.10.1 Examples o f Estimated Images

Figures P7, P8 and P16 —  P31 show noisy input and estimated output images. Table 4.3 

provides a key to the results presented. Only the image plane of the estimated quadtree is 

shown, except in the case o f the ‘girl’ image at input SNR of OdB, where the whole quad

tree is shown in figure P I8.
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Image ‘Girl’ ‘Blobs’ ‘Lake’

Noisy, 12dB P16 P21 P26

Estimated, 12dB P17 P22 P27

Noisy, OdB P7 P8 P28

Estimated, OdB P18 P23 P29

Noisy, -12dB P19 P24 P30

Estimated, -12dB P20 P25 P31

T a b le  4.3

N oisy a n d  E s tim a ted  Im ages

4.10.2 Improvement o f Signal-to-Noise Ratio

Table 4.4 shows the signal-to-noise ratio o f the estimator output against that o f the input 

for the various test images.

Image ‘Girt’ ‘Blobs’ ‘Lake’

Input SNR Output SNR

12dB 18.8dB 22.1dB 17.2dB

OdB 13.6dB 15.OdB 12.OdB

-12dB 8.5dB 9.5dB 7.2dB

T a b le  4.4

In p u t a n d  O u tp u t  S ignal-to-N oise R atio s
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Comparison o f the output SNRs for the restored ‘girl’ and ‘blobs’ images at OdB input 

SNR with those attained by the spatially-invariant estimator o f  section 4.2 shows that 

further numerical improvements of ldB and 2dB in the ‘girl’ and ‘blobs’ images respec

tively have resulted from the use o f the spatially-variant scheme.

The improvement o f 15dB at OdB input SNR which is achieved by the present method 

for the ‘blobs’ image compares very favourably with the 8.3dB achieved by the reduced- 

update Kalman filter (RUKF) o f Woods! 156][157] and with the 9.3dB achieved by the 

semicausal filtering model o f Jain[61]. The ‘doubly-stochastic gaussian’ (DSG) model of 

Woods, Dravida and Mediavilla[152] using the ‘girl’ image at an input SNR o f 12dB 

attained an improvement o f 4.6dB for the RUKF and 5.8dB for their ‘M-algorithm’. The 

present scheme achieves an improvement o f 6.8dB for this image at 12dB input SNR. It 

is implied in [152] that the DSG and RUKF methods may begin to break down at around 

3dB input SNR; this is not true o f the present system, which functions respectably at very 

low signal-to-noise ratios.

4.10.3 Discussion of Results

The effect of the introduction o f spatially-variant processing may be seen by comparing 

the spatially-invariant estimates of the ‘girl’ and ‘blobs’ images in figures P I 1 and P12 

respectively with their spatially-variant counterparts, figures P I8 and P23; the changes 

are probably less confused by other detail in the case of the ‘blobs’ image.

The reduction in the level o f noise in the smooth regions by comparison with the 

spatially-invariant scheme is immediately apparent and is a consequence o f the low (less 

than unity) activity index in these areas giving rise to an increased estimator coefficient 

and hence to a greater degree o f smoothing. In the vicinity o f the object boundaries,
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however, there is clearly less smoothing than in the spatially-invariant case. This is a 

result of high values o f  the activity index causing a reduction in the estimator coefficient. 

The sharpness of the boundaries is greatly enhanced.

The breakthrough of noise in the boundary regions is visible; close inspection o f these 

areas reveals that small-scale, high-frequency noise is prevalent at the boundary while 

somewhat further (say about 1mm) away the noise is of larger scale or lower frequency. 

This is due to the scale-invariant operation o f the estimator, noise processes at larger 

scales being propagated down from the boundary region at higher levels of the quadtree.

All of these effects o f the spatially-variant scheme are visible also in the ‘girl’ image of 

figure P18 by contrast with figure P l l .  There is clearly less noise in the smooth regions 

and more in the edge regions, with a marked sharpening o f the edges.

It should be mentioned that there is a constant level of noise across the spatially-invariant 

estimates of figures P l l  and P12. Any apparent variation is due to the characteristics of 

the display equipment, photographic film and/or the visual properties o f the viewer.

Comparison of the estimated ‘girl’ images of figures P17, PI 8 and P20 or of the 

estimated ‘blobs’ images o f figures P22, P23 and P25 show the effect o f variation of the 

input signal-to-noise ratio (SNR). At fairly high input SNR (12dB) the residual noise is 

of small scale and is confined to a narrow band centered on the edges in the image. As 

the input SNR is reduced, the affected band widens and the residual noise becomes of 

larger scale, as noted above, toward the band edges. This effect results from the widening 

of the edge bands, as indicated by the propagated activity index, as the input image is 

progressively degraded. This is a consequence o f the increased uncertainty in edge posi

tion as the noise level increases. In fact, the residual noise even exactly at the edge posi
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tion becomes o f lower frequency or larger scale as the input SNR is reduced because the 

estimator coefficient is affected less by activity at the lower levels for lower SNR. At 

very low input SNR (-12dB, figures P20 and P25) the residual noise is almost exclusively 

of large scale —  hence its somewhat blotchy appearance —  and the noise bands around 

the edges are wide enough to cause noise breakthrough over much of the image.

The degradation is graceful, however, and the estimates displayed as figures P I8, P25 

and P31 at the distinctly poor input SNR o f -12dB are rather acceptable by comparison 

with what might be expected from existing estimation schemes. Unfortunately there are 

no published results, as far as the author is aware, for other schemes at such low SNR.

The results at input SNRs o f  OdB and 12dB may, however, be compared with published 

work.

The present scheme gives results which are numerically and subjectively considerably 

superior to those achieved by the reduced-update Kalman filter o f Woods[156][157J. The 

output o f this latter method at an input SNR of OdB exhibits a large amount of blurring 

and streaking and is o f  poor subjective quality. The semicausal filtering model of 

Jain[61] gives a result at 12dB input SNR which is distinctly blurred as a  result o f the sta- 

tionarity o f the estimator, although the noise level is reduced. This demonstrates well the 

need for spatially-variant processing.

The calculation o f the activity index in the current scheme is such that at lower input 

SNR, less account is taken o f activity on the lower quadtree levels. This results in more 

smoothing in the estimation o f the lower levels near or at an edge, and so fine detail tends 

to be lost at low input SNR; this effect is in addition to the greater degree of smoothing 

applied generally at low SNR because of the higher value of the stationary estimator
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coefficient.

Perhaps rather surprisingly, the leaves o f the trees in the foreground of the restored ‘lake’ 

image are little affected by the change in input SNR from 12dB to OdB. This is because 

the whole tree region generates a moderately high value o f activity index at the middle 

levels of the quadtree in both cases, resulting in little smoothing at the scale o f the leaves 

but more at the scale o f the noise on the lower levels.

The design o f the scheme is such that noise breakthrough occurs in the vicinity o f edges. 

As discussed in sections 1.5 and 2.1, edges are locally one-dimensional and have orienta

tion as a defining attribute. Following the successful application of anisotropic filtering 

based on local orientation to image restoration by Knutsson, Wilson and Granlund[75], it 

is reasonable to suppose that it may be possible to improve the restorations by utilising 

anisotropic filtering in the edge regions. The extension of the estimator to encompass 

anisotropic processing is the subject o f Chapter 6.

It should be emphasised that the modifications described in this chapter are motivated 

and derived heuristically, and that the modified estimator is not optimal in the MMSE 

sense for the given signal model. However, the modifications clearly achieve a distinct 

improvement in both the visual and the numerical quality o f the results, and this suggests 

that they represent an improvement over the original signal model and MMSE error cri

terion although the modifications are not expressed formally as a signal model and error 

criterion for which the optimal estimator might be designed. A disadvantage with that 

optimal approach is that the simple recursive structure would in all likelihood be lost; the 

modifications presented in this chapter preserve the computationally efficient form o f the 

scheme.
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Block edge

Figure 4.1 —  Interstitial Node Positioning



121

VECTOR ESTIMATION AND ORIENTATION

5.1 Motivation

A quadtree-based image model and its associated optimal MMSE estimator were 

presented in Chapters 2 and 3 respectively. Chapter 4 additionally described a 

modification to the estimator which removes the problem o f block edge artifacts in the 

estimated image through the insertion of some additional nodes into the quadtree struc

ture. Chapter 4  also introduced the spatially-variant form o f the estimator, which was 

controlled by the output of a fast edge (or ‘activity’) detector operating on the quadtree.

The development has been based thus far on the assumption o f scalar data. However, in 

certain applications the data to be processed may take the form of a vector-valued, rather 

than a scalar (gray level), field. Such vector fields might arise, for example, in the 

parametric description o f textures[44][131], as a representation of the orientation o f image 

features[38][75][78], or more directly from colour or multispectral images.

A vector form o f the estimator might find application in the restoration o f such fields 

from corrupted observations, or in coding, where a vector form of the innovations esti

mate could be quantised for transmission or storage.

A vector form  o f the edge detector might be applied to texture segmentation problems 

where the texture field is described at each pixel by a feature vector[44][131] which is 

sufficiently complete as to represent those properties of the texture which are to serve as 

the basis for the segmentation. In this respect, such a scheme would be complementary to

CHAPTER 5
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that o f Burt, Hong and Rosenfeld[12] (see section 2.2) who describe a segmentation stra

tegy, applicable to vector data, which uses a pyramidal data structure and classifies on the 

basis o f  the parameters of region interiors whereas the presently postulated scheme 

would locate region boundaries.

Knutsson, Wilson and Granlund[75] have shown that anisotropic filtering, controlled by 

the estimated local orientation o f image features such as lines and edges, gives improved 

visual results in image restoration because the filter can be orientation-tuned to be low- 

pass in the direction parallel to the feature and to be all-pass in the perpendicular direc

tion. The ‘sharpness’ of the feature, which percept may be regarded as conveyed by 

oriented highpass components in the signal, is preserved while noise is smoothed parallel 

to i t

The authors o f  [75] further demonstrated (see their figure 2) that such parallel-filtered 

noise in the neighbourhood of a feature may enhance the visual detectability of the 

feature while noise filtered in the perpendicular direction will reduce it.

In order effectively to apply such techniques it is necessary to estimate the local orienta

tion o f the image from the noisy data, and so the orientation estimate (which is a vector 

field) will itself be noisy. Thus it might benefit from vector restoration before it is used in 

the anisotropic estimation o f the scalar or vector image.

As will be shown in the following sections, the present scheme may be extended to vec

tor data. The extended method with certain modifications may be used in the anisotropic 

estimation task.
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5.2 Extension to Vector Data

5.2.1 Vector Form of the Model

The model of (2.6) generalises in an obvious way to the case where the nodes of the 

quadtree are vector-valued:

8i + i , r , f  -  +  0/ + i , r , / w/ + i , r , /  »

( / ♦ i , r . / ) € D M>i ,

o s / s r - i  , (5.1)

So.o.0 = Po,o,owo,o,o • (5.2)

(5.3)

where \ T denotes the transpose o f  v and I  is the identity matrix o f appropriate order.

These equations define a vector martingale process where the innovations vector process 

w¡ J J  has components which are mutually orthonormal and are orthonormal to all com

ponents o f  all other wr> m% „ .

If s ...... and w are M  -dimensional vectors, this model may be decomposed trivially

into M  concurrent scalar models o f  the form o f (2.6).

If the correlation matrix of the vector innovations process were given, instead o f by (5.3), 

by
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E " U . j w J.m .m =  Q  (5.4)

where

Qw = * « 8 ( * * )  .

0 £  k  Z M - l  , (5.5)

then the model (5.1) decomposes into M  scalar models of the form

sM , r , f f c )  =  si . i . j ( k )  +  P /+ i .r . /wi + i , r . / ( * )  •

a + i . r , / ) « D i (u  . 

o s  /  s r - i  ,

0 S * S A /- 1  , (5.6)

which is equivalent to the model of (2.6) with P/+i>f . /  replaced by Pz+i.r,/ • The 

index k denotes the model for the k 'h vector component.

Finally, if the correlation matrix o f the vector innovations process were given by

£ w W lJw ' . , .  = Q „S ;, r 5 ,.„ 5 y.„  (5.7)

with Q w a general positive definite correlation matrix, then the model decomposes into 

M  scalar models o f the form o f (5.6) with replaced by ^ (Q w )k k .

Attention will be restricted at present to the spatially invariant form o f  the model of (5.1) 

—  (5.3), with P /+ i,r , /  = Pz+i in (5.1). The extension to the spatially-variant form will

be treated in section 5.2.3.
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5.2.2 Vector Form of the Estimator

For the model o f  (5.1) —  (5.3), the linear MMSE estimator is a trivial extension of the 

scalar estimator of (3.77):

*/+i, r . f  = e i+i*i,i,j +  0  »

(/+1 , r , / ) e D U J  , (5.8)

with e /+1 given again by (3.78).

The average-value data quadtree x ......is formed exactly as in the scalar case, each node

being set equal to the vector average o f its four children.

It has been assumed here that each vector component is corrupted at level Y of the quad

tree by additive white gaussian noise (AWGN) of variance a ?  as previously. Were the 

corruption to vary between components, a different estimator (of the same form) would 

be required for each component. It might, however, be preferable even in this case to use 

the same estimator o f (5.8) and to tolerate the resulting suboptimality with respect to 

each vector component, since in this way the balance between the various components is 

preserved. Use o f a different estimator for each component might result, for instance, in 

the appearance o f colour band artifacts at luminance gradients if  the vector field were a 

colour image.

Note that the use o f interstitial nodes in the formation of the average-value and estimated 

data quadtrees as described in section 4.2 is extended trivially to the vector case.
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5.2.3 Vector Form of the Edge Detector

In a similar manner it is possible to extend the edge or activity detector o f section 4.5 to 

the case of vector data.

The ‘simple’ activity index K o f  section 4.5.1 is now defined as the normalised 

energy o f the vector difference between a node and its father in the average-value quad

tree,

The propagated activity index 0C/+i,ft /  and its effect on the estimator coefficient e M  

remain as given in sections 4.5.1 and 4.6 respectively.

The ‘signal-equivalent’ spatially variant form of the model o f (5.1) —  (5.3) is derived for 

the vector case as it was in section 4.7 for the scalar case, on the basis of the spatially- 

variant estimator coefficient

K /+ i , r , f
I I 2

n Z i

( / + i , r , / ) « / > , . t J  . (5.9)

where N M  is now the average over level l+ l of the numerator term.

4 y - i - \  4 k - / - i

a tr2
(5.10)

where



127

P? q>2
4 Y -1 - 1  +  4r - / - i4

(5.11)

' '  +  4 Y - I - 1 +  4K-/-1
P £ _  +  _ ^

is the spatially-invariant estimator coefficient. Position indices have been suppressed 

from P '......in (5.10) in the interests o f clarity.

As mentioned in section 5.1, the vector estimator described above may be applied to the 

anisotropic estimation task. The scheme may be used directly for the restoration of noisy 

orientation data and may be modified to incorporate the anisotropic estimation itself, 

which is the subject o f Chapter 6.

5.3 Orientation in Images and in Vision

It is an observable fact and (Marr[91] p.49) a consequence of the cohesiveness of matter 

that the visual environment contains dense material objects and that these objects tend 

over a range o f scales to have distinct and continuous boundaries (see section 1.5). These 

boundaries map on to discontinuities in, for example, luminance or texture in images 

(including the retinal image).

There is a considerable body o f physiological and psychophysical evidence which indi

cates that the early stages o f mammalian visual systems contain mechanisms for the 

detection of such edges at particular orientations.

The physiological studies of Hubei and Wiesel[54][55] and Blakemore and Campbell[9], 

supported by the psychophysical work of Kulikowski and King-Smith[81][82] and Mos- 

tafavi and Sakrison[94], have shown that there are nerve cells (neurons) in area 17 of the
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visual cortex which respond to linear features in the retinal image which have orienta

tions lying within a narrow angular band. The detectors form a quasi-regular array, 

indexed by orientation, which is replicated for different scales and positions within the 

visual field. Daugman[23][24] has examined the frequency-domain behaviour of such 

detectors and has proposed some formal properties by consideration o f their spectral 

consequences. Marcelja[89] has explored mathematical descriptions o f the detector 

responses.

As mentioned in section 1.5, Linsker[85] has shown that an artificial perceptual or 

‘neural’ network o f appropriate design, and operating under a simple learning rule, may 

develop a similar array of orientation-selective feature detectors when presented with a 

set o f input patterns or even random noise fields.

The proposition that edges and their orientations are o f considerable utility in image 

decomposition is thus supported by much evidence from real biological vision systems 

and even from relatively crude artificial simulations. The subjective percept of poor 

image quality resulting from the blurring of edges (a percept familiar, for example, to 

regular viewers of slide and overhead projections) provides further evidence for the 

importance o f oriented, locally-linear features in visual perception.

5.4 Extraction o f Orientation Information

This section is based largely on the work of Hans Knutsson[75-80].

The objective is the design o f a filtering scheme which estimates the local orientation 

(i.e. within the filter support) of oriented image features.
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A minimal but complete representation of orientation is a two-dimensional vector which 

indicates the orientation by its argument and the amplitude o f the oriented feature by its 

modulus.

This is necessary to avoid the problem that the lim it o f any oriented feature as its magni

tude (contrast) is reduced to zero is a  constant gray level, and so a simple argument-only 

representation could take on any arbitrary value o f orientation in a flat or isotropic 

region.

The vector representation, however, is continuous at this ‘singularity’ and the magnitude 

is o f potential utility in controlling the degree o f anisotropic filtering subsequently 

applied.

The desired filter, therefore, produces this vector field as its output.

5.4.1 Specifications for the Filter Design

The filter should possess the following characteristics:

(i) The magnitude of the vector response to an isotropic input should be zero;

(ii) The magnitude o f the vector response for a given input energy should be maximal 

when the input function is ‘maximally anisotropic’, i.e. of one-dimensional varia

tion on the filter support;

(in) The magnitude of the vector response should be invariant with respect to the posi

tion o f the input feature within the filter support. More generally, any input function
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of one-dimensional variation and of given energy should produce the same magni

tude o f  response.

(iv) The argument of the vector response should be unbiased in the sense that it should 

exactly equal the input orientation for input signals o f one-dimensional variation on 

the filter support.

(v) The filter should be o f smooth variation in the spatial frequency domain in order to 

avoid ringing and large significant extent in the spatial domain. (The filter must be 

spatially localised if  the notion that its output represents local orientation is to be at 

all useful).

Property (iv) above implies that interpolation over the outputs of a number of filters, each 

maximally sensitive to a  different orientation of the input feature, will be required. It will 

be shown in the development which follows that four is a suitable number of filters.

5.4.2 Use o f  Quadrature Filters

Property (iii) above implies that the filters should be insensitive to the phase (i.e. posi

tion) of the input feature and should have an all-pass type of transfer function in the fre

quency domain (so that any input function o f one-dimensional variation and of given 

energy and orientation will produce the same output energy regardless o f its composition 

in the spatial o r equivalently in the spatial frequency domain).

The phase-insensitivity requirement means that the filters must each be a combination of 

an even and an odd filter in the spatial domain. The spatial impulse response of the even 

filter may be expressed as a sum of cosine functions,
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where

he(y) = y  |  / / e (to) cos to7y da> (5.12)

y  =

and

are spatial- and frequency-domain vectors respectively.

Phase insensitivity demands that the odd filter contain the same ‘amount’ of sintoTy as 

does the even filter o f cos (aTy  for each to , so that a sinusoidal input function of the form 

cos ( tory + <J>) excites the odd filter as much for <> = (2n + l ) y  as it does the even filter 

for <J> = 2/ i y  .

Thus the odd filter must be given by

h0(y) = ■— ^ He (<d) sin co7y duo . (5.13)

A filter pair such as that described above is known as a quadrature pair since each 

member may be derived from the other by a Hilbert transform, which effects a phase 

shift o f every frequency component by y  radians.
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Quadrature filters have been used extensively in applications where there is a require

ment of phase insensitivity. They appear in communication theory, for example as com

ponents o f single-sideband (SSB) modulation schemes[137].

The studies o f Movshon, Thompson and Tolhurst[95][96], Enroth-Cugell and Robson[30], 

and Pollen and Ronner[115][116] have identified ‘complex’ cells in the visual cortex 

which, while responding maximally to an oriented stimulus at the retina within their 

receptive fields like their ‘simple’ counterparts, are insensitive to its position within the 

field. This fact, combined with the known properties o f the ‘simple’ cortical cells which 

are position-sensitive, are o f both odd ( ‘sine’) and even (‘cosine’) receptive field 

varieties, and are known to feed information to the ‘complex’ cells, constitutes prima 

facie  evidence for the existence o f something approximating quadrature filter pairs in the 

early stages o f vision.

Pollen & Ronner[115][U6] in fact discovered in their experimental data twelve pairs of 

adjacent simple cells, each pair possessing the same orientation (within five degrees) and 

spatial frequency (within 1/4 octave) tuning, with the intra-pair spatial phase displace

ment having a mean value o f 92.1 degrees and standard deviation o f 6.5 degrees. This is 

perhaps the strongest evidence yet for the quadrature pair hypothesis in visual orientation 

detection.

5.4.3 Quadrature Filter Design

Rewriting (5.12) and (5.13) with infinite integration limits,

ht (y) = j  Ht  (co) cos to7y dto (5.14)
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and

h0(y) = y -  j H e (co)sgn(to)sin torydto (5.15)

where sgn(to) is the binary-valued sign function. Its two-dimensional form will be con

sidered shortly.

Expressing a Fourier transform pair as h(y)  <-> //(to) , it follows from (5.14) and (5.15) 

that for the even filter.

h, (y) *-* Ht  (to) (5.16)

and for the odd filter,

K  (y) «-> - j  sgn(to)//e (to) . (5.17)

The various symmetries in the spatial and frequency domains may now be made explicit. 

For the even filter,

H,(<o) = H,(r<o) = Re Ht  (to) , (5.18)

1m He (to) = 0  , (5.19)

A. O') = K  (-y ) = Re h, (y) , (5.20)

Im /i,(y) = 0 . (5.21)



134

For the odd filter,

//„«•>) -  - j  sgn(a»//,(0»  (5.22)

//„«*>) = -H 0( - a»  , (5.23)

Re Ha (a>) = 0  , (5.24)

K ( y )  = ~ K  < -ï) . (5 25)

and

Im /i.iy )  = 0  . (5.26)

Returning to the definition o f the function sgn(co), it is apparent from (5.22) that in two 

dimensions this function defines a reference axis for the filter although there seems no 

obvious candidate for the bisector o f  the co-plane into ‘positive’ and ‘negative’ half

planes. It is, however, precisely this parameter which distinguishes filters tuned to dif

ferent orientations, and so it will be defined differently for each orientation o f  filter. This 

need not cause confusion since the terms which include this function will be written 

explicitly in terms o f a particular direction.

If the vector co is represented as

“  ”  *  M ' xp 0 8> <3-27>

where
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0 = tan 1
<o,

(5.28)

then sgn(©) may be expressed as

sgn(CD) = sgn(cos9) (5.29)

or more generally for arbitrary Qk ,

sgn(to) = sgn(cos(0 -  0* )) (5.30)

where the sign function has its more familiar one-dimensional form

-1 , t < 0 .

sgn(f) = 0 , t =0 ,

1 , t  >0  .

(5.31)

The effect o f (5.30) is to partition the © -plane into half-planes in which © is nominally 

positive and nominally negative respectively. The boundary is the ©2 axis, rotated 

through 0* in the anticlockwise direction (see figure 5.1).

From the all-pass requirement of (iii), section 5.4.1, it follows that He ((0) should equal 

unity for all ©. However, as will become clear this violates the requirement of (v), sec

tion 5.4.1, that the filter should be o f smooth frequency-domain variation and so the term  

He (©) will remain until after consideration o f the angular response.

The design specifications o f section 5.4.1 are expressed in polar (magnitude and argu

ment) terms, the two parameters being treated separately. It is therefore appropriate to
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design the filters to be polar separable, o f the form

H  (p,0) = / / p(p )//e(0) ■ (5.32)

Daugman[23] has shown that anisotropic visual filters are likely also to possess such 

polar separability.

As observed above, in order to introduce the requisite orientation tuning, multiple filters 

are needed. The output vector will then be an interpolation over the outputs o f the indivi

dual filters, each o f  which is tuned to a particular orientation.

Thus the k th filter pair is given in the frequency domain by

Hu  (co) = / / P(p y /e.(0) . (5.33)

and

//<*(«») = - j  sgn(cos(0 -  e* )) //p(p)//e.(e) . (5.34)

and their combination by

//*(CD) = Hk (p,0) = Htk ((0) + J H ^ m

= 2 « p (p )^ e .(0 )i/(c o s (e -e * ))  , (5.35)

where Qk is the orientation o f the k th filter pair and U (.) is the unit step function.

The frequency-domain response of the k ,h filter pair to an input F(co) = F(p,0) is then 

given by
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c #4(P,0) = / / -k(p ,e)F(p ,e)

= / / p(p y /0.(e )F (p ,e )  (5.36)

and

c ^ c p .e )  = //o*(p,e)F(p,0)

-  H p(p ) / /^  (0)F (p,0)(-y sgn(cos(0-0A))) (5.37)

from which

Gk (io) = (to) +  yCoA (co)

= H ek (to)F (o»)( 1 +  sgn(cos(0-0*)))
»  2//^* (a>)F (0))i/ (cos(0-0*)) . (5.38)

Hence the quadrature filter pair transfer function Hk (to) and the response Gk (co) are ana

lytic signals [111] which are nonzero only on the ‘positive’ half-plane given by

U  (cos(0-04)) > 0  (5.39)

in the frequency domain.

From (5.38) it follows that the magnitude and phase of the response Gk(co) of the k ,h 

filter pair are given by

|C*(co)| -  2Htk (co)|F (co)|

2 // P(p)// e, (0) | F (p.O) | (5.40)
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and

arg Gk (co)
j Z/«i(a>) Im F  (to) 

/ / a (a » R e F (a »

= arg F  (co) (5.41)

which represents a generalised measure of signal phase in the region of support of the 

filter.

The relationship between the various signals described above is shown in one

dimensional form in figure 5.2.

It remains to establish the form of the angular frequency response. The following lemma 

concerns the frequency-domain behaviour o f  signals which are spatially o f one

dimensional variation, as invoked extensively in the specifications o f section 5.4.1.

Lemma

For signals of one-dimensional variation in the spatial domain, the frequency-domain 

energy is concentrated on a line through the origin at an orientation perpendicular to that 

of the spatial function.

Proof

Consider the two-dimensional function

f ( x , y )  = f ( y cos<l>-xsin<|>) ,

0 £<|> < it , (5.42)
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which is o f  one-d'mensional variation, its orientation being <|> and the direction o f its vari

ation being perpendicular to <{> as in figure 5.3. Then in the frequency domain,

F(u,v) = J lf{x,y)e~iuxe'™dxdy

= J  J /  (ycosfy - xsin$)e~iuxe'™ dxdy. (5.43)

Defining the variables s  and t as

s  = ycos<|> -  jcsin<t> (5.44)

and

t  = x  cos<J> + y  sin<> (5.45)

and substituting in (5.43) gives

F ( u , v )  = I  J / ( s)e

= j " ' " • ' d r  (5.46)

from which

F ( u , v  ) = F  (v cos<(> -  u  sin<j>) 8(m cos<t> + v sin<)>) (5.47)
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and the proof is complete.

Considering now the exact interpolation requirement of (iv), section 5.4.1, and given a 

real input /  ( x , y  ) of one-dimensional variation oriented at an angle of <t> + , it is pro

posed that an angular filter function

W9,(0 ) = cos2(0-0t ) (5.48)

is appropriate and allows exact interpolation of the orientation o f /  ( x , y  ) .

From (5.47) it follows that the Fourier transform of /  ( x , y  ) is given in polar coordinates 

by

F (p ,0) = F p(p) 6(6- 4» +  F j ( p ) 8<e-*«c) ,

P > 0  ,

O £ 0 < 7 t  ,

0  £  4> < k  . (5.49)

where F p(p) is the complex conjugate of F p(p) : Re F p  (p) = R e F p(p) and 

Im F p(p) = - Im F p (p ) .

Now from (5.48) and (5.35),

« » (p,e> -  « p tp jc o s ^ e -e , w  (co sce -e ,»  .

0 ^ 0  < 71 , (5.50)
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and from (5.38) and (5.49),

C * (p ,0 ) =  F (p ,e ) //* (p ,0 )

f ,( p )H ,( p )8( M ) o ) s !( e - « i ) , cosnp-e») >0

F j ( p ) « p(p)8<e-(|H-lt)cos2( e - e ,)  , c o s H M iX O

or

C*(P.0)

Gp(p)5(0H|»cos2(0 -0 4) , c o s « M * )> 0  

G* (p)5(0—<{H-7t)cos2(0—0^ ) , cos«»-©*) < 0

Taking inverse transforms yields

8 k ( x , y )

g(xcos<J» + y  sin<|>)cos2«>-0* ) , cos«»-©* ) > 0 

g * (x cos<J> + y  sin<»cos2(<>-©* ) , cos«»-©* ) < 0

or

g k ( x ,y )

g ( x , y ) cos2«>-0*) , cos(<J) 0*) >  0 
g*(x ,y)c :os2«>-0*) , cos«»-©*) < 0

Now if  four filter pairs are used, with orientations 0* given by

0* =

(5.51)

(5.52)

(5.53)

O Z k ¿ 3  , (5.54)
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th en , n o t in g  that | * * ( 4 , y ) |  =  | * ( 4 , y ) | ,

l * o ( 4 ,? ) |  = l* (4 ,} . ) | |- ^ -  + y cos(2$-280)j

l * l ( 4 ,y ) |  = l* (* .J ') |j^ - j-  +  'j-sin<2»-2e0)J

1*2 (4 ,> ) | = l * ( 4 , y ) | | - j  -  ^-cos(2<h-20o)j

1 * 3 (4 .y ) l  -  l * ( 4 , y ) |^ - ^ s i n ( 2 ( |> - 2 e 0)| 

and

1* 2( 4 . > ) |  -  1* 0( 4 , j . ) |  =  |g ( 4 , ) . ) |  cos(2((|H -y)-280) , 

1* 3( 4 , J t) | -  |* i ( 4 , ) . ) |  = |* ( 4 , y ) |  s in(2(*+ y) -  28„)

Thus if

* e ( 4 ,y )  = 1* 2( 4 , y ) |  -  |* o ( 4 ,y ) \  

and

g , ( x , y )  - l*3(-*.y)| - |*i(*.y)|

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

then
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cos(2(<tH-y) -  20o) 

sin(2(<jH--^-) -  20o)
(5.63)

and <J> is exactly determined from g (x , y )  as required by specification (iv), section 5.4.1.

expressed in g( x , y ) .

The vector g( x , y  ) is the desired output which describes the orientation of the image. 

The constant 0O (the offset angle for the orientation vector) is chosen as

so that no bias is introduced into the estimate by the structure of the discrete lattice, 

which might cause a preference for vertical and horizontal directions were any o f the 

filter pairs thus oriented.

The filter orientations are then as shown in figure 5.4.

Specification (v) o f  section 5.4.1 states that the filters should be of smooth frequency- 

domain variation. Such is obviously not true of the sign function of (5.30) and hence not 

true of the frequency response of the odd member o f  each quadrature filter pair as given 

by (5.34). There is in general a discontinuity at co = 0 .

In order to overcome this problem, but bearing in mind the requirement that the filters be 

all-pass in character, the radial frequency response / / p(p) is rolled off as a cosine- 

squared near the origin p  = 0 .  The response reaches unity by p  = 0.05tt. A similar roll

off is applied between p  = 0.95rc and p  = Jt.

K_
8

(5.64)
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5.4.4 Double-Angle Vector Representation

Equation (5.63) shows that the orientation estimate is expressed in terms o f  cos2<|> and 

sin2<J> for a local image orientation of <(>.

This parametric ‘double-angle’ representation[38][78] of <t> overcomes the degeneracy of 

the inverse trigonometric functions which are one-to-many mappings. Restriction of <> to 

an interval <t>j £  <J> < <t>1+n (note that the orientation has period equal to 7t) creates an arbi

trary discontinuity o f magnitude n  in the inverse trigonometric functions at <J> = 4»,.

The functions cos2<J> and sin2<|>, however, contain no such discontinuities and proceed 

through one cycle for each cycle o f orientation.

5.5 Effect o f Noise on the Orientation Estimate

The corruption o f the image by additive white gaussian noise gives rise to a similar corr

uption in the frequency (DFT) domain.

Considering the one-dimensional case, if the corrupted data is given by

x (n )  = s (n )  + v (n )  (5.65)

where s {n) is the signal and v (n ) is white noise,

E v (n )v (m ) = m , (5.66)

then in the DFT domain, by the linearity of the DFT,
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X ( k )  = S (k )  + V ( k ) (5.67)

where

G (k ) (5.68)

is an energy-preserving DFT.

The correlation function of the noise component V ( k ) o f  X  (k ) is given by

N - l  N - l  -> 2 *-= - -> 2 * = -
EV(k)V (m) =  AT1 £  X e " «  w £ v (ii)v ( /)

n=0 /=0

w -iw -i .
■■ n - '  2 2« " o?s„,,

n=0 /=0

O? /V-l
i r Z ‘N  n=C 

°w
=

= Ov«*.m

(5.69)

(5.70)

and so the DFT domain noise is also white, with variance o* , and being a linear combi

nation o f gaussian quantities it is also gaussian.

The analysis o f  the effect of this noise on the vector output (5.63) o f the quadrature filter 

system is complicated, as noted in (78], by the nonlinearities in (5.61) and (5.62). How

ever, the authors o f  [78] justify a gaussian approximation by virtue o f the Central Limit
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Theorem, and observe that this approximation is adequate in practice.

Accordingly, each component of the vector g (x ,y )  will be assumed to be subject to 

additive white gaussian noise. Normalisation of the filter energies further admits the 

assumption that the noise has variance o j  , equal to the variance of the corrupting noise 

in the image.

A measure o f the error in the orientation estimate, introduced by Willsky[144] and used 

in [78], is given as a function o f the angular error,

=  1 -  cos«£ > (5.71)

where

♦ i ’’  =  -  - ja rg  [ g U .? ) ]  (5.72)

is the angular error and <|r**y is the true orientation of the image feature. However, in 

regions o f  near constant gray level, <t>£,y will be strongly affected by noise, whereas in 

fact the length |g( x ,y ) \  of the orientation vector may be close to zero. In this case the 

error <J>£,y in its argument is not as serious as the same angular error in oriented regions 

with larger | g( x , y ) | . Accordingly, the error measures used here are the squared vector 

error

s v ' i x . y )  = |g (  * . ? )  -  k C .>)|2 . (5.73)

where k( x ,  y  ) is the estimate derived from the uncorrupted image, and its sample mean 

2r- l  2r-l
=  4~r X, L s v e ( x , y )  .x=0 >=0P„ (5.74)
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A logarithmic signal-to-noise ratio may also be defined, as

SNR'  =  10 log10 |  vaT^ x . y » j  dB (3.75)

where var(k(x, y )) is the sample variance (sample mean squared length) of the vectork (x,y).

5.5.1 Examples o f  Noisy Orientation Estimates

Figures P32 —  P37 show the effect o f noise on the orientation estimate o f  (5.63). A key 

is given in table 5.1. The two components of the orientation vector g( x , y )  (which are 

denoted as the ‘cos’ and ‘sin’ components in the table) are displayed. Also displayed is 

the modulus o f the vector, which indicates the strength o f oriented features in the vicin

ity. The orientation estimator was run on the bottom  five levels o f the quadtree of the 

noisy image; only the image plane is shown in the figures.

The test image used is the ‘blobs’ image, both clean and noisy (OdB) versions o f  which 

were used as input to the orientation estimator. The range of each displayed quantity was 

linearly mapped on to the range (0 —  255) of the framestore. Hence for the modulus 

component (figures P32 and P35) black represents zero and white represents the max

imum value attained. For the cos and sin components (P33, P34, P36, P37) the back

ground gray represents zero with white positive and black negative.
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Im age Input Image Modulus cos component sin component

‘B lobs’, clean P5 P32 P33 P34

‘B lobs’, OdB P8 P35 P36 P37

Table 5.1

Orientation Estimates

Table 5 .2  shows the values o f SNR$ of (5.75) for the ‘girl’ and ‘blobs’ images at input 

SNRs o f  12dB, OdB and — 12dB. The approximate correspondence between the input and 

orientation SNRs, given the normalised filter energies, supports the contention that the 

orientation-domain noise may be approximated as additive w hite gaussian noise o f the 

same variance a* as the original corrupting noise.

Image ‘Girl’ ‘Blobs’

Input SNR SNR 9

12dB 9.3dB 8.2dB

OdB —1.5dB -2.7dB

-12dB —12.3dB -13.9dB

Table 5.2

Effect of Input SNR on Orientation SN R

The effect of the input noise is clearly visible as noise in the orientation domain. This 

latter noise appears subjectively to be fairly evenly distributed spatially, although 

verification o f this hypothesis is difficult due to the nonlinearities mentioned above. 

Clearly, however, some benefit might be expected from restoration o f the noisy
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Figure 5.1 — Partition of <i>-plane
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Figure 5.2 —  1-Dimensional Form  o f  Signals in Quadrature Filters
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Lines represent contours o f equal gray level

Figure 5.3 —  Signal o f 1-Dimensional Variation





CHAPTER 6

QUADTREE ANISOTROPIC ESTIMATION

6.1 Motivation

As noted in section 5.1, visually superior results have been obtained by restoration 

schemes which utilise anisotropic filtering[75]. The estimated local orientation of image 

features, such as lines and edges, is used to control the direction in which the anisotropic 

filter blurs the noisy image.

It is thus possible to blur the noise in a direction parallel to the orientation o f the nearby 

feature, which improves the local signal-to-noise ratio while preserving the definition of 

the feature.

Such definition is an important component of the subjective assessment o f  image quality 

(see section 5.1); an image in which edges are preserved may appear subjectively to be of 

higher quality than one in which they are blurred, even if the blurred image has a supe

rior signal-to-noise ratio (i.e. lower mean squared error).

This fact constitutes a major disadvantage of conventional Wiener- or Kalman-type 

image estimators, the lowpass character o f which leads to the blurring o f  features, even 

when the filter is optimal in terms of the MMSE criterion. The criterion, unfortunately, 

weights equally errors occurring anywhere in the image regardless o f local context, 

whereas the visual system does not; the latter is far more sensitive to the blurring of 

edges and rather less sensitive (due to the masking effect —  see section 4.4) to noise in 

the vicinity o f  such edges.
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Quite apart from the difficulty associated with establishing a sufficiently complete 

description of the fidelity criterion of the visual system is the likely computational com 

plexity or even intractability of the estimator which would be optimal under such a  cri

terion.

Accordingly, those schemes which have attempted to incorporate some degree o f adapta

tion to local image structure have tended to be derived by heuristic arguments and to use 

more or less ad hoc techniques which are justified by their subjective visual results.

This chapter describes the extension of the estimator of Chapters 3 and 4 to include 

anisotropic processing which is controlled by the orientation detector o f  Chapter 5. The 

quadtree vector estimator o f Chapter 5 is first used to restore the noisy orientation infor

mation.

Since the MMSE criterion is not anisotropic, the anisotropic estimation scheme again 

departs from the basis of MMSE optimality as did the modifications introduced in 

Chapter 4. As will be shown, however, the extension to anisotropic processing gives 

improved visual results. Just as the spatially-variant form of the estimator may, neglect

ing the addition o f the interstitial nodes, be expressed as optimal in terms o f the non- 

contextual and hence spatially-invariant MMSE criterion by the deployment o f the 

signal-equivalent model formulation, a more elaborate and anisotropic signal-equivalent 

model could be developed, under which the anisotropic estimator would be MMSE 

optimal.
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6.2 Quadtree Restoration of Noisy Orientation Estimates

As noted in section 5.5, each component o f the orientation vector g ( x , y )  may be con

sidered to be corrupted by additive white gaussian noise of variance o f.  If the quadtree- 

based model o f  the form of (2.4) o r equivalently (2.6) were found realistically to describe 

the behaviour o f these vector components, then the quadtree estimator of Chapter 3, o r its 

vector form o f Chapter 5, might be used to restore the noisy orientation data.

The effectiveness o f the model in representing the orientation data is unfortunately not 

clear. However, it is reasonable to suppose that the orientation vector calculated from an 

image block o f (2N  x  2N )  pixels would be close to the vector average of those derived 

from its four constituent (N x N )  blocks, and in this sense the quadtree model may be 

appropriate.

The orientation vector field was smoothed using the estimator coefficient values (the et 

of (3.79)) derived from the corrupted image for the case o f the spatially-invariant model. 

This may appear somewhat arbitrary, but it seems appropriate to apply the same amount 

of smoothing to the orientation data as to the image itself, given that both are subject to 

the same corrupting noise. This argument applies on any level o f the quadtree, and so 

justifies the use on a given level of the same estimator coefficient for the orientation data 

as used for the gray-level image data. There is the additional benefit that the coefficients 

do not then have to be recalculated from the orientation data. A further advantage is that 

the degree o f smoothing applied, and hence spatial spreading induced, is similar to that 

effected upon the gray-level image data by the estimator proper. Hence the anisotropi- 

cally filtered bands will be of the same order o f width as the residual noise bands which 

remain in the spatially-variant estimates o f section 4.10, and it is precisely those bands 

which it is desired be smoothed anisotropically.
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6.2.1 Examples o f Restored Orientation Estimates

Some examples o f  the restorations o f the orientation vector field are shown in figures P38 

—  P40, as indicated in table 6.1. The input image is the ‘blobs’ image for input signal - 

to-noise ratio o f OdB. The restorations may be compared with the noisy estimates of sec

tion 5.5.1, indicated in parentheses in table 6.1. Again only the image plane is shown, 

although the smoothing is performed over the bottom five levels o f the quadtree.

Image Modulus cos component sin component

‘Blobs’, OdB P38 (P35) P39 (P36) P40 (P37)

Table 6.1

R e sto re d  O r ie n ta tio n  E stim a tes

(Unrestored in parentheses)

6.2.2 Mean Squared Vector Error

Table 6 .2 shows the effect of the restoration on the mean squared vector error in the 

orientation estimate. The error is again expressed as the signal-to-noise ratio SNR$.

At the lower input SNRs, the scheme achieves a marked improvement both subjectively 

and numerically. At the relatively high input SNR of 12dB, the restorations achieve no 

numerical improvement —  this is due to the spreading o f the ‘edge bands’ as a result o f 

the applied smoothing, which introduces an error of magnitude comparable to that due to 

the noise which is smoothed out in the restoration. This is not a problem, however, since 

it implies that in the vicinity of an oriented feature, the data will take on the orientation



158

o f that feature rather than its previous noise value.

Image ‘Girl* ‘Blobs’

Input SNR SNR)

12dB 7.2dB (9.3dB) 8.4dB (8.2dB)

OdB 2.5dB (—1.5dB) 2.2dB (-2.7dB)

-12dB 0.5dB (-12.3dB) -0.3dB (—13.9dB)

T a b le  6.2

SNR I  fo r R e s to re d  O r ie n ta tio n  E stim a tes

(Unrestored in parentheses)

6.3 Anisotropic Filtering

In order to incorporate anisotropy into the estimation strategy, a directionally filtered ver

sion o f the noisy data is computed and made available to the estimator. The form o f the 

combination of this data will be addressed in section 6.4.

Some heuristic design specifications for the anisotropic filtering may be stated as follows:

(i) The anisotropic filter should be of narrow angular bandwidth in order to minimise 

undesired smoothing in the direction perpendicular to the local orientation estimate.

(ii) It is preferable to use spatially-invariant filters and to interpolate over their outputs 

(according to the local orientation estimate) in a spatially-variant manner, rather 

than to recompute the anisotropic filter at each pixel.
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(iii) Such interpolation should be unbiased in the sense that a given value of the local 

orientation should give rise to an anisotropic filter which is oriented in exactly the 

same direction.

The specifications (i) o f narrow angular bandwidth and (ii) interpolation over fixed filters 

are mutually incompatible. They may, however, be reconciled[75] by iteration o f the 

interpolated filter, provided that the filter is appropriately designed.

6.3.1 Design of the Filter

The filter design is performed in the frequency domain, since the effects of iteration are 

more easily evaluated than in the spatial domain.

The radial frequency response of the fixed anisotropic filters was chosen as

iteration o f which will tend to sharpen the roll-off at the upper and lower frequencies, 

p = 1 is defined here as the maximum (Nyquist) frequency.

Two fixed anisotropic filters are then given by

(6.1)

Hc (p fi)  = W,(p)cos2(&-e( r y )  

= -H r (p )co ,2 (e -e0) (6.2)

and
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/ /,(p ,0 )  = Hr (p)sin 2(0-0o- y )

= -H r (p)sin 2(0-0o) (6.3)

where 0O is the offset angle fo r  the orientation vector as given by (5.64). The extra phase 

term o f Jt/2 in these equations is included because transformation to the spatial domain 

rotates the oriented energy o f  the filters through an angle o f n/2 radians (see the lemma in 

section 5.4.3, proved as (5.47)).

The interpolation over these tw o fixed filters is controlled by the local orientation esti

mate,

6) gc (* .y )
IsC .̂y)!

« c (p.8) +
s .Q c .y )
l*Cx.y)|

H ,(p.6) (6.4)

where gc( x , y )  and gs ( x , y ) are the components of the orientation vector g (x , y ) (see 

(5.63)).

The filter is given finally by the addition o f two isotropic terms. The first is a term Hr (p) 

as given by (6.1), which converts the cosinusoidal angular response o f H%,y(p,0) into a 

raised cosine. The second is given by

Ht(p) = l - 2 / / , ( p )  ,
p  < 0.25 , (6.5)

which gives the filter and its  iterations a gain of unity at d.c. and a flat unity-gain 

passband up to p  = 0.75 along the oriented axis.

The composite filter is then given as
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H x ' ( P , e ) H ,(p) + » ,(p )  +
& (* .y ) 
18(* • y ) I

Hc(p.8) +
g .(* .y )
le(*.y)l

H ,(  p,0) (6.6)

or

« x '(p ,e>  = h p(p )+ <c f r .y )
l« u .y ) l

Hc (p.8) + « .(* .y )
|gC*.y)l

« ,(p ,8 )  , (6.7)

where / / p(p) = //,• (p) +  Hr (p). Hence there are in fact three fixed filters which must be 

implemented.

The filters described above and the interpolation between them may be shown to satisfy 

specification (iii) above. Assuming the orientation vector at (x , y  ) to be, from (5.63),

, f  cos 2(<J>—00) I
« U . y ) - l K * . y > j lin2(*_9°iJ (6'8>

where is the orientation o f  the local image feature at (x, y  ), then from (6.4),

Hxa- , (p,0) = -H r (p)cos 2(<>-e0)cos 2 (6 -e0) “  Hr (P)sin 2«>-eo)sin 2(e-6o)

= - / / r (p)cos 2 (0-$) . (6.9)

Then for the composite filter, (6.6) yields

« ' • ’ (p.B) = + <p)[ 1 -  cos 2(8 -6 )] (6.10)

The effect o f the combination is that in the oriented direction, the filter is all-pass (unity 

gain, zero phase) up to p  =  0.75 after which point a raised-cosine roll-off obtains, whilst 

in the perpendicular direction a raised-cosine roll-off maintains unity gain at p = 0 drop

ping to zero gain at p  = 0.25. These two cases are illustrated in figure 6.1.
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6.3.2 Examples o f Anisotropically Filtered Images

Noisy images which were filtered using the system developed above are shown in figures 

P41 to P44. The orientation vector field was estimated from the noisy originals and 

restored as described in section 6.2. The anisotropic filtering was controlled by the 

restored orientation estimate as described above. Table 6.3 provides a key to the figures. 

Only the image plane is displayed; the anisotropic filter was run on the bottom four levels 

of the quadtree, for which restored orientation estimates are available. Four iterations of 

the anisotropic filter were performed in order to reduce its angular bandwidth. The spatial 

filters were confined to m asks o f (7 x 7) pixels.

Image Noisy Input Filtered

‘Girl’, 12dB P16 P41

‘Girl’, OdB P7 P42

‘Blobs’, 12dB P21 P43

‘Blobs’, OdB P8 P44

T a b le  6 .3

D ire c tio n a lly -F ilte red  E xam ples

The filtering clearly achieves the desired effect o f smoothing parallel to proximal image 

features and thus preserving edges. In fact, the edges are even somewhat enhanced by the 

sidelobes of the filter. This is apparent particularly in the example o f figure P43 ( ‘blobs’, 

12dB) by inspection of the smallest blobs (compare with figure P21).

As the input SNR is reduced, the increased smoothing which is applied to the orientation



163

estimate causes merging of adjacent edges. This effect gives rise to the fusion o f neigh

bouring blobs which is evident in figure P44.

In the examples of figures P41 and P42, the fine detail of the eyes is smoothed undesir

ably by the filtering. This results because at the scales of the orientation detection and 

restoration and the anisotropic filtering, such regions are essentially isotropic and of high 

bandwidth. The same problem was encountered by Knutsson, Wilson and Granlund[75].

6.4 Anisotropic Extension o f  the Quadtree Estimator

6.4.1 Form of the Modified Estimator

The estimator of (3.77) may be modified to include an anisotropic component as follows: 

i / +i , r . f  =  e u \ h . i . j  +  O »

</+i,r.f)*DUJ , (6.11)

where

yi+ i,r./ -  « ¿ i + i . r , /  +  (1 - « ) * /+ ! ,  r , / (6 . 12)

and

di+ \,r,f -  xi * i , r , /  ’J (P»9) (6.13)

is the directionally-filtered data, where <8> denotes convolution.
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6.4.2 Directed Energy as a Control Parameter

The parameter a  o f (6.12) controls the combination o f the directionally-filtered and ‘raw ’ 

data prior to the estimation o f  (6.11). In order that oriented features be preserved, a 

should be an increasing function of | g (x , y  ) | 2, the oriented energy. Thus in areas which 

are o f  high bandwidth but should be considered isotropic (such as the eyes in the ‘g irl’ 

image), a will be small and little o f the directionally-filtered information will be 

included. (In such areas, directional filtering corresponds to undesirable blurring.)

Thus the parameter a is chosen as

a = a*'* max | g(x , y  ) |
(6.14)

A more general but computationally expensive scheme might recompute the filter at each 

point as a function of orientation direction, signal-to-noise ratio for the given quadtree 

level and the degree o f local anisotropy; such a scheme might give improved results, but 

the computational benefits o f  the quadtree estimator and edge detector of Chapters 3 and 

4 start to be distinctly undermined by the computational burden of the orientation estim a

tion and the directional filtering.

6.5 Results

The modified estimator o f (6.11), combined with the quadtree-based edge detector to 

give the spatially variant form of the estimator of section 4.6, was run on the same noisy 

images as were used in the production o f the ‘isotropically’ estimated results given in 

section 4.10.
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The scheme now comprises the original optimal estimator of Chapter 3 with the insertion 

o f interstitial nodes (Chapter 4), nonstationarity controlled by the activity detector 

(Chapter 4), estimation (Chapter 5) and restoration (Chapter 6) of orientation, and the 

spatially-variant introduction o f anisotropically-filtered data into the image estimation 

(Chapter 6).

6.5.1 Examples o f Estimated Images

Examples of images estimated with the anisotropic extension o f the scheme are shown in 

figures P45 —  P53. Table 6.4 provides a key to the figures.

Image Noisy Input ‘Isotropic’ Estimate Anisotropic Estimate

‘Girl*, 12dB P16 P17 P45

‘Girl’, OdB P7 P18 P46

‘Girl’, —12dB P19 P20 P47

‘Blobs’, 12dB P21 P22 P48

‘Blobs’, OdB P8 P23 P49

‘Blobs’,-12dB P24 P25 P50

‘Lake’, 12dB P26 P27 P51

‘Lake’, OdB P28 P29 P52

‘Lake’, -12dB P30 P31 P53

T ab le  6.4

A n iso tro p ica lly  E stim a ted  E xam ples

Note that differences in film processing seem to have imparted a slightly darker and
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lower-contrast appearance to the anisotropically estimated examples than their ‘isotropic’ 

counterparts. This is not the case when these images are viewed on a C R T monitor.

6.5.2 Improvement o f  Signal-to-Noise Ratio

Table 6.5 shows the signal-to-noise ratios o f the anisotropically estimated examples, with 

the corresponding ‘isotropic’ values in parentheses.

Image ‘Girl’ ‘Blobs’ ‘Lake’

Input SNR Output SNR

12dB 18.8dB (18.8dB) 19.4dB (22.1dB) 17.0dB (17.2dB)

OdB 13.8dB (13.6dB) 14.6dB (15.0dB) 11.8dB (12.0dB)

-12dB 8.8dB (8.5dB) 9.6dB (9.5dB) 7.1 dB (7.2dB)

Table 6.5

S N R  o f  A n iso tro p ic  E stim a tes  

(Isotropic in parentheses)

Numerically, the anisotropic estimator performs better than the ‘isotropic’ scheme for 

certain of the test images and worse for others. The reason for the poorer performance on 

the ‘blobs’ image at an input SNR o f  12dB is visible in figure P48 as a  dark band around 

each o f the objects. A similar light band within each object exists but is  rather less visi

ble. This phenomenon is caused by the sidelobes o f the anisotropic filter, which produce 

a dark band (see section 6.3.2, figure P43) around each object on the bottom four levels 

of the quadtree. W hen this information is combined as per (6.11) the bands from each of 

these four scales appear concentrically at the image plane and together form the dark
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band observed in figure P48.

6.5.3 Discussion

The anisotropic estimator provides a distinct subjective improvement over the ‘isotropic’ 

estimator o f Chapter 4, particularly in the case o f  the natural (‘girl’ and ‘lake’) images. 

Much o f the noise which breaks through around edges in the isotropic examples is 

removed by the anisotropic method, as is clear by inspection o f the OdB examples (com

pare figures PI 8 with P46 and P29 with P52). The control exerted by the oriented energy 

over the incorporation of the anisotropically-filtered data into the information available to 

the estimator is demonstrated by the retention of such features as the eyes in the ‘girl’ 

image and the leaves o f  the trees in the ‘lake’ image, despite the considerable degree of 

anisotropic smoothing applied in oriented regions such as the tree trunks in the ‘lake’ 

image.

The restorations at the very low input SNR of -12dB are distinctly acceptable; little or 

nothing which is visible to the viewer in the noisy originals fails to appear in the restora

tions.
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CHAPTER 7

CONCLUSIONS AND FURTHER WORK

This work concerns the restoration of digital images from corrupted data, using a novel 

linear estimation strategy based upon a new model for images.

The model was developed in response to the need for more realistic statistical image 

descriptions, since existing models tend to be deficient in a  number of important respects.

Chapter 1 provides an introductory discussion o f  the salient properties o f the principal 

classes o f image model which have been employed to date in various image processing 

contexts, and contrasts these with some of the characteristics of natural images which are 

deduced from the structure o f the physical world. The application of the models to 

optimal estimation is examined in relation to the various different criteria of optimality 

(the ‘fidelity’ criteria) on the basis of which the estimation strategy may be designed.

A dilemma in optimal image estimation is explored; the simple, highly tractable and 

commonly used minimum mean squared error (MMSE) criterion is observed to give poor 

visual results because the fidelity criterion of the human visual system is profoundly dif

ferent from MMSE. Indeed, the visual system is known to exhibit strong contextual 

effects in terms for instance o f its sensitivity to noise in different image regions and to 

the blurring o f edges, which is a  consequence o f  estimation under shift-invariant optimal

ity criteria such as MMSE. However, the tractability o f the MMSE criterion motivates its 

retention as the basis o f optimality, shifting the emphasis in the quest for visually more 

satisfactory estimation strategies on to the image model. Accordingly, if an image model 

could be developed which;

169
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(i) is realistic in terms of its representation of the image;

(ii) incorporates desirable features o f the more complicated visual optimality criterion, 

and

(iii) admits o f a simple MMSE estimator,

then this model should provide the basis for a much more visually satisfactory estimation 

scheme than is possible with existing models and simple MMSE estimation. If in addi

tion the model structure were relatively uncomplicated, these advantages might be real

ised without undue computational burden. This is the key motivation for the present 

work.

Among the common attributes of image models are causality and stationarity; these para

digms are examined in Chapter 2.

Causality describes the presence of a governing ‘time’ direction in the data, and implies 

that at any given instant some o f the signal data (that segment which is supported by the 

independent variable at indices greater than the present index) is unavailable to the sys

tem. Causal models have been used to represent image data particularly when that data is 

presented to the processing system in raster-scanned format, due to both their effective

ness in one-dimensional signal processing where the independent variable is ‘real’ time, 

and the unrealisability of noncausal ( ‘anticipative’) physical systems.

This work argues, however, that causality is an inappropriate attribute for image models 

and represents at best merely a model of one particular image acquisition method. The 

notion of causality is not easily extended to the case where the data is a function of two 

or more independent variable indices, and is particularly incongruous when those indices 

have positional or spatial rather than temporal significance, since in that case there exists
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in the data no a priori dominant ordering.

However, many causal models do admit of recursive expression, and associated linear 

filtering operators may often be coerced into the same form with a substantial saving in 

computational effort by comparison with noncausal methods. This feature of causal 

schemes is highly attractive and represents a major advantage over their noncausal coun

terparts which it is desired be retained in the present work despite the rejection o f causal

ity as a signal attribute.

Another common feature o f  image models has been stationarity. This implies that the 

model parameters are shift-invariant, and hence that the model generates homogeneous 

images. It is almost trivially obvious by inspection of a few examples, however, that 

natural images are far from homogeneous and tend to contain distinct objects with more 

or less uniform interiors and with well-defined and locally specifically-oriented boun

daries. This work argues therefore that any attempt to devise a more realistic image 

model must include the capacity for spatial variation (nonstationarity) of the model 

parameters. The potential attendant disadvantage is the increased complexity and compu

tational burden usually associated with nonstationary processing.

Chapter 2 considers the various approaches to the problem which have been adopted; 

these include the so-called ‘multiple-model’ methods. The work argues that these 

methods, in which a number o f  stationary models are deployed to represent different 

types o f image region and are combined in a spatially-variant manner to yield the compo

site image model, are deficient by virtue both of their assumption of local homogeneity 

and their inability accurately to represent image regions of arbitrary structure if that 

structure does not conform to any of the limited number of available models. An argu

ment is made for ‘full’ nonstationarity in the sense of a single general model which is
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capable o f representing any image structure with appropriate variation o f its parameters.

Another property of natural images which it is desired be incorporated into the new 

model is scale invariance. This notion as it applies to natural images derives from  the 

same property exhibited by the physical world and is a consequence of the particulate 

and cohesive nature o f  matter. Natural images demonstrate similar structure and organi

sation over a range o f scales, whereas any conventional image model o f given o rder must 

necessarily be best m atched to a particular organisational scale related to that order.

The new image model is presented in Chapter 2. It is defined on the so-called ‘quadtree’, 

which is a multiresolution data structure for image representation. The model character

ises an image as a sample o f  a random process which is generated by a number o f  com

ponent gaussian processes operating at different levels o f the quadtree structure. The 

multiresolution facility makes explicit the behaviour of the model at each o f a range of 

scales in the generated image; the model behaves in an identical but entirely independent 

fashion at each scale as a result o f its definition on the quadtree.

The model generates an image which is noncausal, but the model itself is causal in the 

context of the level index o f the quadtree, which may be regarded as a third index of 

higher order than the positional indices on each level and may be considered to represent 

a third dimension orthogonal to the spatial plane. Thus a noncausal two-dimensional sig

nal is generated by a one-dimensional model causal in this third dimension; the system 

generalises to any dimension N and generates a noncausal signal by confining the model 

causality to an extra dimension N+l. The computational advantages o f the one

dimensional causal paradigm are retained but without the restriction to causality, or to 

any given dimension, o f the generated signal.
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The model is ‘fully’ nonstationary in the sense that its parameters are able to  vary arbi

trarily over their unbounded range with spatial position on a given quadtree level. Furth

ermore, the parameters are able to vary over the same range between levels for a given 

image position. This corresponds to the scale invariance and scale independence attri

butes described above; these two types o f nonstationarity allow complete variation o f the 

model activity within a conceptual three-dimensional volume occupied by the quadtree, 

in which two dimensions represent spatial position and the third (the ‘vertical’) 

represents scale. As noted above, the model is causal in the ‘scale’ index.

Chapter 2 presents an analysis of the statistical properties of images generated by the 

model for the spatially-invariant case. The correlation properties o f the signal are 

derived, and the system is shown to be diagonalised or decorrelated by the Hadamard and 

Haar discrete transforms.

Chapter 3 deals with the application of optimal estimation to the data structure in the 

context o f the restoration of images corrupted by additive white gaussian noise, which is 

first justified as a suitable model for noise degradation. The model for the noisy image is 

established, and the formation o f a quadtree o f the noisy data is described and its correla

tion properties are derived.

Optimal (MMSE) estimates o f  the signal value at any quadtree node ure derived both for 

the constrained case in which the available data lies only in the projection o f the node on 

to the image, and in the general case where the data set consists of the entire quudtree. 

The general MMSE estimator is shown to reduce to a recursive form which constitutes a 

one-dimensional scalar Kalman filter operating on the quudtree and causal in the level 

index like the image model. The constrained estimate at the uppermost ( ‘root’) node is 

shown to constitute the MMSE initial condition for the recursion, und the optimal eslimu
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tor o f the model innovations process is combined with the optimal node-value estimator 

to yield a  realisation of the scheme which involves only 5/4 multiplications per node on 

average. This corresponds to 5/3 multiplications per image pixel, a figure far lower than 

that achieved by any other noncausal scheme and considerably lower even than the bur

den associated with the simplest o f causal methods.

An alternative derivation o f the estimator is presented in Appendix 1 in terms of the clas

sical Yule-Walker or ‘normal’ equations for multivariate MMSE estimation, the results 

then being coerced into the recursive form by a method analogous to the recursion of 

Levinson[84][110]. A form o f correlation matrix for the noisy data is presented and is 

shown to  be invertible by a recursion to yield a tridiagonal inverse.

Appendix 2  carries forward the Kalman filtering development o f section 3.3, and derives 

the Kalman whitening filter and the Kalman innovations process for the noisy data. The 

innovations are shown to be proportional simply to the differences between the averages 

on successive levels of the data quadtree.

The M M SE estimator is derived in Appendix 2 in a manner similar to that of section 

3.3.2, noting that there are between the two cases a number o f significant differences in 

the signal and ‘noise’ statistics. The ‘noise’ for the purposes o f the data quadtree is non

white and is correlated with the signal. However, it is shown that the differences between 

the ‘nex t’ datum and the ‘present’ and ‘next’ estimates respectively may each be 

expressed as a non-white signal which is a linear combination o f the Kalman innovations 

of the data, with coefficient values which are such that a recursive expression o f the esti

mator is forthcoming.

The final part of Appendix 2 deals with the Cholesky factorisation) 110) of the data corre-



lation matrix and its inverse. The inverse of this matrix is shown to possess a 

causal/anticausal factorisation with the causal factor given by the Kalman whitening filter 

and the anticausal by its transpose (see [110]). The Kalman innovations filter o f the data 

is  obtained by recursive inversion of the whitening filter and is shown to constitute the 

causal factor in a similar Cholesky decomposition o f the correlation matrix.

T he estimator is shown in Chapter 3 to be highly amenable to parallel computation by an 

array (ideally a quadtree) o f processing elements.

Chapter 3 considers also the estimation of the optimal estimator coefficients from the 

noisy image data, and shows that the coefficients thus estimated obey the so-called F pro

bability density functional. Appendix 3 provides a full derivation o f the result.

Initial estimation results are presented for the case o f  spatially-invariant processing, and 

tw o major problems are observed in the results. The first is the pronounced block struc

ture o f the estimated images, which is a consequence o f the spatial isolation between 

nodes in the quadtree. The second is the blurring o f edges which follows from the shift 

invariance o f the estimation.

Chapter 4 addresses both of these problems.

Firstly, the problem of blocking in the estimate is considered. In order to reduce this 

effect, some kind of spatial filtering is required. However, it is desired that the quadtree 

structure not be compromised to any great extent, with spatial operations having been 

avoided thus far. Indeed, this is precisely the reason for the very low computational bur

den associated with the estimator, and so spatial filtering is somewhat undesirable. The 

solution, presented in Chapter 4, is the introduction o f additional (‘interstitial’) nodes into
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the quadtree structure. These nodes form, on each level, a lattice which is displaced from 

the existing lattice by half of the spatial sampling interval in each positional coordinate. 

The interstitial nodes are shown collectively to straddle all o f the block boundaries in the 

quadtree. The computation is minimally modified: in the formation o f the quadtree of 

noisy data, the interstitial nodes are assigned the average value o f their four ‘child’ 

nodes, while in the estimation phase the ‘father’ o f  a given node is taken as the average 

of the existing father and an interstitial node. No multiplications are demanded by the 

scheme, as would be the case for conventional spatial filtering, but the block effects are 

entirely eliminated. This approach is therefore adopted whenever data are passed up or 

down the quadtree.

The second problem with the estimation of Chapter 3 is its spatial invariance. Nonsta- 

tionary operation is vital if edges are to be preserved and not blurred, and with the remo

val of the blocking effect it is apparent that the spatially-invariant estimates are indeed 

blurred. Chapter 4 introduces the spatially-variant or nonstationary form of the estimator. 

This involves the modification of the stationary method on the basis o f contextual infor

mation extracted from the image by an ‘activity’ detection scheme defined on the quad

tree.

The design is motivated by a number of factors. These include

(i) the scale invariance o f the image model and the facility for fully nonstationary pro

cessing at all quadtree levels;

(ii) the notion that edges in images are represented at a number o f contiguous scales o f 

resolution;

(iii) the possibility o f effecting some degree o f  noise rejection by combining information 

from different scales, since noise at the different scales may be expected to be
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largely uncorrelated, and

(iv) the observation that the spatially-invariant estimator requires a minimal operation 

count by virtue of its definition on the quadtree and its avoidance o f spatial opera

tors.

Two indices o f local image activity are presented. The first, ‘simple’, index is just the 

normalised energy of the link between a node and its ‘father’; the second is a propagated 

activity index, defined recursively as  a weighted geometric mean (WGM) of the same 

quantity at the father and the ‘sim ple’ index at the current node. The weighting is a func

tion of the input signal-to-noise ratio, and the WGM achieves noise rejection because of 

its weighted-‘AND’ character. Activity represented in the ‘simple’ index which is due to 

noise tends to be reduced in the propagated index because there is little positional corre

lation between the energy on each quadtree level. In the case of a genuine edge, however, 

the energy is to be found at the sam e spatial position over a number o f scales, and the 

‘AND’ inherent in the WGM reinforces the energy at the appropriate location in the pro

pagated index.

The activity detector inherits m any o f  the advantageous characteristics o f  the estimator 

itself. These include scale invariance and light computational burden resulting from the 

lack of a spatial operator as used by many existing methods. The notion o f activity being 

represented at multiple scales fits easily into the design, whereas operator-based edge 

detectors which utilise multiple-scale information are compelled to run a number o f dif

ferent spatial filters in order to create the ‘scale space’. The present scheme, like the esti

mator, is amenable to parallel computation. The ability o f the scheme to localise activity 

such as edges in the presence o f noise is observed to be limited by an uncertainty.

The propagated activity index is used to modify the estimation in such a way that active



regions such as edges in the im age are subject to reduced smoothing by comparison with 

the spatially-invariant case, whereas regions o f  relatively constant luminance are 

smoothed to a degree which is  greater than in that case. The form o f the modification is 

such that quadtree nodes which exhibit activity typical of their level retain the original 

stationary estimator coefficient. This is appropriate because that coefficient results in the 

MMSE estimate based on the global statistical properties (i.e. the activity) o f the image.

Chapter 4 presents the ‘signal-equivalent’ spatially-variant form of the image model, for 

which the modified nonstationary estimator represents the MMSE solution. The parame

ters o f that model are derived in ‘backward’ fashion from the coefficients o f the modified 

estimator.

Results are presented which demonstrate the operation of the activity detector and the 

effect o f its output (the propagated index) on the estimator coefficient. The degree of 

noise rejection achieved is apparent.

Chapter 4 also presents estimation results for the full implementation o f the nonstationary 

estimator. The system achieves results which are subjectively markedly improved by 

comparison with the stationary scheme. The numerical improvement, in terms of signal- 

to-noise ratio (SNR), is very respectable, with the ‘girl’ image improved by 13.6dB and 

the ‘blobs’ image by lS.OdB for input SNRs of OdB. This figure represents a performance 

superior to that of other system s and considerably in excess o f the 8.3dB and 9.3dB 

achieved by the schemes o f [156] and [61] respectively for a OdB input.

As a result of the nonstationary processing designed to preserve edges, the system allows 

a ‘band’ o f noise to remain in edge regions. It is observed that the width o f this band and 

the characteristics of the noise therein depend on the input SNR and that these quantities



179

are governed by the uncertainty which affects the activity detector as noted above.

Chapter 5 deals with the extension of the nonstationary estimator to the case where the 

image data is vector-valued, as for example in restorations of colour or multispectral 

images, or of texture descriptor fields. Another application area is the restoration of 

orientation data computed from noisy images; anisotropic filtering has been used with 

some success in image restoration by Knutsson, Wilson and Granlund[75] and the method 

requires data relating to local image orientation as a control input.

The extension to vector data is relatively straightforward. Chapter 5 introduces vector 

versions of the model, activity detector and estimator. Each component o f  the vector 

image may be estimated using a different set o f  coefficients, in which case the estimator 

is optimal for each component, or if it is desired that the balance between components be 

preserved, as would probably be the case in colour or multispectral applications, a single 

solution may be applied for all components, implying a scheme which is optimal given 

the constraint.

Chapter 5 emphasises the importance in vision of oriented features, which motivates the 

development o f  anisotropic filtering and thus the restoration o f  orientation data from 

noisy observations. The initial extraction of orientation information is considered, and 

the design (following the work of Hans Knutsson[79](80]) o f  a quadrature filter set for 

this purpose is presented. The hypothesis that similar mechanisms are utilised in vision is 

supported by evidence from physiological experiments, chiefly the work of Pollen and 

Ronner[115][116]. The output o f the orientation detectors is in the format o f  the ‘double

angle’ vector representation used by Knutsson, Wilson and Granlund[75][78]. The 

analysis o f  its susceptibility to noise is noted to be a difficult analytical procedure due to 

the presence o f nonlinearities in the estimation, and simplifying assumptions are used in
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order that the orientation-domain noise may be modelled as additive white gaussian. 

Results are presented which show the effect of noise on the orientation estimates. The 

noise in the estimate is quantified in terms of a mean squared vector error, which may be 

expressed in terms o f  the familiar signal-to-noise ratio by defining the ‘signal’ to be the 

orientation field as estimated from noiseless images.

Chapter 6 describes the subsequent utilisation of the orientation vector field. Firstly, the 

noisy orientation information is restored and results are presented illustrating the restora

tions. The system uses the spatially-invariant form o f the quadtree vector estimator. The 

numerical improvement is again defined in terms o f the mean squared vector error and its 

associated signal-to-noise ratio.

The design o f the anisotropic filters which are to be controlled by the orientation data is 

presented. Three fixed filters are used, their outputs being interpolated according to the 

restored local orientation data. The anisotropic filtering is iterated in order to reduce the 

angular bandwidth and thus to prevent unwanted smoothing in a direction perpendicular 

to the local feature. Examples of the output of the anisotropic filtering are presented and 

discussed.

Chapter 6 then treats the extension o f the nonstationary estimator to include anisotropic 

processing. The estimator structure and its definition on the quadtree remain unchanged, 

but now the data in the quadtree (previously the averages generated from the noisy 

image) is m ixed in regions o f high anisotropic energy such as edges with the 

anisotropically-filtered data. The mixture is controlled by the local modulus of the orien

tation vector so that in strongly anisotropic regions, the data is almost exclusively the 

output o f the anisotropic filter, while in smooth or isotropic regions the data is little 

altered. This means that in image localities which are essentially isotropic at the scale



concerned but possibly contain important detail (the eyes in the ‘girl’ image being a good 

example) the noisy data is not mixed with the filtered (which in these regions 

corresponds m erely to an undesirable degree of blurring).

Results for the anisotropic extension o f the estimator are presented and compared to the 

results obtained in  Chapter 4. While there is generally no numerical improvement over 

the latter results, the subjective visual improvement is considerably m ore marked. The 

‘noise bands’ which remained in the vicinity of edges are now much less prominent, 

while the edges themselves are preserved (and even possibly somewhat enhanced by the 

sidelobes of the anisotropic filter).

Whilst the extension of the scheme to include anisotropic processing provides a distinct 

improvement in the subjective quality o f  the restorations particularly in the vicinity of 

edges, such processing is not as well matched to the structure of the quadtree as are the 

other components o f  the method, and the computational effort is greatly in excess o f that 

required by the unextended scheme. This is a consequence of the need for extraction and 

restoration o f the orientation data and the anisotropic filtering itself.

In the absence o f  special-purpose hardware for these tasks, the question must arise of 

whether the improvement justifies the additional computation. W hilst the unextended 

method might certainly be implemented at real-time data rates on a  quadtree of fairly 

simple processors, the considerable additional burden associated with the anisotropic 

extension makes real-time implementation of the extended method appear rather less 

feasible. Further work might profitably examine the possibility of improving the method 

by some less complicated extension, although it is difficult to envisage a significantly 

more computationally efficient system, particularly for the orientation estimation, which 

would nevertheless meet the requisite criteria. However, Watson[141], Watson and Ahu-
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mada[140] and W ilson and Calway[145] have investigated multiresolution (pyramidal) 

data structures in which orientation as well as scale serves as an index. It may be that an 

image model and estimator based on such a structure and capturing explicitly the notions 

o f orientation and scale might provide a solution to this problem. It remains to be seen 

whether a more computationally efficient approach, with subjective performance com

parable to that o f  the extended method used in this work, is possible.

Of considerable utility would be the development of optimal estimation strategies for 

multiresolution signal models more general than the simple quadtree model presented 

herein. Unfortunately it is easily shown that for a  more general case (even that given by 

the inclusion o f the interstitial nodes in the present scheme) the optimal estimator ceases 

to possess the efficient recursive structure o f the quadtree estimator. Nevertheless, just as 

for the causal Kalman filtering methods o f Woods et al[156][157], it is possible to 

envisage a  ‘reduced update’ form o f the estimator which preserves the recursive struc

ture, but in which the strict rules o f ancestry of the quadtree are relaxed to accommodate 

a father:child relation in the pyramid o f M:N instead o f the present 1:4. As in the case of 

the reduced update Kalman filter (RUKF) it is unlikely that the loss o f  optimality would 

be accompanied by a significant reduction in the improvement obtained. This is strongly 

suggested by the results achieved here with the inclusion of the interstitial nodes.
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APPENDIX 1

DERIVATION OF THE ESTIMATOR BY A LEVINSON-TYPE RECURSION

Throughout this appendix, the notation Fk = Ra (k , m , n \ k,  m , n)  will be used. This 

is the (spatially invariant) expected energy Ex k n n  of a node xk m n  on level k of the 

average-value data quadtree.

The estimator st% ¡ j  may be described in terms of a causal, nonrecursive linear combina

tion of the noisy ancestors xtp< f , ( k , p  , q ) e A l%ij  of the node

= £ Mxt.p., (A1.1)
t t * '

The orthogonality principle gives the solution vector A* as

A, = r, (A1.2)

where

F 0 Fq Fq F q F q

Fo F, F,  ••• F,  F,
Fo F , Fi  F 2 F2

*1 -  ................................................... (A1.3)

Fo F , F2 • F,_t F ,_ ,

F a F, F2 ■■■ F,_, F,

is the dau correlation matrix,

A

A, -  ■■■ (A 1.4)

*i-1
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is the coefficient vector, and

* „ ( 0 , 0 ,0 ;  l . i j )  

r ,  = * « ( * . * . < 7 ;/.* ../)  

R „ { l . i , J i l , i J )

(A1.5)

where ( k , p , q ) e A t ¡ j  . (A 1.3) follows from the middle equation o f (3.50) because 

R „ ( . U J \ k tP%q )  = R n d . i J l I J J )  = Ft for ( k , p , q ) e D l i j  .

Equation (A1.2) is the matrix form of the normal , or Yule - Walker , equations[86][ 110] 

for this realisation of the estimator. The solution o f this system involves the inversion of 

the data correlation matrix * /.

Theorem

The structure o f  R t is such that its inverse is tridiagonal and may be calculated by recur

sion on / .

Proof

From (A 1.3), the matrix * /+i is given by

(A 1.6)
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and its determinant A/+1 is given by

The cofactors in the augmenting row and column of (A 1.6) are given by

A ,., -  . (A1.7)

ck = cof(Fk )

0 , k <  l  ,

-A i , k m  ! . 

A, , k m /+1

(A l.8)

Iteration of (A 1.7) and (A l.8) gives / f f 1 as

F t -1
F o i F t - F o )

-1

F , - F .
F , - F .

F . - F . ( F j - F . H F . - F , )

0 0
F , - F ,_ ,  -1  

(F ( - F , . , ) ( F , - , - F , - j )  F , - F , . l 
- 1  1

° F , - F , . x F , - F , . x

(A1.9)

and the proof is complete.

Substituting (3.49) and (3.50) into (A 1.9) and the result into (A 1.2) yields, after extensive 

manipulation, the solution for the optimal MMSE estimator coefficients Xk as

4Y~k t i
z k z k+1z l*1 •

0 Z k Z l  . (A 1.10)
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where

Z„  = +4P£_, +  P? + o? , (A l .l l )

and the solution is complete.

The estimator $ i j j  of st%i j  has been expressed in terms of the noisy average values 

xk,p,q > ( k , p , q ) e A l i j  at the ancestors of the node (i , i , j ). The system o f (A l.l)  

represents a time-varying causal filter of increasing order / with coefficients 

X‘k , 0 Z k  £ /  .

The algorithm of Levinson[84][l 10] allows the coefficients o f a predictor o f  order A/+1 to 

be expressed in terms o f those o f  the predictor of order N  of the same signal. By analogy 

it is possible in the present case to express the coefficients X*+1 of the nonrecursive esti

mator of order /+1 in terms o f those X* of the nonrecursive estimator of order / .

From (A 1.10) it is clear that

O Z k Z l  . (A l.l 2)

and

J (A 1.13)

In order to obtain a recursive structure for the estimator of the form
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h * \ , r . f  = ei * ' si.i . j  + el+lxM . r . f  •

(/+1 ,r./)mDltlJ

it is required that

_/+i _  */+} 
e/+l *7+1 •

o s / s r - i  .

and

o s / s r - i  , 

o s * * /  .

From (A1.12) it is apparent that

Z /+2 
Z l+1

independent o f * , and so (A 1.15) and (A 1.16) are satisfied (see (3.78) and (A l.

Z <+2 

Z l+1
e U\  »

o z / s r - i  .

(A1.15)

(A1.16)

(A1.17) 

ID ) by

(A1.18)

(A1.14)

and
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APPENDIX 2

THE KALMAN INNOVATIONS OF THE DATA A N D  THE OPTIMAL ESTIMATOR 

A2.1 The Kalman Whitening Filter

The Kalman innovations signal ix (n ) is derived from  the data x ( n )  by the linear combi

nation o f (3.10), and is by definition orthonormal a s  indicated by (3.9). The system of 

coefficients y? of the combination is known as the Kalman whitening filter[110] of x (n )  

(see section 3.3),

ix (n)  =
k=0

(A2.1)

The system of equations given by the variation o f  n  in (A2.1) over the range 0 <,n £  l 

may be written in matrix form as

r,*'

where

1, ( 0 )
i , ( l )

1 , 0 - D
1 , 0 )

(A2.2)

(A2.3)

t f

' x(0)  
x (l>

* « - l )  
. * 0 )

(A2.4)
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and

1« 0 0 0

l i r i  ■ 0 0

T é '1 r i ' 1 • • r i r i 0

Yo r i  ■ • YÌ-i r i

is the Kalman whitening filter, which is lower-triangular.

The orthonormality o f the innovations process may be expressed (see (3.9)) as 

Eix (m)lx (n ) = 5m „

(A2.5)

(A2.6)

or, in matrix form,

R\m = £ l '( i i ) r  = I, (A2.7)

where 1/ is the identity matrix o f appropriate order.

Substituting (A2.2) in (A2.7) gives

r , R , r ]  = i, (A2.8)

where R t is the data correlation matrix (see Appendix 1).

Hence for 1= 0,

y 8 r 0 y 8 =  i (A2.9)
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or

(t f ) 2  =
F 0 '

1 (A2.10)

Then for / = 1,

rS n> _ fl ol
o y! " [o lj

which yields, with determined as above,

yg o C^o F 01

yi y!

(ri)2 = i
F , - F  o

and

Yo = "  Yi

Recursion on / gives the coefficients as

(y{)2 F , - F , . x 

r l - i  = - r i

(A 2 .ll)

(A2.12)

(A2.13)

(A2.14)

(A2.15)

and

y i o ,

0 * k  * 1 - 2  , (A2.16)
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and so the Kalman whitening filter T, is given by

T i 0
0 0

-1  1 
VF \ ~ F o y J F i - F o

0 0

0

1

0

0

0 0 -1
y j F t  - F , _  i -

, (A2.17)

and the innovations signal by

ix (m) x ( m ) - x ( m - 1)
ylFm - F m-i

Y o U ( 0 ) - x ( - l ) )  if  jt( - I )  -  0  

ym( x ( m ) - x ( m - l ) )  .
(A2.18)

Thus the Kalman innovations of the data are proportional simply to the differences 

between the averages on successive levels of the quadtree, and the lower-triangular 

matrix which represents the Kalman whitening filter is sparse, having nonzero elements 

only on the leading diagonal and the adjacent diagonal.

A2.2 Derivation of the Estimator by Analogy with Section 3.3.2

Note that in this section, the signal innovations w(.)  are as intended in section 3.3.2 

rather than as in section 2.3.

The orthogonality relation for the estimate s ( n ) of s ( n ) from the data x ( m ) ,  0  £  m £  n , 

may be written as
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E ( s ( n ) - s ( n ) ) x ( m )  = 0 ,

0  < m <, n

Hence

E t x ( n ) - s ( n ) ) x ( m ) = E(v(n) + s ( n ) - s ( n ) ) x ( m )

= Ev(n)x (m )

= E v ( n )  v (m )  ,

0 <m<n ,

since E v ( n )  s (m )  = 0  for 0  £  m £ n .

Changing n to n+1 in (A2.20) gives

E(x(n+1) -  s (n+l))x(m)  = Ev(n+\)v(m) ,

0 <.m S/i+1 .

Now

E ( x ( n + l ) - s ( n ) ) x ( m ) = E ( s ( n ) - s ( n )  + w (n + l)  +  v (n + l))  Jt(m) 

= E(w(n+1)  + v (n + l ) ) x ( m )

■ E (w (n  + 1) + v ( n  + l) )  v (m ) ,

0 £ m £ n  ,

(A2.19)

(A2.20)

(A2.21)

(A2.22)

since E w ( n + 1 )5 (m) = E v ( n + l )  s (m )  = O forO S w  £ n .
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In summary.

E (x (n + l)- i ( / i+ l))x (m ) = Ev(n+l)v(m ) , 

0 <,m Sn+1 , (A2.23)

and

E ( x (n + l )  — s ( n ) ) x ( m )  = E ( v (n + l )  + w in + l))  v (m ) , 

O ^ m

Now the innovations signal is given by (A2.18) as

ix (m) = ym( x ( m )  —x  (m —1))

(A2.24)

(A2.25)

and so

E (x (/i+ l) — f  (« + 1 »  ix (m)  = ym£ (x ( / i+ l )  — i (n + l ) )  (x(m ) - x ( m - l ) )

= ymE v ( /i+ l ) ( v (m ) -v ( m - l ) )  ,

0<.m ^  / i+ l  , (A 2.26)

and

£ ( x ( « + l ) - f ( / i  ))lx (m) = ym£ C t ( * + l ) - i ( » ) ) C K f f l ) - x ( * - l ) )

= Ym£ (v (/ i+ l)  + w ( n + l ) ) ( v (m ) - v ( m - l) )  ,

0 £  m <L n . (A2.27)

Now the difference x  (n+1) - s ( n + l )  is a  linear combination o f the innovations ix (m)  for
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0 £ m  Srt+1,

x f n + l) - i ( n + l)  =
m=0

and the same is true for the difference x  (n +1 ) -  s (n ),

n+i
x ( n + l) - f ( / i )  = ¿ « £ +1‘*("0  • (A2.29)

Combining (A2.26) — (A2.29) gives

-  ymE v ( n + l) ( v (m )- v (m - l ) )  

0 £ n +l  , (A2.30)

= ym£(v(/i+ l) + w(n+l))(v(m ) — v(m—1)) , 

O S m S n  . (A2.31)

For the coefficient g ¡JJ , (A2.18) and (A2.29) give

« K l  -  (A2.32)
Yn+1

since f  (n ) is a linear combination of ix(m) for OSm £ n while x (n + l) is a linear com

bination of i„ (m ) for 0 £  m S/i+1.

Now

ft™

Ev(n+l)(v(m)  -  v(m -l))
£ (v (n + l) + w (n + l))(v (m )-v (ro -l))

, O S m S /i ,

•yj+,£v(n+ l)(v (n+ l) -  v(n)) , m = n+1
(A2.33)
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Evaluation o f the various expectations (from sections 2.4.3 and 3.6.1 —  tedious details 

omitted) gives

3 Pn+2 P Y a v
E v ( / i + l X v ( m ) - v ( / n - l ) )  =  +  ^ F ^  +  ' ^ F i r )  • <A 2 3 4 >

Ew(n  + l) ( v  ( m ) - v ( m  -1 ) )  =  )4 4"+l-m (A2.35)

3 Pn+2 py Oy
£ v(n+ lX v(n  +1) — v (/I)) = j ( - ^  +  + - ^ z r  +  - ^ r D  . (A2.36)

tf+ i =
f p f c , + % + p ? ,

4 K -n - l  +  4 y - n -

. (A2.37)

Substitution o f these relations into (A2.33) yields

P?
K -n -l

p, +l k + . . . + «  *
4 41

0 <,m £ / i + l  ,

Y - n - l  , Y - n - 1

(A2.38)

o r

0 <.m £ n + l  , (A2.39)

which is independent of m .
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Substituting into (A2.28) and (A2.29) gives

x ( / t + l ) - f ( n + l )  = X e n+i8m+1 **("») (A2.40)
m=0

and

* ( n + l ) - f ( n )  =  ,
m=0

(A2.41)

or

x ( / i + l ) - f ( / i + l )  =  e n+1( x ( n + l ) - s ( n ) )  

which may be expressed in the form o f (3.77) as

j (/i + 1) = e n+1i ( / i )  +  ( l - e n+1)x(/»+ l) 

with the estimator coefficient e n+t given by

l
4r-*~i 4r-*-\

. . .  + _ 5 L + _ ? L _4K-n-i t  4 k-« - i

(A2.42)

(A2.43)

(A2.44)

as in (3.78).

A2.3 Cholesky Factorisation of the Data Correlation Matrix and its Inversel 11()|

With the Kalman whitening filter o f the data given by (A2.17), it is easily shown that the 

inverse o f the data correlation matrix, as given by (A 1.9) in Appendix 1, is the product
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rt' = rfr, (A2.45)

of the Kalman whitening filter and its matrix transpose.

Inversion o f the whitening filter (easily performed by recursion on /)  gives the Kalman 

innovations filter as

V^o 0 0 o '

V*o yJF \ ~ F o 0 0

VFo V 'r. - f o •• y jF t-x -P i- i 0
V^O ~ F 0 VF/-1 ~ F l-l ~F,-y

and it may be verified that the data correlation matrix Rt of (A 1.3) is given as the product 

R, = L , L j  (A2.47)

o f the innovations filter and its matrix transpose.

Note that both the whitening and innovations filters are lower-triangular; this is a conse

quence of the causality of both the Gram-Schmidt orthonormalisation, corresponding to 

the whitening filter, and of its inverse transformation, which corresponds to the innova

tions filter.

The decomposition of the correlation matrix and of its inverse into lower- and upper- 

triangular factors is known as Cholesky factorisation ( 110) and is the discrete equivalent 

o f the spectral factorisation required in the design of Kalman filters for continuous sig

nals. The lower-triangular factor represents a causal component (the whitening or innova

tions filters) while the upper-triangular factor corresponds to an anticausal component.
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The continuous case involves the decomposition of the data spectral density function into 

left-half-plane (causal) and right-half-plane (anticausal) factors in the Laplace transform 

domain! 110].



200

APPENDIX 3

PROBABILITY DENSITY FUNCTION OF THE ESTIMATOR COEFFICIENT

This derivation is based on that o f the F density which appears in [8].

The chi-square (x2) density[8] is characteristic o f a sum of squares o f independent gaus- 

sian random variables. If

where the yk are independent, identically-distributed (i.i.d.) gaussian variables with vari

ance

(A .l)

E y i  = o j (A.2)

then the variable x 2 of (A .l) has probability density function (pdf) given by[8)

(A.3)

which is a chi-square density with M  degrees of freedom and variance parameter a 2 . 

T(.) is the gamma, or generalised factorial, functional.

Comparison with section 3.9.1 indicates that the variate N U I , which is the average of 

4 ,+1 squares o f nominally i.i.d gaussian variables of variance ct£(il , has the chi-square 

density
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M»n.  -■>
/ * , , ( * )  = --------  M *  2 e 2° ~ U ( x )

o o i , . , ) “ '2 n 4 r->

with M  = 4 1 degrees o f freedom and variance parameter o £ ltI . 

Similarly, /V, has the chi-square density

_ P  -P xp Pa  ( y - D  T - r
— ------------x 2 t / ( x )

with P  = A1 degrees of freedom and variance parameter .

Assuming independence o f W/+, and /V/ , the density o f the estimator coefficient

may be derived as follows.

Letting X  and Y represent /V/+J and Nt respectively, then et = X /(4Y) = Z /4  

the independence assumption, the joint density of X  and Y is given by

(A.4)

(A.5)

(A.6)

(A.7)

, From

f x r i x . y )  «  f x ( x ) f Y( y ) (A.8)
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where / * ( * )  and f Y( y )  are as given by (A.5) and (A.6) respectively. Denoting the con

stant term s in these densities by k x and k 2 ,

(T -1) (T -1)f x r ( x . y )  = k xk 2 x  2 y  2 e  2o~  U ( x ) U ( y )  . (A.9)

A change o f variable, replacing x  by z y , gives

/ x r ( v . y )  =  y

The marginal density of Z is then given by

c * - o U ( z ) U ( y )  . (A. 10)

/ z ( * )  = /  l > l / x y ( 2 y . y ) r f y (A.l 1)

or

Now from  the definition of the gamma function,

(A. 13)

and so the integral in (A. 12) reduces to

(A. 14)





Q uad-Tree Image E stim ation: A New Image Model and its 
Application to  M inimum M ean Square E rro r  Im age Restoration

S.C.Clippingdale, R.G. Wilson 
U n ivers ity  o f  W arw ick, Coventry, U .K .

1. IN T R O D U C T IO N

L inear m inim um mean square error (M M S E )  
methods have been used in  signal estim ation 
since the pioneering w ork o f  W iener. M o re  
recently, state-space approaches based on K a lm an  
filtering have been applied to a  w ide varie ty  o f  
filtering and prediction problems.

The application o f  such "optimal" methods to 
image enhancement has met with lim ited success, 
due to the inherently nonstationary character o f  
images. The most successful methods reported to 
date invo lve  a "multiple-model" approach to 
m odeling an image, g iv ing  rise to a filter w h ich  
adapts to loca l image structure! l]-[3]. W h ile  such 
m odifications o f  classical methods have proven 
more successful than their sim pler ancestors, it 
remains true to say that they are still largely based 
on adaptations o f  techniques developed fo r one- 
dimensional signals.

The methods described here d iffe r in  that they arc 
based on a radica lly d ifferent statistical m ode l o f 
images. The use o f  quad-tree methods in  im age 
processing, although a comparatively recent 
deve lopm ents ], has found increasing acceptance 
in  applications ranging from data com pression to 
segmcntation(5|-(8). However, to dale m ost o f 
these methods have been derived in  a somewhat ad hoc fashion. It w ill be shown in  this paper that 
such need not be the case.

In section 2 we describe the quad-tree structure 
and introduce a new class o f  image model w h ich  
is defined on the tree. In the terms o f this m odel, 
and for corruption o f  the image by additive white 
noise, we derive the optimal M M S E  estim ator o f 
the image. It is  shown that the estimator m ay  be

expressed as a recursion which is  com putationally 
h ighly efficient, achieving a  reduction in  com pu
tation greater than an order o f  magnitude over 
even a fa ir ly  sm all (7 x 7) spatial estimator.

Section 3 is  concerned w ith the implementation 
o f the method and its adaptation to "subjective" 
criteria o f  im age "quality". The estimation o f  the 
model parameters - which determine the M M S E  
estimator coefficients - from noisy data is  con
sidered. W e  introduce a com putationally inexpen
sive method o f  reducing the aliasing ("b lo cking”) 
distortion w h ich  is an artifact o f  the quad-tree 
structure. A dd itiona lly , a m odification which 
reduces the blurring o f  salient image features 
such as edges is demonstrated and results 
presented.

2. Q U A D -T R E E  I M A G E  M O D E L  A N D  
E S T IM A T O R

A . Q U A D  T R E E  S T R U C T U R E  
The quad-tree data structure is  an example o f  a 
hierarchical o r pyram idal organisation, in  which 
data is  represented on a number o f  different lev 
els. A  given leve l / consists o f  a square array o f 
nodes, and the leve l above it (leve l f+1) contains 
one node (the father) for every four (its ch ildren) 
on level / . Hence i f  level / is  o f  dimension N  x N , 
level /+1 is  o f  dimension (N/2) x (N/2). The top 
level o f  the pyram id contains just one node, 
known as the root. Often the nodes on the lowest 
level (the leaves) arc assigned the values o f  the 
pixels o f an image to be processed in  some way, 
and a father node is  sim ply set equal to the aver
age o f its four children,



(8)

*i+i.i.j = ■j(5.*.v +*i.v.t/+i**i.v+i.v +*!.*+i.v+i)

(1)
where the overbars indicate averages. The root 
node finally contains the average o f  a ll the image 
pixels. Defining the image (leaf) plane as level 0 
and using an im age o f 256 x 256 p ixe ls, the root 
node sr is then on leve l 8 (r = 8).

B . M O D E L  D EF IN IT IO N  
The model defines what is essentially the reverse 
process, that is  the generation o f an image from a 
process which operates down the tree, starting at 
the roo t W e use as the core o f the model a rather 
general process, in  which the va lue o f a node is 
given as the va lue o f  its father p lus a term which 
corresponds to a  sample o f a white noise o f vari
ance p 2 dependent upon level:

sl.2i+ii.2J+jj =  sM , i J  +  $ l wl . 2i+ ii.2J+jj

U . j j - 0 . 1

£w 2 = 1 . (2)
In order to generate an image w ith  a  mean value 
o f  zero, we require sr = 0 .  The correlation 
between nodes is  nonstationary,

E*i»i.j*i»k.m=Es2 (3)

where sa is  the lowest common ancestor o f the 
two nodes.

W e incorporate corruption by additive white 
gaussian noise o f  the image s0 ij  (as generated 
by (2 )) by setting the leaf node values to

so ,t,j =  *0.1,j  + n i . j  W

where ntj is  a  sample o f a white gaussian noise 
process with variance o 2 which is  uncorrclatcd 
w ith the image:

(5)

E*i.j>i,k,mm 0 (6)
Henceforth and throughout most o f  the paper, we 
drop the position indices so that St i j  becomes s| . The context should avoid confusion.

Now  from (2),

£ *o mE*} + P*-i Po (7)

and from  (4)

£Jo = £ s 2 + P?-i + ••• + Po + «2 
= £ jo + o5

W e  then form the tree S  o f averages s as in d i
cated by (1). The average energy o f  a node on 
le v e l / is then

(9)

C .  T H E  E ST IM A T O R
W e  now consider an estimator f ,  o f  st . The 

M M S E  criterion requires that s, be a linear com
b ination  o f data, and the coefficients o f that com
b ination  are (hen given by  the orthogonality prin- 

c ip le[9].

T h e  available data is  the set o f  a ll nodes in  the 
tree S  . However, we w ish  to avoid spatial opera
tion s  across a particular level and concentrate on 
"vertica l" operations, i.e. those which are defined 
a lo ng  branches in  the tree on ly . (W ithout this 
constraint, the optimal estimator o f  s0 would be a 

spatia l, nonstationary — and s low  — filter operat
in g  on level 0).

T h e  implication is  that we should estimate a  node 
in  terms on ly o f  itse lf and its ancestors in  the tree:

S, « L  sk (10)
km I

T h e  orthogonality princ ip le g ives the M M S E  
so lu tion  as

EV,-s,)ik- 0 (ISkir) (11)

o r

E /; i*  *  Es,sk (likir) . (12)

T h e  equations (12) may be expanded to give the 
f u l l  set o f Yu le  - W a lker equations fo r the estima
tor:



6!EJ? + ÿ-,£j,i,-, + *6I.,ËS,S,., + 6IEZS -EF,s,

6!E s,-1j , +Bi-iEî?-, ■*■ ■■■ + 6l.,Es,.,s,., +SlEs,.,s, -ES,-,s.

SI Es,.,s, *61 tEsi.is,-< + • • • + El.iEsf.i + SIEst.,3, -Es,.,s, 

St EJ, F, *61 -,ES,S..,* *6l.£S,S,.,*8iESÎ-ES,s,

(13)

w h ich  may be expressed in  matrix form as

■ ■ E s,.,7, ES,s. Il6' ES,.,
E7,.\7,-i fif /i , J p i - i Es,.,s,

£ f r i , . ,  Es, £?,/» ., W .. ES,.,s,
£ j r J, E s,.,7, E J,.XI, E sf 1 8/ ES,s,

(14)

I f  we define the correlation matrix above as A , 

and the vector o f  coefficients as A/ then A ( is 

g iven  by

Esrs,
EJr-li/

Es t+iSi
Es,s,

A  r ' V  (15)

and the problem focuses on the inversion o f A , . 
It fo llow s from (1), (2) and (9) that we may 
express Estsm (k 2m and remembering that J* 

is  an ancestor o f J „  )  as

- E l f  . (1®

where ak = Esk . The structure o f  this matrix is 

such that its inverse is  tridiagonal:

The vector V  on the right o f  (15) may be 
expressed as

E s, s, a , - b

E  s , . , s , a r _i -  4 b

E s  i*t*i o  1+1 — 4 ,-< 'b

Es,s, a , -A '- * b

ak = Esk 
4»—i+i 41—/+2

«

Evaluation j ) f  (15) fo r a central (/+1 Sk S r - 1) 
element o f  A, g ives, after extensive manipulation,

8i -  -  ' (/+1 Ski r -1 )  (21)1
where

Z - = 4 -p i+ 4 - * p i . ,

Evaluation o f  (15) fo r the extreme éléments 8/ 

and 8/ g ives

(23)

(24)



(35)which is  consistent w ith  (21) i f  we define

tfmEs* • (25)

W e now  have the  so lu tion  vector A ( fo r the 

optimal M M S E  e s t im a to r s, o f  s, (0 S  / £  r - 1 ) .

D. R E C U R S IO N
W e wish to ascerta in  whether the estimator o f 
(10) may be expressed in  the recursive form

j;  =  e / s / -+e/+|f|+i (26)

with in it ia l co n d it io n  sr =sr . Iteration o f  (26) 

yie lds

(27)

From  (9) it  is  possib le to s im p lify  (34) to yield, 
fo r 1 £  / S  r - 1 ,

(36)

where

N t  -  | ( P ? - i + l k + . . . + J L
1 4 4 ‘ - ‘

=  £ s* _ i .

I f  we define

N 0 m 3o 2

which is  equ iva lent t o  (10) i f  and on ly if then (36) holds additionally fo r 1=0.
e * n e"+i = 8* (0 S / S r  , l £ k £ r )  .

mm I

This condition m ay b e  expressed as

« /-« /
»

e'+l ”  T i l T  ( 0 S / S r - 1  , 1+lZkZr) 
8*

(29)

From (21) it  is  e v id e n t  that

8* Z,_,

6 {+1 "  A (30)

independent o f  k, a n d  hence 
satisfied with

the condition is

, _ Z , _ ,
(31)

with Z, as g iven  b y  (2 2 ) , and

-«/♦ , . (32)

Hence the recurs ive so lu tion  is  given fina lly  by

+ (33)

where

(34)

E . C O M P U T A T IO N
It is  apparent from (33) that in  calculating the 
estimate, two m ultiplications are required at each 
node. S ince there are about 4 N 2/3 tree nodes for a 
N  x N  image, approximately 8/3 multiplications 
are required per image p ixe l. (The  in it ia l forma
tion o f the average-tree S in v o lv e s  on ly  additions 
and triv ia l m ultiplications b y  1/4, which may be 
accomplished by a  double right-sh ift). T h is  com
pares very favorably w ith , fo r  example, even a 
sm all spatial filter. The authors o f  [2] use a filter 
mask o f  152 = 225 elements, requ iring  225 m u l
tiplications per filter per p ixe l. The present 
scheme therefore achieves an acceleration 
approaching two orders o f magnitude over such a 
filter, and almost one order o f  magnitude over 
even a (5 x 5) filter.

3. I M P L E M E N T A T IO N  A N D  A D A P T A 
T IO N  T O  V IE W IN G  C R I T E R I A

A . P A R A M E T E R  E S T IM A T IO N  
It is  apparent from (36) that in  order to evaluate 
the estimator coefficients e, w e  require the statis
tics N, and NUI as given b y  (37). W e do not, 

however, have access to these expected values 
and so must estimate them from  the available 
data. Th is  amounts to estim ating the expected 
energies E for each level / . The obvious esti
mator o f E J , is  sim p ly the sam ple  energyA—2 ,  - 2  .Esi = ave(. s t )

Note that
(39)



and ihe estimator o f N, is  then

N, = £ jf_ ,  -  Esf . (40)

N o w  (with position indices)

i i  i  **-U***.Vtll ~ * k .U  = ¿ W - i.v*k.VJJ*11.0 Jl-o
(41)

where m is  the difference

mk-l.2i*u.2j*jj — sk-l.2i+u.2j+jj ~ sk.i,J ■
(42)

I f  we assume, as an approximation, tha t m*_, has 

a gaussian density with zero mean a n d  variance 
o^M then from (41) and [10], Nk has  a  chi-square 

density w ith dk = 4, - *+1 degrees o f  freedom and 
variance parameter a ^ , . A  s im ila r  statement 

may be made regarding /V*+1. Then ek = Nk /4N * +, has the F  d e n s ity  which is 

characteristic o f  a ratio o f  tw o ch i-square  vari- 
ables[10]. The variance o f  et thu s calculated 
increases w ith increasing / as the sam p le  size d, 
decreases. Fortunately the prob lem  is  w e ll condi
tioned in  that the e, on the h igher leve ls, while 
prone to larger errors in  estim ation, have  propor
tionately less effect on the im age estim ate as is 
evident from the recursion o f  (33). W e  therefore 
use this simple method o f  e s tim ating  e, from the 
data and tolerate any error.

B . R E D U C T IO N  O F  A L IA S  ( B L O C K )  DIS
T O R T IO N
The structure o f  the quad-tree, toge ther with the 
upward averaging process (1) and dow nw ard pro
pagation o f data by the estimator (3 3 ) , gives rise 
to noticeable b lock edge efTccts. T h e s e  have been 
dramatically reduced in the present schem e by the 
inexpensive expedient o f in serting  intermediate 
nodes into the tree structure. These  nodes do not 
themselves form a tree, but s tra d d le  the boun
daries o f the blocks which are a r t ifa c ts  o f the ori
ginal tree. O n  level / in  the tree ( I S  / S r - 1 )  
there are (2r~‘ )2 original nodes and we

now insert (2'~‘ -  l) 2 intermediate nodes p</,.,.) 

such that each lies centrally between four original 
nodes. The "children" o f an in te rm ed ia te  node are 
taken to be the four nodes c lo sest to  its vertical 
projection on to the level below. T h is  im p lies that 
its children have four different o r ig in a l fathers

(these being the four original nodes 
between which we have inserted the new node). 
Hence the new node straddles a block edge on 
leve l / - I  . When we bu ild  the tree S we insert at 
the new node the average p, o f  its children in  the 
usual way. Note that i f  the tree orig ina lly  con
tained D nodes, there are approximately 0 / 4  new 
nodes.

W hen we come to the downward estimation, we 
m od ify  the estimator o f  the original nodes as

. ,$m +Am  . . .. .s, = «,(-------- -------) + (1 -e,)s, (43)

and the new nodes are estimated as

A -  M m  ♦  m
where xM is an average o f the estimates o f  the 

surrounding original nodes s, (  p, does not have a 
father in  the sense that s, does, so we create one).

C . E D G E  P R E S E R V A T IO N  
It is  w ell know n[lI]  that edges and other linear 
features are particu larly important to the v isual 
system, and it has been observed that an image in 
which edges are preserved appears subjectively to 
be o f  higher "quality" than one in  which the edges 
have been blurred; th is is often true even when 
the blurred image has a superior signal to noise 
ratio (SNR). This constitutes a major disadvan
tage o f stationary, "W iener-type" image estima
tors which tend to b lur the image, giv ing  an unsa
tisfactory subjective appearance. A  related and 
complementary phenomenon is the so-called 
"masking effect"! 1], w h ich  describes the reduc
tion o f  noise v is ib ility  in  the vic in ity  o f  edges.

A  number o f estimation schemes[2][12] which 
take account o f these effects have been devised. 
They seek to preserve edges by reducing the 
degree o f smoothing o f  the image in their v ic in 
ity , where corrupting noise is  less v is ib le  in  any 
case.

The present scheme is  amenable to the incorpora
tion o f  such a m odification. W e have chosen 
once again, in the interests o f  speed, to reject spa
tia l edge-detection operators and to concentrate 
on "vertical” methods defined on the tree struc
ture.



T ab le !Position indices have been omitted from what fo l
lows. W e define at each node in  the average-tree 
S an activ ity  index y, (/ < r ) as

(j/ -  J|+i)2 + (J/ -  Pm )2 
Yi  “  ----------------jç -------------------- (45)

and a propagated activ ity  index a , (/ < r )  as

a, = c t f t r V  (46)

Or
where ct (0 £  C/ S  1) is  a weighting coefficient 

fo r the "linear" geometric combination o f  (46) 
which depends on the signal to noise ratio o f the 
input image. W e  choose to use propagation (and a 
geometric rather than an arithmetic combination) 
in  deference to the principle (M a r r [ ll] ,  Eklundh 
et al( 131, M a rr &  H ildreth! 14]) that an edge per
sists over a  number o f different scales (i.e. levels) 
whereas activ ity due to noise does not. The pro
pagated geometric combination is thus a  weighted 
"A N D "  which is  influenced by  activ ity on the 
higher levels more for low  c/ (low  SN R ) and less 
fo r h igh c( (high SNR). The coefficient c, esti

mates the expected proportion o f  the activ ity  y, at 
a  given level l wh ich is  due to the uncorrupted 
image, and increases with l as the noise is  pro
gressively averaged out:

Cl (47)

The index a, is  used to alter the value o f  the esti
mator coefficient e, :

e, « - (*,)“ * (48)

and e, is  fina lly  used as the estimator coefficient 

in  (43) and (44). The output image is  scaled to 
the same energy as the uncorrupicd image.

D. R E S U LT S
Table 1 lists input and output signal to noise 
ratios obtained with  the present method. F igures 1 
to 6  show the corresponding images as indicated 
in  the table. The orig ina l image is shown in  figure
7.

INPU T O U T P U T

S N R  dB 1 F igu re SN R  db 1 F igure

-18 4.1
-12 6.7
-6 9.2
0 1 12.1 2
6 3 14.9 4
12 5 17.6 6
18 20.0

The  estimator produces quite acceptable results, 
w ith  a signal to noise ratio improvement o f  12dB 
fo r a OdB input. The  rather blotchy appearance of 
the "smooth" regions o f  the image, particularly 
evident in figure 2 , is  due to the edge detection 
system being fooled  by the high level o f  noise at 
m iddle levels in  the average-tree S  and reducing 
the estimator coefficient accordingly, thus passing 
the offending noise down unsmoothed to the 
low er levels. W here the edge detection system 
responds correctly to an edge, such as around the 
face and shoulder, the (deliberately) unsmoothed 
noise from the input image is  visib le. However, 
the affected region is  a rather wide strip along the 
edge at low input SN R . Th is is  partly due to the 
operation o f the weighted geometric mean 
(W G M ) in  the edge detector, wh ich at low  SN R  
takes more account o f the father’s a ctiv ity  and 
less o f the ch ild ’ s. Th is  effectively represents a 
smoothing of the edge index (in a manner sim ilar 
to the smoothing o f  the signal performed by the 
estimator proper) and hence the W G M  renders 
the edge detection machinery less susceptible to 
triggering by noise but at the expense o f  this 
spreading effect when there is  a genuine edge at 
low  SNR. That this should be the case is 
unsurprising when one considers that the uncer
tainty principle sets a  lim it on the performance o f 
such systems, but it  may be that a better (verti
ca l?) edge detector would improve the appear
ance of the results at low SNR.

A t  higher SN R  (such as figures 5 /  6 ) the system 
is  capable o f resolv ing  the genuine edges w ith  lit
tle  difficulty and the output is appropriately 
smoothed in the smooth regions o f  the original 
without blurring the edges.



4. C O N C L U S IO N S

A  new image model, based on the quad-tree data 
structure, has been presented. The model gives 
rise to  a minimum mean square error (optimal) 
estimator which was shown to be considerably 
faster (by one or two orders o f magnitude) than a 
conventional spatial filter in  terms o f the number 
o f multip lications required per image pixel.

A  m odification designed to overcome the aliasing 
(b lock) distortion problem was presented. The 
insertion o f  additional nodes effectively creates a 
second alias which substantially cancels the o r ig i
nal w ithout the need fo r filtering prio r to subsam
pling. The number o f  additional nodes required 
amounts to on ly  some 25 percent o f  the original 
number, and the vertical nature o f the algorithm 
remains largely intact.

The estimator was m odified to incorporate an 
edge detection system, the image being smoothed 
less b y  the estimator in regions o f  edge activity. 
T h is  measure takes account o f  the behavior o f the 
v isua l system, which is  usually the final arbiter o f  
image "quality".

The overa ll system was shown to be effective in 
restoring imagery corrupted by additive white 
noise, achieving a  respectable improvement in 
signa l to noise ratio.

Currently the algorithm is  isotropic, and there 
m ight be some utility  in  the development o f  a 
tree-based anisotropic estimator since the mask
ing effect is  anisotropic[2] in that it  is  affected by 
the orientation o f  the nearby edge. The edge 
detection scheme is  ripe for improvement, partic
u la rly  in its handling o f  input w ith poor signal to 
noise ratio.

A  fast prcdictor/estimator is  o f  potential u tility  in 
the cod ing o f  images; in such a system the coder 
m ight quantise and encode the difference f |  -  s, 
instead o f the difference i/_ | -  r, which would 
norm ally be used in  a quad-tree coder!7).

The addition o f  the intermediate nodes offers the 
po ss ib ility  o f developing a modified model which 
incorporates them. However,the structure is non- 
recursive and this greatly complicates its analysis.

It is questionab le  whether the improvement in 
perform ance would be s ign ificant

Further w o rk  m ight examine the application o f 
this type o f  processor to more general pyramidal 
image m o d e ls  and data structures. The type o f 
structure u sed  in [6] (in w h ich  a node has four 
upward l in k s  and sixteen downward) could possi
b ly  serve as the basis for a  (nearly) recursive 
model w h ic h  could be free from  the b locking 
effects o f  th e  "single-parent" quad-tree.
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