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A bstract

Digital images are of great importance nowadays to life and technology. A good 
model to represent digital images is essential to digital image processing and 
other image-related applications. Many image models have been proposed from 
researching the underlying statistical and spatial features of digital image arrays. 
However most results are either complex or not adequate.

We propose a pixel level data-dependent triangulation image model, for a broad 
range of applications, using a triangulation mesh to represent images. The trian­
gles are chosen so that image edges align with edges of the triangles; in particular 
the hypotenuse is selected to follow oblique edges. The strength of this model 
is that it represents the orientations of edges therefore keeps the most visually 
important feature of images. It is a generic model and is applicable to all types 
of images. It is very simple and efficient.

This has led to several important applications such as arbitrary resolution en­
hancement, arbitrary rotation, demosaicing of digital colour images and other 
applications of still images in continuous space. Moreover, the simplicity and 
efficiency of this model make it applicable in hardware which means real-time 
high quality image reconstruction and manipulations can be achieved.
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Chapter 1

Introduction

Images are produced by a variety of physical devices, including still and video 
cameras, x-ray devices, electron microscopes and radar, and used for a variety of 
purposes, including scientific research entertainment, medical, business, industry, 
military, civil and security. The goal in each application is for an observer, human 
or machine, to extract useful information about the scene being imaged.

There are two principle types of images: continuous and discrete. A scene in the 
natural world is continuous. Image acquisition devices use a sampling process to 
digitise the image and thus convert the continuous image into a discrete digital 
form. This can be stored in a computer or on some form of storage media. The 
term “digital image” is commonly used for this data. It has intensity values only 
at a set of discrete points with intensities drawn from a set of discrete values. 
The discrete locations are often called “pixels” and the intensity of each location 
are often called “pixel value” .

There is almost no area of technical endeavour that is not affected in some way by 
digital images. Their various applications raise the need to better represent, store, 
analyse and manipulate vast amounts of visual data. Most digital computers, as 
their names suggest, can only deal with discrete images. W hat we perceive in 
the real word are continuous images, which are always one step away from the 
data on which the computer operates. If we want a discrete image to be seen by 
human, we must display it continuously. This leads to a fundamental problem: 
reconstructing continuous images from discrete ones. In particular, how to return
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Sampling process

Reconstruction

Other Processes (e.g. filtering, warping)

Continuous Image Discrete Representation

Other Discrete Representation

Figure 1.1: Digital image processing

from the discrete sampling data to a continuous space, thus escaping from the 
limitations of pixels and the usual discrete sampling.

We illustrate this process in Figure 1.1. Digital images have been taken from 
continuous images by the sampling process. Given the representation, we are 
able to perform other processes on it: e.g. filtering, warping and segmentation. 
Finally we can reconstruct continuous images from the discrete representation.

Developing an adequate tool to represent digital images therefore plays a critical 
role in image processing and other image-related applications. The representa­
tion of digital images clearly affects other image processing applications and the 
reconstruction of continuous images.

However this remains a challenging problem in image processing research. An 
image is not a direct measurement of the properties of physical objects being 
imaged. It is rather a complex interaction among several physical processes: 
the intensity and distribution of illumination, the physics of the interaction of 
illumination with the m atter comprising the scene, the geometry of projection of 
the reflected or transm itted illumination and the electronic characteristics of the 
sensor. Moreover, intensities are recorded to finite precision which always leads to 
errors in the reconstructed continuous intensity. Representation of digital images 
should also help in reducing the reconstruction errors.

A lot of researchers have studied the field of finding a suitable image model which 
provides an abstraction of large amounts of image data and provides an analytical
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representation for explaining the image’s intensity distribution.

The simplest and most popular image model can be represented as a two-dimensional 
light-intensity function, denoted by f ( x , y ), where the value or amplitude of /  
at spatial coordinates (x , y) gives the intensity of the image at that point. This 
model is simple; however it ignores almost all the interactions among physical 
processes and the geometry features of the images.

Spatial features, especially edges, are particular important in image processing. 
Edges contain very important information about the image. When we perceive 
an object in our environment, the edges of an object play an important role in 
stimulating our vision system and conveying visual information to our mind. It is 
edges that help us recognise objects and reveal their structure. Preserving edges 
is important in almost all image processing tasks but it is difficult to find a good 
model that preserves the characteristics of edges effectively and efficiently.

Among the characteristics of edges, edge orientation is the most important one. 
However, edge orientation is an underlying parameter embedded in the 2D digital 
image data array. It is not straightforward to reveal edge orientations by dealing 
with image data directly. Moreover, edges have other two important spatial 
features: the intensities across the edge vary significantly but they are almost 
the same along the edge. These features makes edge play a significant role in 
digital image representations.

It is well known that humans are better at judgement and machines are better 
at measurement. Although it is easy for humans to distinguish the edges, edge 
detection remains a difficult problem for image processing. Edge detection has 
been an active research area in the past decades, however most existing algorithm 
either do not detect edges effectively or employ very complex models to describe 
edges. Moreover, the aim is not simply the detection of edges in the image, 
but the representation of the intensity distribution and the preservation of the 
underlying edge features.

We propose an image model using a data dependent triangulation (DDT) [27]: 
the triangulation mesh is dependent on both the geometry and the intensity 
distribution of the image data. The drawback of normal DDT schemes is that 
they are too complex and one can always find another triangulation of the same

3
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Figure 1.2: A sample image mesh DDT. Left: a flower image. Middle: a magnified 
view of the bottom stamen. Right: the pixel level data-dependent triangulation 
of the stamen

image and claim this triangulation is better. Another shortcoming of the normal 
DDT is that it cannot handle very small features of the image because it cannot 
triangulate at that level.

We suppose there is an edge passing through every square of four pixels in the 
image. Then we triangulate the four-pixel square and represent the edge by the 
diagonal of this square. A triangulation mesh is built by triangulating every four- 
pixel square in the image and the edges of the triangles are chosen to correspond 
to the edges in the image (Figure 1.2). We call this a pixel level deta-dependent 
triangulation.

This model allows us to perform other applications on this representation and 
to recover continuous intensities from discrete image data samples. Various ap­
plications can use this representation: such as arbitrary resolution enhancement, 
arbitrary rotation and other applications of still images in continuous space. We 
have studied its application in these image processing tasks and developed several 
novel algorithms for them.

1.1 C on tr ib u tion s

This thesis gives a solution to the image modelling problem. We provide a data 
dependent triangulation mesh to represent images. Unlike former approaches,
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we do not assume knowledge of the low-pass filtering kernel, or attem pt to find 
a statistical rule about the local geometry, or explicitly extract edge-orientation 
information: we model the image as a triangulation mesh with the edges of 
triangles corresponding to the edges of the images. It is a universal model for all 
images and provides universal solutions to many image processing problems. It 
is very simple to implement and efficient as well.

We have employed the model in several image related applications, i.e. image 
interpolation and demosaicing of colour images. Our model is very simple which 
makes it easy to adapt to various applications.

In particular, this model provides an image interpolation scheme which provides 
higher visual quality than traditional interpolation schemes. A statistical assess­
ment also shows that this approach produces good overall image quality. The 
complexity of the new method is similar to bilinear interpolation and better than 
most existing methods. A hardware implementation shows that high-quality im­
age interpolation can be done in real-time. The model is also extended and ap­
plied to the image demosaicing problem. By avoiding interpolation across edges, 
the new algorithm successfully solves the problem of colour artifacts around the 
edges. It provides a reasonable solution to the colour image demosaicing problem 
because it produces good reconstruction efficiently.

This thesis also studies the texture synthesis problem. We present a detailed 
survey of texture synthesis and introduce a new texture synthesis method us­
ing particle swarm optimisation for patch-based texture synthesis. We extend 
this method to texture transfer, constrained multi-sample texture synthesis and 
perspective texture synthesis.

1.2 O rganisation

The rest of this thesis is organised as follows:

•  C h a p te r  2: B ackground  We will briefly review the history and the scien­
tific background of image modelling problem. We also study the background
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of other applications we will cover in this thesis, e.g. image interpolation, 
demosaicing of colour images and texture synthesis.

•  C h a p te r  3: Im age M odelling  We start by describing the traditional and 
recent image modelling algorithms, especially those edge-directed schemes 
and the triangulation approaches. We introduce the motivation behind 
our work and importance of edges in image modelling. Then we introduce 
triangulation and present a novel pixel level data dependent triangulation 
approach for image modelling.

Image modelling is concerned with developing an empirical model to rep­
resent the global features from the discrete sampling tha t has produced 
the image. In this thesis, the edge behaviour is a focus and so we use a 
data-dependent triangulation that aligns well with edges to represent digi­
tal images. Other applications of digital images can be developed from this 
model.

•  C h a p te r  4: Im age In te rp o la tio n  We then present how our image model 
can be applied to image interpolation and how the results are improved 
by interpolation along the edge orientation. We will study one important 
and difficult application: the magnification of still images and some other 
applications such as rotation, the perspective transform and a non-uniform 
example, the lens effect. We assess our experimental results and simulate 
the potential of our algorithm to be used in hardware.

Image interpolation is a particular instance of modelling where we create an 
empirical model that reconstructs the image values at any arbitrary position 
in a continuous space. Interpolation is performed according to the image 
model which represents the features of the underlying image, especially the 
edges. Image interpolation focuses on reconstructing continuous images 
from the digital samples while image modelling focuses on representing the 
features of the digital images.

•  C h a p te r  5: D em osaicing  of C olour Im ages In this chapter we will 
adapt our model and use it in the demosaicing of colour images generated by 
current single-chip digital cameras. We will demonstrate that our model is 
effective compared to traditional methods, when applied to the commonly- 
used Bayer Colour Filter Array pattern. We demonstrate that the proposed 
method gives superior reconstruction quality, with smaller visual defects 
than other methods.
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Demosaicing is a particular application of interpolation where interpolation 
is performed on the demosaiced discrete data samples.

•  C h a p te r  6: T ex tu re  S yn thesis  We first give a survey of traditional and 
contemporary texture synthesis methods. We will introduce a texture syn­
thesis method based on patch-based sampling texture synthesis method. 
It uses Particle Swarm Optimisation for searching process thus accelerate 
synthesis while keeps high quality. It is simple and easy to implement com­
pared to other acceleration schemes. Then we extended the basic method 
to texture transfer and constrained texture synthesis. It is effective for 
these applications. Then we extend the method to synthesising perspective 
textures from an input sample image. The method synthesises the texture 
directly on the surface, rather than synthesising a texture image and then 
mapping it to the surface.

• C h a p te r  7: C onclusions and  F u tu re  W ork We finally make our con­
cluding remarks and provide an overview of future research orientation.
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Chapter 2

Background

In this chapter we give the background to the image modelling problem. We also 
study the some other image models and briefly introduce our image model and 
solutions.

2.1 Im age M odelling

Image modelling refers to the analytical representation of discrete image data 
and provides an explanation of the image’s intensity distribution. Clearly an 
effective image model is important for applications based on this model. However, 
although digital image processing has been an active research field for over thirty 
years, image modelling is still very much an unsolved problem, in particular, 
effective and efficient modelling preserving the edge features of the image. Some 
solutions have been shown, however they are either very complex or are not 
effective for all images.

Previous image models can be classified into four categories.

• The probabilistic models treat the image as a statistical representation of 
numerical data taken from the image source according to various statisti­
cal distributions. One popular tool is the Discrete Markov Random Field



(MRF)[97] which models contextual information of digital images and spec­
ifies local characteristics of an image by conditional probability models. 
Several improvements based on MRF such as the doubly stochastic process 
[99] and the dual lattice process [31] have been proposed, aiming at better 
capture of the global statistics and nonstationarities of the image source.

• The deterministic models treat a digital image as a two-dimensional data 
matrix of discrete samples and seek global geometry features of the image. 
Deterministic 2D sinusoidal models [50], polynomial models [15] and the 
recently-proposed computed AM-FM models [35] all try to catch the global 
features of images. These models are appropriate for a specific subset of im­
ages (e.g. highly structured images) but not for images containing complex 
structures (e.g. textures with lots of edges). The alternative local models 
can be thought of as a 3D extension of time-series models for images (e.g. 
3D Casual [55], NSHP [98]). Another example is the PDE-based model [64] 
which is used in nonlinear diffusion and also finds promising applications 
in image enhancement and restoration [7, 52].

•  The wavelet-based models have an energy compaction property, in both 
the space and frequency domain. They facilitate the task of statistical 
modelling of the image source. Current wavelet based models including a 
classification strategy [51, 105, 39] to distinguish coefficients around edges 
from those in smooth regions. A nonlinear approximation [4] is superior 
to linear approximation. The statistical inference approach [48] determines 
the image’s characteristics and estimates edge orientation by a Least-Square 
estimation strategy.

•  The triangulation models [25, 106] model the image as a data independent 
triangulation or a data dependent triangulation (DDT) to represent the 
image source. The data independent triangulation depends only on the 
distribution of the data points while the latter depends on the data values 
as well.

We introduced our new image model - the image mesh DDT. We represent the 
image as a data dependent triangulation mesh with the diagonals of the mesh 
corresponding to the edges in the image. In particular, we divide each four pixel 
square into two triangles by the diagonal: the diagonal either goes to the NE-SW 
or NW-SE direction. The direction of the diagonal is chosen to correspond to the
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edge in the image. We also extend our model by considering the local intensity 
instead of only each four-pixel square. Our triangulation mesh is very simple and 
completely regular. We avoid the complexity of a full DDT method while keeping 
the advantage of DDT that improves the reconstruction quality.

2.2 Im age Interpolation

Image interpolation is a link between the discrete world and the continuous one 
by recovering the continuous intensity surface from discrete image data samples. 
It is a well-studied area in computer graphics and image processing but it remains 
a challenging problem.

Previous image interpolation methods can be classified into three categories:

•  The classic methods including nearest-neighbour, linear interpolation (bi­
linear in 2D or trilinear in 3D) [81], bicubic [59] and cubic B-spline [84]. 
These methods are widely used in computer software. Typically they are 
implemented through convolution of the image samples with a single kernel. 
They suffer from edge blurring or artifacts along the edges.

•  The advanced methods have been proposed to improve the interpolation 
quality. There are many directions of these approaches. PDE-based ap­
proaches [9, 57] apply a nonlinear diffusion process controlled by the local 
gradient. POCS (Projection-Onto-Convex-Set) schemes[70] formulate the 
interpolation as an ill-posed inverse problem and solve it by regularised 
iterative projection. Orthogonal transform methods focus on the use of 
the discrete cosine transform (DCT) [56, 77], Directional methods [12, 37] 
examine an image’s local structure around edge areas to direct the interpo­
lation. Variational methods formulate the interpolation as the constrained 
minimisation of a functional [41, 75]. Adaptive interpolations [5, 45,19] spa­
tially adapt the interpolation to better match the local structure around 
edge area.

•  The recently developed edge-directed methods improve interpolated image 
quality by taking edge information into account [48, 6, 11, 57, 58]. The 
edge directed interpolation (EDI) [6] generates a high resolution edge map
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and uses it to direct high-resolution interpolation. The New Edge Directed 
Interpolation (NEDI) attempted to estimate local covariance characteristics 
at low resolution and used them to direct interpolation at high resolution. 
Battiato et al. [11] proposed a method taking into account information 
about discontinuities or sharp luminance variations while doing the in­
terpolation. Morse et al. [57, 58] presented a scheme that uses existing 
interpolation techniques as an initial approximation and then iteratively 
reconstructs the isophotes using constrained smoothing.

We have used our model for the image interpolation problem. In particular, 
we are interested in still image magnification. We used our model to generate 
a triangulation mesh to represent this image. Then higher resolution images 
are interpolated from this mesh. In particular, a higher resolution pixel will 
be interpolated from a triangle rather than from a four pixel square (as bilinear 
interpolation does) or from an even bigger window as (bicubic interpolation does). 
Because the triangulation mesh is generated corresponding to the edges of the 
image, the interpolator will always interpolate along the edge but not across it. 
The new method will keep the edge sharp while retaining the smoothness along 
the edge. We will compare our results with traditional methods and assess them 
both visually and statistically. Our algorithm provides good image quality with 
almost the same computational efficiency as bilinear interpolation.

2.3 Colour Im age D em osaicing

One very important industry problem is the reconstruction of a full-resolution 
colour image from the mosaiced sample taken by current single-chip colour digital 
cameras. The digital cameras acquire images through a colour filter array which 
leads to mosaiced images: only one primary colour (R, G or B) in one pixel. The 
so-called “demosaicing” process is thus needed to interpolate full colour images.

Previous demosaicing approaches can be classified into two categories:

• The colour correlation methods address the problem introduced by tradi­
tional methods such as bilinear interpolation. This induces relatively large
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errors in the edge regions and the eye is especially sensitive to edge quality 
[73]. Various methods [43, 2, 61] use colour correlation instead of original 
colour space. They produce better results because there is a high correla­
tion between the red, green and blue channels. However, they ignore the 
edge orientation in the images.

• The edge-directed approaches attem pt to maintain edge details or limit 
hue transitions. Adams’ edge oriented method [1] interpolates the missing 
colour elements according to the edge orientation of the image but it only 
detects the vertical and horizontal edges. Ramanath [68] used an adaptive 
interpolation, achieving edge orientation adaptation. Cok [20] proposed a 
method using a constant hue-based interpolation to make sure there are 
no sudden jumps in hue, especially over edges. The median-based interpo­
lation [29] proposed by Freeman first does a linear interpolation and then 
applies a median filter of the colour differences (red-minus-green and blue- 
minus-green channels). Laroche and Prescott [44] proposed a method called 
gradient based interpolation and it is used in the Kodak DCS 200 digital 
camera system. Hamilton and Adams [32] used an adaptive colour plane in­
terpolation which is a modification of the method by Laroche and Prescott 
[44]. However, all these methods are complicated and computationally slow.

We adjusted our model and applied it to the demosaicing problem. Moreover, 
we used colour-difference space [61] instead of original space as the former better 
explains the correlation between different colour channels. We demonstrated 
that our model is effective compared to traditional methods, when applied to the 
commonly-used Bayer Colour Filter Array pattern [1]. Our experimental results 
show that the proposed method gives superior reconstruction quality, with smaller 
visual defects than other methods. Furthermore, the complexity and efficiency 
of the proposed method is very close to simple bilinear interpolation, making it 
easy to implement and fast to run.

2.4 T exture Synthesis

Texture is a particular problem. Texture has an excessive number of edges which 
makes it difficult for normal triangulation approaches. Texture also has some
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particular applications other than magnification and rotation. Normally in com­
puter graphics and image processing, texture is mapped on the object surface to 
make it more realistic. These features make texture a special situation. An alter­
native way to represent textures in continuous space is to synthesise a matching 
texture, using relatively few parameters without much expense of computation 
time. The synthesised texture should have the same spatial feature as the sample 
texture. It is thus possible to use the synthesised texture, with arbitrary size and 
orientation, to map the object surface.

Previous texture synthesis methods can be classified into several categories:

•  The procedural texture synthesis is the use of a function or set of functions 
applied to a set of points in order to generate a texture [110]. Solid tex­
ture [90, 60, 47] textures the surface by ‘placing’ the object in the field, 
and obtaining a texture from the intersection of the surface of the object 
and the field. Hypertexture [63] used a density function that describes 
how the object should behave in the area where it transitions between the 
outside and inside of the object. Cellular Texture [100] used a new basis 
function to produce textured surfaces resembling flagstone-like tiled areas. 
The Reaction-Diffusion [82] approach is based on a process in which two or 
more chemicals diffuse over a surface and react with one another to produce 
stable patterns.

•  The Feature Matching texture synthesis uses models such as pyramids and 
wavelets to catch the features of the texture and then generates a new image 
by matching the model. Examples are the steerable pyramid introduced by 
Heeger and Bergen [36] and the multi-resolution filter-based approach by 
De Bonet [16]. They use the pyramid to analysis input texture and to 
catch spatial features of textures. Wavelet approaches [65] are used to 
model textures by decomposing the texture image to complex wavelets and 
synthesising new textures by matching the joint statistics of these wavelets.

•  The Markov Random Field (MRF) approaches assume that a texture is 
“local” and “stationary” . They estimate the local conditional probabil­
ity density function (PDF) and synthesise pixels incrementally. The non- 
parametric sampling scheme by Efros [26] models each pixel of the image 
as a square window around that pixel and then synthesises the next pixel
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by searching for the best-fit (least error) pixel through matching the neigh­
bouring window. Wei and Levoy [93] improved Efros’s method by using 
a multiresolution image pyramid. These methods synthesised one pixel at 
a time. Xu et al. [102] proposed a texture synthesis algorithm based on 
random patch pasting. This idea is developed and modified by other re­
searchers, for example, the patch-based sampling method [49] and the image 
quilting approach [27]. They synthesise new texture one patch at a time 
thus are much faster.

•  The surface texture synthesis directly synthesises textures on 3D surfaces. 
Wei [94] presented a method to synthesise general textures over arbitrary 
manifold surfaces by generalising the definition of searching neighbour­
hoods. Turk [83] developed an algorithm by sorting a hierarchy of points 
from low to high density over a given surface and searching for the best-fit 
pixel from the set.

Liang et al. [49] produced a real-time synthesis process by patch-based sampling. 
It searches all patches from the sample texture and picks a best match patch to 
generate new texture. It avoids mismatching features across patch boundaries by 
sampling texture patches according to the local conditional MRF density. Liang’s 
method can re-synthesise high-quality texture images in real-time. It remains ef­
fective when pixel-based sampling algorithms fail to produce good results. It uses 
feathering blending in the boundary zones, thus providing a smooth transition 
between adjacent texture patches.

Yan Zhang proposed a texture synthesis method [108] based on patch-based sam­
pling method. It uses Particle Swarm Optimisation for searching the best match 
patches; this accelerates the synthesis process and keeps the synthesis quality. 
The PSO algorithm either gives a best match or an approximate best match 
which is good for texture synthesis because texture synthesis needs some ran­
domness and the synthesised texture should ‘look like’ the original one. Zhang’s 
method is simple, easy to implement and more efficient compared to the tech­
niques used in Liang’s method.

Xiaogang Xu [103] did some research on texture transfer based on Ashikhmin’s 
method [8]. However his method is synthesising textures one pixel at a time thus 
very computationally expensive. We extend the PSO based method to texture
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transfer and visual inspection shows that our method produces better results and 
is much more efficient.

Constrained texture synthesis is also studied by other researchers [8]. However 
most of them only take one sample texture and synthesise textures on constrained 
areas from that sample texture. We have extended PSO based texture synthesis to 
multi-sample constrained texture synthesis. We take several sample textures and 
one picture as input and then synthesise textures from different sample textures 
into different areas of the picture.

Most previous methods synthesise textures on 2D plane or 3D surfaces. Consider 
there is a 2D plane in perspective view (a 2D surface viewed in 3D), synthesis 
methods on 2D plane cannot synthesise textures on this surface. Those methods 
[94, 83, 104] which synthesise texture on 3D surfaces are too complex for this 
situation because they involve 3D mesh generation and calculation. We present 
a new method which is derived from the PSO texture synthesis. We adjusted his 
method to be used in perspective projection. This application leads to some new 
problems such as aliasing, which we also address. It produces textures with sim­
ilar quality and speed to the 2D counterpart (Efros’s image quilting algorithm). 
The algorithm is effective and efficient, producing high quality synthesised images 
very rapidly.
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Chapter 3

Image M odelling

3.1 In troduction

Digital images now routinely convey information in most branches of science and 
technology. There is almost no area of technical endeavour that is not impacted 
in some way by digital images. A digital image is composed of a finite number of 
elements, each of which has a particular location and value. The most obvious 
feature of digital images, considered as numerical data, is their very large size. 
A natural image with normal resolution and size consists of millions of pixels 
and each pixel takes one of hundreds of different values. Another key feature 
of image data is its spatial structure. The interplay between stochastic digital 
data and spatial variations is one of the most interesting aspects of digital image 
processing. To construct a model of digital images to represent the features from 
such a huge database can be a considerable challenge.

Image modelling, as defined in this thesis, is a general phrase which can be applied 
to all of the following aspects:

• It provides an abstraction of large amounts of data contained in images.

• It refers to analytical representation for explaining the image’s intensity 
distribution.
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• It facilitates the development of systematic algorithms to accomplish spe­
cific tasks.

However, the representation of an image is very much an unsolved problem in 
image processing. Finding a model that is able to accurately characterise and 
represent images is very difficult because of the huge number of images and their 
countless spatial structures. Over the past two decades, a lot of research has 
been done within this field and image models have gone through several phases 
of improvements.

Traditional image modelling techniques can be put into two categories: proba­
bilistic models and deterministic models.

The probabilistic approaches treat the image as a statistical representation of 
numerical data taken from the image source. Probabilistic image models suppose 
the image is spatially stationary, which makes implementation simple: effectively 
the same statistical rules and computations are performed repeatedly at different 
locations in the image [48]. The multivariate Gaussian model is one of the earliest 
approaches to represent the global statistics of an image source. Another popular 
tool is the Discrete Markov Random Field (MRF) [97]. It models contextual 
information of digital images and specifies local characteristics of an image by 
conditional probability models. Several improvements based on MRF such as 
the doubly stochastic process [99] and the dual lattice process [31] have been 
proposed, aiming at better capture of the global statistics and nonstationarities 
of the image source. MRF theory has been applied to many applications in image 
segmentation [24] and restoration [99].

The deterministic methods treat an image as a two-dimensional data matrix of 
discrete samples taken from a two-dimensional continuous space. Instead of trying 
to find the statistical rules from the image source, deterministic methods seek the 
global geometry features of the image. Deterministic 2D sinusoidal models [50], 
polynomial models [15] and the recently-proposed computed AM-FM models [35] 
all try to catch the global features of images. These models are appropriate for 
a specific subset of images (e.g. highly structured images) but not for images 
containing complex structures (e.g. textures with lots of edges). The alternative 
local models can be thought of as a 3D extension of time-series models for images 
(e.g. 3D Casual [55], NSHP [98]). Another example is the PDE-based model
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[64] which is used in nonlinear diffusion and also finds promising applications in 
image enhancement and restoration [7, 52].

Recent development of image modelling is mainly due to the discovery of bases 
suitable to represent the characteristics of images. One class of models known as 
fractals [10] is good for describing natural scenes with a large amount of self­
similarity. Fractal models have found many successful applications in image 
synthesis, compression and analysis. Another popular class of models is the 
wavelet-based representation [53, 88] of images. These approaches model the 
image features by wavelet transforms in both the space and the frequency do­
main. Current statistical modelling techniques in the wavelet domain mostly use 
a classification strategy [51, 105, 39] to distinguish coefficients around edges from 
those in smooth regions. Deterministic models in the wavelet domain mainly 
focus on using functions in Besov space to describe the behaviour of wavelet co­
efficients. Nonlinear approximation [4, 21] has also been found to be superior to 
linear approximation. The statistical inference approach [48] determines the im­
age’s characteristics and estimate edge orientation by a Least-Square estimation 
strategy. Another important class of models uses a triangulation mesh. Given a 
set of data points and corresponding data values, the data independent triangu­
lation methods [13, 78] build a triangulation mesh to represent the image source 
depending only on the distribution of the data points. In the data dependent 
triangulation approaches [25, 106], the triangulating of the image depends on the 
data values as well.

A lot of effort has been put into the area of image modelling but it remains a dif­
ficult and unsolved problem. Effective and efficient image models should capture 
fundamental features of digital images and should be fairly easy to implement 
compared to the traditional and widely used bilinear interpolation. In particular, 
they should cope with edges of images well because, as we will explain later in 
this section, edges are fundamental features in the image source and contain lots 
of information. Although several approaches based on geometric or statistical 
analysis have been proposed, these edge models are either very complex or can 
only handle vertical or horizontal edges. In this chapter, we will present a novel 
approach to representing images which achieves edge orientation adaptation by 
modelling the image as a data dependent triangulation.
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3.2 P ix e l Level D ata -D ep en d en t T riangulation

3.2 .1  In trod u ction

The need for triangulation arises in a wide variety of applications ranging from 
physics to meteorology, from mathematics to computer graphics. It is used in 
robotics to plan the motion of a robot. Triangulation is also used in computer 
vision to present stereo data. It is useful in rendering images because current 
graphics cards use triangles as primitives and can draw triangles rather efficiently. 
It is widely used to model surface geometry. Significant theoretical advances in 
using triangulations for geometric modelling have been made. It is a well-studied 
problem in computer graphics [89].

Before we move on, we define some notation.

P  represents a set of data points in the xy  plane, V  represents a set of data 
values in which each element is the data value of a point in set P. T means a 
triangulation which is a set of triangles with each of them consisting of three 
points from P.

The triangulation shall satisfy the following conditions:

• P  is the set of all vertexes of triangles in T. That means every triangle 
vertex is an element of P  and vice versa.

•  Every edge of a triangle in T  contains only two points from P

•  The union of all triangles in T  is the convex hull of P.

•  The intersection of any two different triangles in T  is either empty, or is a 
shared edge or vertex.

Triangulation can be classified into two categories: data independent triangula­
tion and data dependent triangulation according to whether or not its topology 
is determined by V.
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Figure 3.1: A Delaunay triangulation

The most popular data independent triangulation method, a method which only 
considers the data points’ domain positions P, is the Delaunay Triangulation 
[72, 74]. A Delaunay triangulation T  is such that for each triangle t , there is no 
vertex of T  in the interior of t's circumcircle (Figure 3.1). An optimal Delaunay 
triangulation means the triangles have good aspect ratios and the triangles should 
be as equiangular as possible, hence avoiding ‘sliver’ (very thin) triangles. Sliver 
triangles are undesirable for many applications such as Finite Element Modelling 
and graphical rendering since their shape can cause numerical inaccuracies in 
FEM calculations and visual discontinuities in smoothly shaded surfaces. In 
many applications, the Delaunay triangulation is useful. However, Delaunay 
triangulations do not necessarily produce the triangulation which is the best 
approximation to a given surface, for two reasons:

1. sliver triangles are necessary to give a good approximation to some surfaces 
(Figure 3.2) [72];

2. the swapping of edges which the Delaunay criterion invokes can cause arti­
ficial break lines where none exist in the original terrain (Figure 3.3) [74].

As its name suggests, data dependent triangulation also depends on the under­
lying data set V  as well as the positions P. Data dependent triangulation will 
provide a better approximation to the underlying surface V  [25, 106]. Data de­
pendent triangulations sometimes produce sliver triangles, with their long side 
in the direction of small curvature. Although regarded as ‘bad’ for interpolation, 
sliver triangles are good for approximating a preferred direction, as we have seen 
in Figure 3.2. Many data dependent triangulation approaches have been shown
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Figure 3.2: Silver triangles are required to represent this surface

Figure 3.3: An edge swap in a quadrilateral. The representation of the geometry 
will be affected by such an edge swap

in the last two decades [71, 17, 76, 67] in a variety of applications. It is intuitively 
clear, and supported by their work that the interpolation over such a data depen­
dent triangulation will provide a better approximation to the underlying surface 
V. Thus, the problem of adapting the shapes of the triangles to the behaviour of 
the underlying data set is important and proved difficult. Those triangulation ap­
proaches normally use optimisation procedures (e.g. Lawson’s local optimisation 
[25]) in order to produce a better approximation of the function V. A good data 
dependent triangulation of a given function V  over a given set P  will optimise 
some quality, which can be referred to as “smoothness” . The smoothest trian­
gulation will usually differ for two different underlying functions over the same 
set of points P  while the data independent triangulation will always produce the 
same triangulation over the same set P. Different optimal algorithms have also 
been proposed in order to yield a better (smoother) triangulation mesh [25, 106]. 
However they are all complex and no perfect optimal algorithm has been found 
for all functions.

For an image, if we let P  correspond to the set of pixels and V(x,y)  be the
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Figure 3.4: An edge image

intensity of the pixel ( r r ,y ) ,  we can then model the image as a triangulation 
mesh. It is easy to conclude that data dependent triangulation is desired because 
data dependent triangulation is a better representation of given function (image 
intensity) over a given set (image pixels). It can be seen that the data dependent 
triangulation will better represent the intensity distribution of the image. This 
gives us a hint that data dependent triangulation might be a good solution for 
the image modelling as it represent the intensity distributions well. In particular, 
the edges of the images can be well preserves by the data-dependent triangulation 
as we can swap the triangles according the edges to force the triangles align well 
with edges.

In the following section, we will study the geometry of the edges and present how 
to model edges by a data-dependent triangulation mesh.

3.2.2 Edge M odelling

In this section we look at the concept of digital edges and their geometry features 
a little closer. Intuitively, an edge is a set of connected pixels that lie on the 
boundary between two regions. An edge is a purely ‘local’ concept whereas a 
region boundary is a more global variant of the same idea. In a digital image, 
an edge manifests itself as a spatially coherent discontinuity in image intensity. 
A reasonable definition of “edge” requires the ability to measure grey-level tran­
sitions in a meaningful way. We start by modelling an edge intuitively. Figure 
3.4 shows an image contains an edge and the triangulation outcome is shown in 
Figure 3.5.

Although triangulation is popular in geometric modelling, it isn’t widely used in 
image processing, e.g. image reconstruction. Triangulation methods are com-
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Figure 3.5: Triangulation of the edge image in Figure 3.4

plex to implement compared to bilinear reconstruction which is also simpler to 
compute. (The bilinear reconstruction is a well-known approach that uses the 
intensity of the four nearest neighbours to predict the desired pixel. Different 
coordinates (weights) are given to each neighbour to interpolate the unknown 
pixel. It is quite straightforward and is widely used in image processing because 
of its simplicity.)

In the following section, we will present a pixel level data dependent triangulation 
which is as simple as bilinear interpolation while keeping the advantages of normal 
data dependent triangulation.

3 .2 .3  A  G eneric P rob lem

We address the problem of modelling an arbitrarily-oriented edge in a triangu­
lation mesh. Sampling gives information about the intensity distribution of the 
image. In image processing, when the sampling includes an edge, the triangu­
lation mesh should fully exploit the edge information provided by the samples. 
Intuitively, the edges of the triangulation mesh should correspond to the edges 
in the images.

We start with a generic problem of image reconstruction. Let’s look at Figure 
3.6. Assuming P  is the unknown pixel, our main problem is how to estimate P  
from its local neighbourhood pixels N. For example, in Figure 3.6, N  contains 
all available local neighbours of P  and we predict P  from N.

Traditional methods such as bilinear reconstruction or bicubic reconstruction take 
all the pixels of N  and predict the unknown pixel P  by weighting, a terminology
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Figure 3.6: A generic problem

used to indicate that pixels within the set N  are given different coefficients when 
calculating P , thus giving them different importance (weight). The weighting 
coefficients are chosen from a weighting function which is normally decided by 
the distance from P.

However, those methods simply ignore the edge information of N. If there is an 
edge across the neighbour set TV, as we see in Figure 3.6, the prediction of P  needs 
to be altered. We’ve already noted in the last section that the intensity field will 
have a significant change across the edge and will be almost homogeneous along 
the edge. That is to say, the P  will be more like the pixels on the same side 
of the edge and should be predicted from the pixels on the upper side of the 
edge. Any unknown pixel falling in one subset should be predicted only using 
that subset and avoiding the subset on the other side. The spatial features of 
the edges, sharpness across edges and smoothness along the edge, can be kept by 
doing this.

We can model this by triangulating N  such that the edge of the triangles corre­
sponds to the edge of N. So the prediction of P  will be done within the triangle 
in which it falls. This is just normal data dependent triangulation. However, it 
is very complex to triangulate the whole image and get an optimal triangulation 
mesh.

3.2.4 P ixel Level D ata  D ep en dent T riangulation

With these considerations in mind, we develop a new data-dependent triangula­
tion approach at pixel level. We only consider a four pixel square. Firstly, we 
suppose that there is an edge passing within a square of four pixels. If this edge
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b c

Figure 3.7: Triangulation in a four-pixel square

cuts off one corner, one pixel will have a value substantially different to (it could 
be bigger or smaller) the other three. Call this pixel the outlier. Imagine that 
we represent the intensity of the pixel as the height of a terrain. In effect, the 
three similar pixels define a plateau, relatively flat, while the outlier value is at 
the bottom of the cliff (if smaller) or the top of a peak (if higher) (Figure 3.7). 
This gives us a hint that if we want to predict a pixel within the relatively flat 
region we should not use the outlier. Classical interpolation methods like bilinear 
reconstruction suffer from edge blurring because they use all four pixels.

So we can use the diagonal of the square to correspond to the edge in the image. 
The diagonal should be the one which does not connect to the outlying pixel 
value, the one most different to the other three.

Obviously, using the diagonal to triangulate the four pixels cannot correspond to 
arbitrary angle edges. The diagonal can only roughly represent the orientation 
of the edge. We would have to use sub-pixel triangulation to represent arbitrary 
angles, but that adds more complexity to the algorithm. Our aim is to keep 
the algorithm as simple as possible. We will demonstrate in this thesis that 
triangulation by diagonal is enough in most situations and can provide excellent 
results. It is the direction-selection method that is key.

For a grey-scale image, we represent the brightness of the pixel as height. Suppose 
pixels a, b and c are the same height while d is higher than these three (Figure 
3.7). Obviously a, b and c define a flat region while d is the most different pixel 
to the other three. Thus we connect diagonal ac and get the triangles AB C  and 
ADC. In general, if b or d is the most different pixel, the edge should be ac, 
otherwise bd will be the edge.
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Figure 3.8: Top left: a part of a flower image. Top right: a magnified view of the 
bottom stamen. Bottom left: the pixel level data dependent triangulation of the 
stamen (NW-SE direction) Bottom right: NE-SW direction

There are other situations if a and d are very different to b and c; or a and b are 
very different to c and d. In these cases it makes little difference which diagonal 
is chosen. The edge is roughly either horizontal (ad are different to be) or vertical 
(ab are different to cd) and the triangle will always cross the edge. It is similar 
to bilinear interpolation in these cases.

Thus, we can match the edge by the diagonals. In Figure 3.7, when predicting the 
pixel falling in triangle ABC, we won’t use the value of d which is very different 
to this plateau. For two pixels falling in different triangles, the height of the 
pixels will be quite different and thus the sharpness of edge is kept. It is easy to 
see that in very smooth regions, the interpolating is able to keep its smoothness 
as well, even across triangle boundaries because the terrain is relatively flat and 
there is no strong edge in the local area.

Our method is thus to fit the finest triangular mesh to the source pixels. This 
mesh is completely regular except that the diagonals are locally selected to run



in the same general directions as any visible edge. It makes the model easy to 
implement and to use in other applications.

So any Pn within the square Nn will be predicted from the subset Mn, which 
consists of the three vertices of the triangle in which it falls. Figure 3.8 shows 
a magnified view of the stamen of a flower and its pixel level data dependent 
triangulation. (We only show the diagonals of the triangles for a clearer view.) 
We divide the triangulation into two meshes, each one only containing a specific 
direction. The stamen and a black edge near the stamen both roughly have NW- 
SE orientation. It is clear to see that the corresponding triangles also cluster in 
the NW-SE direction, which matches the edges of the image. In particular, note 
the absence of NE-SW diagonals near these linear features.

3.2 .5  O p tim isa tion

The algorithm should recognise either the highest or the lowest pixel as the most 
different one in order to find the outlier pixel. There is an efficient way to choose 
the direction of the edge. Instead of finding the outlier, we simply compare the 
difference \a — c\ with \b — d\ and connect the pair with smaller difference as 
the diagonal. The proof that this is equivalent to finding the outlier pixel is in 
Appendix A. This saves computing time, needing only two subtractions and a 
comparison instead of sorting four pixels and then comparing between the highest 
or the lowest pixel and the average value to determine the most different one.

3 .2 .6  E x ten d ed  M od el

Some problems still remain in our basic model. For example, close study of the 
triangulation of the stamen reveals a problem. The actual local edge, goes in the 
NW-SE direction while some diagonals in the lowest stamen areas give the NE- 
SW direction. This contradicts the local edges leading to some deterioration of 
edge quality. The reason that some diagonals contradict the local edge orientation 
is because our basic method only considers the four pixel square, ignores the local 
intensity and thus it is unable to catch the local geometry. To correct this problem 
we need to apply our extended model and consider information in the local area.
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Figure 3.9: 3 x 3 square neighbour window

We assume the image is locally stationary. That is to say the intensity of a 
pixel is dependent on its spatial neighbourhood while independent of the rest of 
the image. Instead of a normal least-square adaptive edge prediction scheme, 
we simply consider the neighbour window’s edge direction. To predict the edge 
direction in a four pixel square, we consider the eight squares around the target 
square (Figure 3.9) and adjust each square’s edge direction if needed. In partic­
ular, if the most of the eight surrounding squares are in one direction while the 
middle square is the other, we will adjust the middle square’s diagonal direction 
according to the majority of the eight surrounding squares.

Actually the extended model can be considered as a two-pass process. In the 
first pass, we apply the basic model: go through every four pixel square and 
calculate its direction. Then, in the second pass, we adjust the direction in 
a four pixel square by considering the surrounding eight squares. We use a 
threshold (which is set to 6 in all experiments in this thesis) to determine whether 
there is a strong edge orientation within a local area. If the total of the eight 
surrounding directions exceeds the threshold then most edges in these squares go 
in one direction. This means there is a strong edge orientation in this window. 
Then we adjust the edge in the central target square to that direction. If there is 
no strong local direction, then we accept the direction given by the four pixels.

Obviously our extended model increases complexity, but not much. It is a trade 
off of complexity and quality. It is worth noting that this additional complexity 
is only in preparing the mesh, not in using it to generate an image. We will show 
in this thesis that in most situations our basic model is effective.

Figure 3.10 is the comparison of our basic model and the extended model which 
considers the local intensity. We can make the observation that most triangles 
remain the same as in the basic model but the extended model is better able to 
catch the local geometry and match the orientation of the stamen and the black
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edge. Figure 3.10 is a triangulation of 625 triangles, our basic model generates 
418 diagonals in NW-SE direction and 207 diagonals in NE-SW direction while 
our extended model produces 438 and 187 respectively. They differ only on 20 
diagonals, mainly along the stamen and the black edge. The extended model 
better preserves the local geometry.

3 .2 .7  A lgorith m  C om p lex ity

We analyse the complexity of the basic model and the extended model in this 
section. Suppose the image I  has width and height m, so the number of pixels is 
n = m 2. The number of triangles in the triangulation is then (ra — l ) x ( m —l )x2.  
In our implementation, we use a table to record the orientation of the diagonal 
in each square. As there are only two directions of each diagonal so we can use 
one bit to store this information. Thus, the total memory requirement for the 
triangulation is (m — l ) 2 «  n bits. For a normal image with size 1024 x 1024 
the memory requirement is about 12Sk bytes. Compared to the standard 128M 
memory in current PCs, it is very small. Moreover, the memory requirement n 
is linear with image size n.

In our basic model, each triangle needs two subtractions and one comparison, so 
the total computation is (m -  1) x (m -  1) x 2 x 3 «  6n. Thus, the basic model 
has a time complexity of 0(n).

Our extended model is a two pass process. In the first pass, we calculate just 
like the basic model and set each triangle’s diagonal direction. In the second 
pass, each triangle needs a sum of eight surrounding squares and a comparison to 
decide if there is overriding edge orientation in local area. Thus, the computation 
for each triangle needs two extra computations, and the whole image needs lOn 
computations which is still linear to image size n. The time complexity of the 
extended model is also 0(n).

In conclusion, our model is efficient in both memory and time, and is suitable 
for handling large images with a linear dependency on the image size. We note 
a favourable feature: the mesh rendering routine is independent of the method 
used to determine the diagonals.
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Figure 3.10: Top: a magnified view of the stamen. 
Bottom: the extended model.

Middle: the basic model.
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3.3 C oncluding R em arks

Pessimistically speaking, image modelling is still very much an unsolved prob­
lem. In this thesis, we present a possible solution to this problem. We model 
the image trying to satisfy some deterministic spatial features related to edge 
orientation, where edges exist. As edges contain the visually important infor­
mation of an image, such an approach provides the opportunity of challenging 
many existing image processing algorithms and developing new algorithms with 
better performance. We will demonstrate in later chapters of this thesis that our 
data dependent triangulation model reaches many areas of image processing and 
produces superior applications in these areas.

The contribution of our algorithm is that it provides a universal model for all 
images and a universal solution to many image processing problems. It challenges 
many other algorithms and generates better results. Moreover, it is very simple 
which makes it easy to implement various applications and it is efficient and easy 
to use.

31



Chapter 4

Image Interpolation

In this chapter we will present how our image model can be applied to image 
interpolation and how the results are improved by interpolation along the edge 
orientation. We will study one important and difficult application: the magnifi­
cation of still images (including colour images) and some other applications such 
as rotation, the perspective transform and a non-uniform example, the lens effect.

4.1 In troduction

Digital image interpolation refers to the recovery of a continuous intensity surface 
from discrete image data samples. It is a link between the discrete world and the 
continuous one. There are three important hypotheses for interpolation [81]:

• The underlying data is continuously defined.

• Given data samples, it is possible to compute a data value of the underlying 
continuous function at any abscissa.

•  The evaluation of the underlying continuous function at the sampling points 
yields the same value as the data themselves.
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In general, almost every geometric transformation requires interpolation to be 
performed on an image, e.g. translating, rotating, scaling, warping or other ap­
plications. Such operations are basic to any commercial digital image processing 
software. Obviously, the quality of the interpolator determines the quality of the 
desired image.

There are several issues which affect the perceived quality of the interpolated im­
ages: sharpness of edges, freedom from artifacts, reconstruction of high frequency 
details. We also seek computational efficiency, both in time and in memory re­
quirements. Classical interpolation techniques, such as pixel replication, bilinear 
or bicubic interpolation have the problems of blurring edges or of artifacts around 
edges. Although these methods preserve the low frequency content of the sample 
image, they are not able to recover the high frequencies which provide a picture 
with visual sharpness.

Standard interpolation methods are often based on attempts to generate contin­
uous data from a set of discrete data samples through an interpolation function. 
These methods attem pt to improve the ultimate appearance of re-sampled images 
and minimise the visual defects arising from the inevitable resampling error.

It has been recognised that taking edge information into account will improve 
the interpolated image’s quality [48, 6, 11, 57, 58] and it is known that the 
human visual system makes significant use of edges [86]. Instead of approaching 
interpolation as simply fitting the interpolation function, these methods consider 
also the geometry of the image. Li [48] asserts that the quality of an interpolated 
image mainly depends on the sharpness across the edge and the smoothness along 
the edge.

Li et al. [48] attempted to estimate local covariance characteristics at low resolu­
tion and used them to direct interpolation at high resolution (NEDI - New Edge 
Directed Interpolation) while Allebach et al. [6] generated a high resolution edge 
map and used it to direct high-resolution interpolation (EDI - Edge Directed 
Interpolation). Battiato et al. [11] proposed a method by taking into account 
information about discontinuities or sharp luminance variations while doing the 
interpolation. Morse et al. [57, 58] presented a scheme that uses existing inter­
polation techniques as an initial approximation and then iteratively reconstructs 
the isophotes using constrained smoothing. They emphasise the importance of
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the “smoothness” quality, if the isophotes are not to be visually intrusive. As 
will shortly become clear, we too accept this need to fit the visual geometry.

The above schemes demonstrate improved visual quality (in terms of sharpening 
edges or suppressing artifacts) by using a model to preserve the edges of the 
image and to tune the interpolation to fit the source model. However they are 
complex compared to traditional methods and thus computationally expensive.

Another approach is triangulation modelling. Triangulation has been an active 
research topic during the past decade. It is popular in geometric modelling. How­
ever, image reconstruction using triangles isn’t widely used, probably because of 
the complexity of the triangulation method. Yu et al.[106] modelled images as 
data dependent triangulation meshes and reconstructed images from the trian­
gulation mesh. Their approach adapted traditional data-dependent triangulation 
with their new cost functions and optimisations. The data dependent triangula­
tion thus matches the edges in the image and improves the reconstructed image. 
However their methods are relatively complex.

We have discussed in the last chapter that our pixel level data dependent trian­
gulation model is able to preserve the edge orientation of the image. It is clear 
that this model can be applied to the image interpolation problem. Our scheme 
is thus an edge-directed interpolation but differs from those previously published 
[106, 6, 11, 57, 58]. We do not assume knowledge of the low-pass filtering kernel 
or attem pt to find a statistical rule about the local geometry. Our approach is 
related to that of Yu but is simpler and faster because it does not involve any 
cost function or repeating optimisation process. Our mesh is very simple and 
completely regular. We avoid the complexity of a full DDT method while keep­
ing the feature of DDT that improves the reconstruction quality. In the following 
sections, we will demonstrate our algorithm used in arbitrary magnification of 
still images and other applications.

4.2 P rincip le o f  th e  A lgorithm

An image can be represented as a pixel level data dependent triangulation mesh, 
with the edges of triangles correspond to edges in the image. Thus, given a
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sample image, we get a triangulation mesh M  produced by our image model.

An interpolation technique is then used to render the image from mesh M. The 
mesh M  is taken as input to the interpolation process and a pixel image I  will 
be output, where each pixel is sampled from the mesh. The image I  is thus the 
desired image reconstructed from the sample image.

The sample is calculated by triangle interpolation (we will discuss this shortly) 
of the three values from the mesh triangle surrounding the sample point. We can 
choose our output grid of pixels to be any resolution and any orientation. This 
allows arbitrary magnification, rotation or other applications. We can also vary 
the sample spacing, to produce other effects, such as warping.

This process is quite straightforward. It takes the triangulation mesh from our 
model as input and applies simple triangle interpolation to get the interpolated 
image. The complexity of the algorithm is thus very low: it depends on the 
triangle interpolation which is similar to bilinear interpolation.

4.3 Im age M agnification

4 .3 .1  B ackground

Image magnification is the term given to the image processing operation which 
achieves a higher resolution image than the one afforded by the physical sen­
sor. Image magnification has been used in obtaining high quality images and 
is found in areas such as surveillance and automatic target recognition. Image 
magnification is also called super-resolution, zooming, resolution enhancement, 
enlargement, etc. However these all refer to the same operation.

Traditionally, magnification is accomplished through convolution of the image 
samples with a single kernel - typically bilinear, bicubic [59], or cubic B-spline 
[84]. Many recent algorithms have been proposed to improve the magnification 
results. PDE-based approaches [9, 57] apply a nonlinear diffusion process con­
trolled by the local gradient. POCS (Projection-Onto-Convex-Set) schemes[70]
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formulate the interpolation as an ill-posed inverse problem and solve it by reg­
ularised iterative projection. Orthogonal transform methods focus on the use of 
the discrete cosine transform (DCT) [56, 77]. Directional methods [12, 37] ex­
amine an image’s local structure around edge areas to direct the interpolation. 
Variational methods formulate the interpolation as the constrained minimisation 
of a functional [41, 75]. Those interpolation schemes we have mentioned in the 
first section can all be used in magnification.

We will first apply our image model to image magnification. In particular, we 
are interested in magnifying still images, both in grey scale and colour. We will 
justify our algorithm by evaluating the results both subjectively and objectively. 
The understanding of perceived image quality is still very limited and we still 
have to rely on subjective evaluation. However, there are some statistical tools 
which allows us to assess the performance objectively although these tools are 
not perfect.

4.3 .2  Im age In terp o la tion  by P ix e l L evel D a ta  D ep en d en t  

T riangulation

As we mentioned earlier, spatial features of edges play an important role in nat­
ural images. An ideal interpolation scheme should therefore always adapt to 
edge orientation. Edge sharpness across the edge and smoothness along the edge 
should be well kept by doing this.

We apply the pixel level data dependent triangulation to the image and build a 
triangulation mesh where the edges of triangles correspond to edges in the image. 
So each four pixel square is divided into two triangles. The diagonal either goes in 
the NE-SW or NW-SE direction depending on the local spatial geometry. Thus 
if we want to interpolate a higher resolution pixel falling in one of the triangles, 
we will use only the three vertices to do interpolation. This will not blur the edge 
and will preserve the smoothness along the edge. Classical interpolation methods 
like bilinear interpolation suffer from edge blurring because they interpolate from 
all four pixels.

To illustrate the approach, Figure 4.1 shows a triangulation in a four-pixel square.
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Figure 4.1: Interpolation in two triangles

Suppose e and /  are two super resolution pixels falling in different triangles. We 
will interpolate e within triangle abc and interpolate /  within triangle acd. The 
height of e and /  correspond to their interpolated value. It is easy to see that e 
and /  are significantly different and thus the edge will remain sharp in magnified 
images. Clearly if the areas are relatively smooth, the two triangles should have 
similar height and the interpolator is able to keep its smoothness as well, even 
across triangle boundaries.

Suppose the low-resolution source image is X  and the high-resolution image to 
be generated is Y.  We first scan the sample image X  to initialise a lookup 
table which records the edge direction of all four-pixel squares. For any super­
resolution pixel we can distinguish in which triangle of X  the pixel falls. The 
high-resolution image Y  is then produced by interpolation. For each yij we do 
an inverse mapping to the sample image X  and determine the surrounding four 
pixel square. We use the lookup table to select the right triangle, then interpolate 
within the triangle to get yij.

We use inverse mapping because it has a number of benefits. First it can be used 
at arbitrary resolution. We are not constrained in any way by the resolution of 
the source data. Second, there is no requirement to align the target grid parallel 
to the source grid, so arbitrary rotation is possible at no additional cost. Third, 
sampling can be irregular to provide warps, although the sampling rate must not 
be too low because this would cause break-up.

We use linear interpolation within the triangles. However there is some confusion 
of terminology in the literature, which we need to clarify before proceeding. “Bi-
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Figure 4.2: Left: bilinear interpolation. Right: triangle interpolation

linear interpolation” strictly refers to interpolating four points and we will use the 
term only in that sense. In the graphics community, three-value interpolation, as 
used in Gouraud shading, is also called bilinear interpolation, although it is only 
a degenerate case. We will distinguish this by calling it “triangle interpolation” . 
(We are grateful to Professor Ken Brodlie, at the University of Leeds, UK, for 
drawing our attention to this.)

Figure 4.2 illustrates how bilinear interpolation and our triangle interpolation 
are performed in a unit square. We give the mathematical formula of these two 
interpolations.

B{x i y) = h  + {~~h +  Ic)% +  {la — h ) y  +  {—Ia +  h  — Ic +  Id)xy
T{x, y) — Ib + { - I b +  I c)x +  {Ia -  Ib)y

B{x,y)  is the bilinear interpolation and T{x,y )  is the triangle interpolation. For 
0  < x ,y  < 1 , {%,y) is the position of the point being interpolated relative to 
the four corners. Ia is the pixel value of pixel a and so on. It is clear from the 
above formula that bilinear interpolation differs from triangle interpolation in 
the xy  term: the bilinear interpolation is controlled by all the four pixels and the 
triangle interpolation is a piecewise linear interpolation.

For simplicity, we first consider that Ia = Ib = 0, Ic =  Id =  1 which means there is 
a vertical edge across the square. In this case, the bilinear interpolation becomes 
B{x,y)  =  x  and triangle interpolation becomes T{x,y )  = x  which is identical to 
bilinear interpolation. It is easy to see that if Ia = Id =  0, Ib = Ic — 1 (there is a
horizontal edge), bilinear interpolation will again give the same result as triangle
interpolation. However, if we set Ia =  Ib = Ic =  0, Id =  1, then Id is different 
to the other pixels. In this case, we triangulate the square as Figure 4.2 right 
shows. Bilinear interpolation becomes B{x ,y)  =  xy  and triangle interpolation
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T (x ,y )  = 0 . It is clear that triangle interpolation is better in this case because 
P  is in a triangle with three vertices being zero.

It is clear from the above analysis that if the square is flat or the edge is roughly 
horizontal or vertical, the triangulation approach will produce almost identical 
results as bilinear interpolation. This feature will keep the smoothness along the 
edge and in the smooth area in images. However if there is a clear edge defined 
(not horizontal or vertical), i.e. one pixel is quite different to the other three, our 
method is superior to bilinear interpolation and keeps the edge sharp.

We mentioned in the last chapter that our basic model has some limits in that 
it only considers the four-pixel square, ignoring the surrounding values. We have 
seen in figure 3.10 that the diagonals of the lowest of the stamen contradict the 
local edge orientation. This will leads to some deterioration of edge reconstruction 
quality. It only catches the micro-geometry (pixel-level), not the local geometry 
due to edges passing through several pixels. To correct this we need to apply our 
extended model, as discussed in 3.2.6.

Our extended model considers a local neighbouring window by arranging 16 pixels 
as 3 x 3 squares. To predict the edge direction in a four pixel square, we will 
first set directions in each square and then, in a second pass, we consider the 
eight squares around the target square and see whether there is a strong edge 
orientation in this window. If most edges in these squares go in one direction 
then we adjust the edge in the target square to that direction. In our case we do 
this if at least 6  of the 9 squares have the same direction. If there is no strong 
edge direction in the local area then we only consider the target square when 
choosing the edge. All decisions are made on the original data so that changes 
do not influence nearby decisions taken later.

It is worth noting that the interpolation process of the extended method remains 
exactly the same, but the input triangulation mesh is now generated by our 
extended model.
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4.3 .3  A lgorith m  A n a lysis  and C om parison

It is easy to see that the triangle interpolation has the same complexity as bilinear 
interpolation which is linear with image size n. We discussed the complexity of 
our models in 3.2.7 and explained that both our basic and extended model have 
time complexity 0(n).  Thus, combining with the interpolation, both the basic 
and extended method have time complexity of 0(n).  Our method is thus efficient 
in both memory and time, and is suitable for handling large images with a linear 
dependency on the image size.

Yu et al. [106] propose an image reconstruction method using data dependent 
triangulation. They use a new cost function and an improved optimisation al­
gorithm to generate an optimised triangulation mesh. Their method is able to 
model an image effectively. It is complex to implement and is computation­
ally slow. It takes several iterations to get an optimised triangulation and each 
iteration takes “between 0.5 and 5 seconds” even for a small image (80 x 80) 
on a consumer-grade PC. Another limitation of the method is it cannot catch 
single-pixel and small features.

Figure 4.3 shows some contours resulting from different methods. Figure 4.3a 
is the contour from bilinear interpolation of a simple image of 25 pixels whose 
intensities are zero or one and the vertexes of the square are pixel centres. No 
triangles are involved in this bilinear interpolation. Figure 4.3b shows the con­
tours from a Delaunay triangulation of the image, Figure 4.3c shows the contours 
from Yu’s DDT method [106] and Figure 4.3d is the contour from our method.

It is clear that Yu’s DDT method and our methods generated straighter contours 
than the bilinear interpolation and Delaunay triangulation. Smoother contours 
tend to produce the least offensive artifacts in interpolation. Yu’s DDT method 
produces even straighter contours than our method because it can model edges at 
any arbitrary angle while ours are modelling 45 degree angles. Our method can be 
thought of as a simplified data dependent triangulation and it actually produces 
the same contour as the widely used Lawson’s local optimisation algorithm in the 
data-dependent triangulation method [106]. This Yu’s method used an iterative 
look-ahead edge swap optimisation which produced smoother contours.

Our method generates the triangulation mesh simply by inserting diagonals. This
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a: bilinear b: Delaunay c: DDT[106] d: Our method

Figure 4.3: Contours from different methods

leads to some degradation in quality since normal DDT methods can model the 
edge at arbitrary angles. However our method provides a notable trade-off be­
tween quality and speed. Although the DDT method can in principle give higher 
quality, ours is very easy to implement and much faster. Also our method needs 
only a small byte array to store the triangulation mesh while a full DDT requires 
a more complicated structure and more storage space. Another advantage of our 
extended method is it is able to catch small and local features.

Other researchers [67] also use DDT for data interpolation, aiming at a better op­
timisation of DDT according to their cost functions and optimisation processes. 
Our method avoids this. We will now demonstrate that the method is effective 
and that it does provide high-quality reconstructed images compared to conven­
tional methods.

4.3.4 Im plem entations

We implemented several interpolation methods and applied them to a test image 
to show the results. (Figure 4.3, 4.4) The image should have well-defined edges 
(to test edge sharpness), thin linear features and small details (to ensure they are 
retained) and smoothly varying areas (to reveal any discontinuity). The flower 
image we have used has these features. We compare our method with bilinear 
interpolation and bicubic interpolation which were produced from Matlab 5 built 
in functions. We also compare to New Edge Directed Interpolation (NEDI) [48] 
as to our best knowledge it is a good interpolation method providing high inter­
polation quality. The NEDI is implemented by a Matlab program provided by
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its author. We use a C + +  program and the giga image library [96] to implement 
our methods.

Greyscale images were processed exactly as already described. When selecting 
edge direction in colour images, we convert the RGB components of each pixel 
into luminance using the following formula [106] where L  stands for luminance:

L = 0.21267R +  0.71516G +  0.07217B

The edge direction is decided by the luminance values. Interpolation is performed 
in the R,G,B planes independently. This method generates good results because 
colour does not contribute as significantly as intensity to the information content 
of images, as Van Essen et al.[8 6 ] say. Figures 4.6, 4.7 and 4.8 show three examples 
of magnification of colour images, one with edges, one with some textures and 
one with some fine details. Our subjective visual experiments suggest that out 
method generated good results on all the images.

4.4 E xperim ental A ssessm en t

4.4 .1  V isu a l A ssessm en t

We performed preliminary tests both to check the implementations and to permit 
a visual assessment of the methods.

Figures 4.3 and 4.4 show the comparison results. All the images in Figures 4.3 
and 4.4 are magnified from the original flower image on left top of Figure 4.3 by 
a factor of 4. Figure 4.5 shows a close-up view of the stamen using our basic 
and extended method. This illustrates that the basic method has some artifacts 
along the stamen which are reduced in the extended method. Figure 4.9 shows 
the various methods used to magnify the colour flowers image by a factor of 3.5.

From visual inspection our method produces better images than bilinear and 
bicubic interpolation, and the NEDI method is good as well (Figures 4.3 and
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Figure 4.4: Detail flower image magnifying by 4. Top: bilinear interpolation. 
Middle: bicubic interpolation. Bottom: the NEDI method.
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Figure 4.5: Comparison of our basic method and extended method. Top: inter­
polation using basic method. Bottom: interpolation using extended method.

Figure 4.6: Magnified view of the stamen. Left: selecting edge only by four-pixel 
squares. Right: selecting edge by a 3 x 3 square neighbour window.
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Figure 4.7: Roof image magnified by a factor of two. Top left: original image.
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method
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Figure 4.8: Flowers image magnified by a factor of two. Top left: original image.
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method
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Figure 4.9: Launceston image magnified by a factor of two. Top left: original
image. Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom:
our extended method
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4.4). However, it seems NEDI’s weighting algorithm changes the contrast of the 
image. The bilinear interpolation suffers from blurring of the edges. The bicubic 
method introduces sharper edges but more artifacts.

This visual assessment is however very subjective, depending on the viewer and 
the images used. Our visual assessment shows that our method produced good 
results on different kinds of images, i.e. textures, fine details and edges. It is 
as good as other methods in smooth areas but improved in edges. Due to the 
printing process, it is hard to detect the differences with some images. Some high 
quality images are provided in the attached CD.

Our method is subjectively good by our visual experiments. In order to obtain 
objective results, we next performed analytical testing.

4 .4 .2  Q u a lity  A ssessm en t

To perform analytical assessment of the interpolated images, we need a quality 
measure. The degradation based method [87] is not able to report the “jagged” 
artifacts related to the orientation of edges. Daly’s visible differences predictor 
[23] produces an error image which characterises the regions in the test image 
that are visually different from the original image. It is however difficult to use 
error images to compare different methods. Therefore we used mean-square error 
(MSE) as our assessment tool. The MSE is the cumulative squared error between 
the reconstructed and the original image. It is widely used in image processing 
to evaluate reconstructed image fidelity. The formula for calculating MSE is as 
follows:

MSE = r y Z  (*« -  va?

where I, J  are the width and height of the image, Xij is the value of pixel i j  in 
original image and yij is the value of pixel i j  in reconstructed image.

Our method aims at improving edge quality on magnified images and retaining 
a good overall quality as well. Thus we produced one sample image set of five

48



Figure 4.10: A portion of the flower image magnified by a factor of 3.5 using:
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method.
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‘edge’ images with size 200 x 200 (Figure 4.10). This set is used to assess the 
edge reconstruction quality. We used twenty 768 x 512 nature images as another 
more general test set to assess the overall reconstruction quality.

In theory, there is no perfect way to judge the magnification quality. Because the 
image we have got is of fixed resolution, we don’t know what the ‘correct’ image 
is if it is magnified. In order to analyse error, we need to know or simulate it. 
So we start with an original image, generate a lower resolution version, then use 
different methods to magnify it. Then we compare the magnified images with the 
original image. This is not perfect but it provides a reasonable way to analyse 
the reconstruction quality.

The down-sampled images could be obtained by averaging down or sub-sampling. 
However, edge blurring and ringing effects are introduced by averaging, while 
sub-sampling breaks down the geometry and introduces artifacts. We chose a 
Gaussian filter as the point-spread function with its standard deviation repre­
senting the radius of the point-spread function. Each pixel at the target image 
(down-sampled image) is considered as a point-spread function represented by 
a Gaussian distribution. It is down-sampled from some part of the source im­
age, represented by another point-spread function. In this case the radius of 
the point-spread in the source image is double that of the radius in the target 
image. Thus, we calculate the standard deviation of the target Gaussian distri­
bution, then double this to get that of the source image. This is then used to 
down-sample, by convolution.

We used pixel replication, bilinear interpolation, bicubic interpolation, NEDI, our 
basic method and our extended method to obtain the reconstructed images. All 
reconstructed images are magnified by a factor of two. Then we compared the 
original images and the reconstructed images in the test set and calculated the 
averaged MSE results.

4 .4 .3  Q u ality  o f  E dges

Our first test was to check the quality of well-defined edges. For the test set 
we generated five samples with a single edge of varying angle (30, 45, 60, 0 
and 90 degrees). Each edge is black one side and white the other side (Figure
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Figure 4.11: Image set of five images with different edges. The angles are 0 , 30, 
45, 60 and 90 degrees

4.10). Table 4.1 shows the corresponding MSE results. We put 0 ° and 90° in the 
same column because they give the same results for all methods. Our basic and 
extended methods have the same results in all these situations because our basic 
method is able to preserve the geometry well in these simple cases.

The MSE results report that our method gets the best (lowest) score in every 
case except at 0° and 90°. In these two cases pixel replication gets the best 
score, which it is trivially able to do. (In principle it should achieve zero MSE 
but the Gaussian sampling introduces some grey edge pixels.) Bicubic beats us 
here because its interpolation more sharply models these high-contrast edges. 
Our method is the equal of bilinear interpolation as we expect. Although our 
triangulation gives edges of 45°, it also performs well on 30° and 60°. Bicubic 
and bilinear interpolation are slightly worse because they suffer from artifacts or 
blurring on the edge. Pixel replication does not generally catch the geometry 
very well and NEDI suffers from the effects of its weighting algorithm.

0
0 o o 45° 60° 0°, 90°

Our methods 28.8 28.9 28.8 26.0
Bicubic 29.7 31.5 29.3 2 2 . 2

Bilinear 34.0 38.4 34.0 26.0
Replication 41.8 45.4 41.5 9.2
NEDI 43.3 47.6 43.4 27.6

Table 4.1: MSE results of edge images

4.4.4 Q uality o f R eal Im ages

In order to test the method on “smoother” and more typical images, we used 
twenty 24-bit 768 x 512 colour nature images as another test set. The values, 
averaged over the test set, are reported in Table 4.2.
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R G B
Bicubic 109.4 119.4 123.8
Extended 117.6 127.8 132.7
Bilinear 118.2 128.4 133.1
Basic 118.6 128.8 133.7
Replication 126.1 134.8 138.7
NEDI 198.6 197.9 187.4

Table 4.2: MSE results of real images

There is a clear consistency of each channel’s performance and there is also a clear 
consistency of each method’s performance. Bicubic interpolation gets the best 
score (least error). Our methods rank close to the bilinear method. Our basic 
method is slightly worse than the bilinear method because it sometimes gives 
the wrong edge direction. Our extended method is slighter better than bilinear 
interpolation because our approach is better in edge areas and is almost the same 
in smooth areas.

Pixel replication gets a low score as we expect. NEDI surprisingly gets the lowest 
score although it has good visual reconstruction quality. We presume this is be­
cause the contrast of the image has been changed by NEDI’s weighting algorithm 
and thus it produces numerically the wrong image, albeit a pleasing one. This 
emphasises the need to moderate any analysis with visual inspection.

We can thus conclude that bicubic interpolation produces the lowest overall mean 
squared error. Our extended method is quite close to this. Visual inspection of 
our method shows that it produces good results, which we believe is due to its 
better edge performance. We will now show that our method is much quicker 
than bicubic interpolation and comparable in speed to inferior methods.

4.4 .5  Q u ality  o f  O ther Im ages

Because our model is a generic one and is applicable to all kinds of images. We 
have shown that it is effective for natural images and Figure 4.11, 4.12 show that 
our method is also good for medical and satellite images (Used with permission of 
the National Geographic Society, Image is by Robert Stacey, WorldSat Interna­
tional Inc.). It is especially good for magnification of those images which have a 
lot of small details because our method is also capable of catching small features
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of the images.

4 .4 .6  P erform an ce A ssessm en t

We implemented bilinear interpolation, bicubic interpolation, our basic method 
and our extended method by C + +  code and compared their computational per­
formance. We used the real natural colour images test set again. We down- 
sampled every image to 384 x 256 pixels (using the method described earlier). 
Then we magnified the down-sampled images by a factor of 2  and also by a factor 
of 3.5. We used the Keys approach for the bicubic interpolation. Table 3.3 shows 
the performance comparison on a machine with an Intel Pentium4 3G proces­
sor and 1G DDR system memory. Our extended method uses the 3 x 3  square 
window. All figures are in seconds.

Bilinear Basic Extended Bicubic
magnify 2 0.359 0.406 0.412 3.621
magnify 3.5 1.105 1.162 1.170 10.914

Table 4.3: Performance comparison

We can see from the table that our method is only slightly slower than bilinear 
interpolation. Importantly, bicubic is an order of magnitude slower than the other 
methods. The averaged times for calculating the triangle mesh are included in 
the above figures. For our basic and extended method these are 0.041 and 0.049 
seconds respectively. Factoring these out reveals that our methods are linear with 
the number of pixels generated.

In conclusion, our extended method is comparable in speed to bilinear interpola­
tion while providing better reconstruction results both visually and statistically. 
In comparison to bicubic interpolation, our extended method is much faster and 
visually better, especially in edge reconstruction. These two methods are statis­
tically similar. Our method is fast, simple and modest in memory needs.

53



Figure 4.12: The X-ray head image on the top left is magnified by a factor of 4 
using: Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: 
our extended method.
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Figure 4.13: The satellite image on the top left is magnified by a factor of 4
using: Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom:
our extended method.
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4 .4 .7  H ardw are Im p lem en ta tion

More and more complex graphics operations have moved to the graphics co­
processor or accelerator, including shading, texturing, anti-aliasing and bilinear 
interpolation. These features of graphics cards make it possible to create ex­
tremely realistic games and simulations.

However the only interpolation algorithms currently available on graphics cards 
are triangular and bilinear interpolation: the others are too complex. High quality 
image reconstruction in real-time still remains a difficult and unsolved problem. 
Our pixel level data dependent triangulation makes a step in this direction.

A graphics card can handle tens of millions of triangles per second and it can 
interpolate within triangles. This suggests that we convert any image to a triangle 
mesh and then pass the mesh to the graphics card. The card will deal with the 
mesh in real-time.

We have used OpenGL to explore the potential of our method in hardware imple­
mentation. We first generated a triangle mesh using our basic or extended model. 
Then we used OpenGL to pass the mesh to the graphics card so tha t it could 
manipulate the mesh, such as by scaling and rotating. These manipulations can 
be in 3D, at no extra cost. Our experimental results showed that high quality 
reconstructed images can be generated in real-time.

We used the OpenGL GL-TRIANGLE-STRIP to build the triangle mesh. This 
routine needs all of the triangles to have the same orientation. Thus we started 
a new GL-TRIANGLE-STRIP whenever the diagonal direction changes. All of 
these strips were saved in a display list which was then used to render the image.

The program flow of the OpenGL process is as follows:

1 . Build a byte array to record the diagonals of the triangles.

2 . Set up all the GL-TRIANGLE-STRIP and save them in a display list.

3. Render the image and call an OpenGL loop, waiting for keyboard response 
and doing manipulation corresponding to the key pressed.
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X-M  Triangulat»on Demo -  Dan Su 1BBBI

Figure 4.14: Screenshot of the openGL implementation of using our method to 
manipulate images. The parrot image is magnified in perspective view.

We have tested several images with size 768 x 512 pixels, in the same machine: 
an Intel Pentium 4 3G processor and an NVidia GeForce 4 graphics card with 
128M memory. Using our extended method, the time for preparing the mesh for 
an image with 768 x 512 pixels was under 0 . 2  seconds. Once the triangle mesh 
was loaded, the graphics card did all further manipulation. We used key presses 
for scaling or rotation, causing the appropriate updates to the transformation 
matrix.

The GeForce 4 graphics card specification claims a rendering speed of 136 million 
vertices per second. This equates to about 45M triangles per second. This latter 
rate could increase with triangle strips (due to vertex sharing), though of course 
the number of triangles which can be rendered at full speed is limited by the card 
memory. With our test image meshes having less than 1 M triangles, the graphics 
card easily gives real-time zooms, translations and rotations. Figure 4.13 gives an 
illustration of using openGL to manipulate the parrot image with size 768 x 512. 
The image has been magnified and rotated along x and y axis in perspective view. 
The image can be scaled and rotated in real-time.
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4.5  O ther A pplications

Due to the simplicity of our algorithm, it is easy to apply to many other image 
manipulations. For example, we can rotate the image by any angle (Figure 4.14a). 
We scan the target image and inverse rotate each pixel back to the sample image 
and interpolate the value. We can get a perspective transform of an image. On 
any given y scan line, we calculate the pixel at (x,y)  by sampling the source 
image at (sx, ty) where s, t are scale factors which vary linearly with height (We 
are assuming the y axis is the centre of the screen). Figure 4.14b shows the 
result. We can also produce a magnifying lens effect (Figure 4.14c). If the lens 
has radius R , then its disc is filled with the image from a small disc with radius 
r at the same centre. For any pixel inside R , we scale down to r, evaluate the 
original value at r and output it in R.

These are variants on the same general technique: to evaluate the target pixel 
p , we evaluate pixel F(p) where F  is a simple inverse mapping to the original 
image. Then we interpolate in the triangle where it falls. This generality is a 
strength of our method.

4 .6  C onclud ing R em arks

In this chapter we have presented a new method of image interpolation. We 
represent an image as a data-dependent triangulation mesh. Every four-pixel 
square is divided into two triangles with the diagonal corresponding to the local 
edge of the image. The desired pixel can then be interpolated from the triangle 
in which it falls, determined by inverse mapping.

Other variants of the diagonal choice procedure can also be tried. For example, 
a pair of suitable digital filters might be better at distinguishing the local edge 
direction; or the threshold could be different to the one we chose. Other variants 
of the sampling procedure can be used, the interpolation providing some secu­
rity against sampling defects. These two procedures are independent and neatly 
corresponding to the image modelling and image rendering phases.
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Figure 4.15: a: Flower image rotated by 27 degrees, b: a perspective view of the 
flower image, c: a lens effect of the flower image
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The new interpolation approach generates images with better visual quality than 
traditional interpolation schemes. The statistical assessment also shows that our 
scheme produces good overall image accuracy, second only to bicubic interpola­
tion. The complexity of the new method is similar to bilinear interpolation and 
much lower than the bicubic method. We avoid the time-consuming optimisations 
that others use but still produce good results very quickly.

Bilinear and bicubic interpolation are widely used in commercial software package 
due to their simplicity. For example, Photoshop uses three interpolation engines: 
pixel replication, bilinear and bicubic interpolation. Our method produces better 
results with almost the same computation cost as bilinear interpolation. There 
is a potential for our method to be used in gaming and the image processing 
industry.

Furthermore, our method has several advantages. It is used without iteration. 
It achieves arbitrary factor magnification, rotation, perspective transform and 
warp through a single mechanism. Our scheme is very simple to implement 
and computationally fast. It requires little data structure overhead to generate 
the mesh image. Moreover, our meshes can be rendered on a graphics card 
which makes real-time image reconstruction possible. There is a potential for 
our method to be used in gaming and image manipulation generally. This simple 
data dependent triangulation model can also be used in other applications, such 
as demosaicing of colour images. We also studied its use in 4-colour separation 
for printing. Above all, we have demonstrated that a simple approach, sensibly 
used, can rapidly generate excellent results.
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Chapter 5

Colour Image D em osaicing

In this chapter we will present a new method for the demosaicing of colour im­
ages generated by current single-chip digital cameras. We will demonstrate that 
our model is effective compared to traditional methods, when applied to the 
commonly-used Bayer Colour Filter Array pattern. Results show that the pro­
posed method gives superior reconstruction quality, with smaller visual defects 
than other methods. Furthermore, the complexity and efficiency of the proposed 
method is very close to simple bilinear interpolation, making it easy to implement 
and fast to run.

5.1 In trod uction

Colour digital cameras have become widely available consumer products in recent 
years. In order to reduce cost, these digital cameras use a single Charge-Coupled 
Device (CCD) sensor with an overlayed colour filter array (CFA) to acquire colour 
images, thus avoiding the need for three separate arrays (one for each primary 
colour) and the associated complex optical system to split the light path.

There are various filter patterns but the Kodak Bayer CFA pattern is the filter 
pattern most frequently used and we will concentrate on that pattern. Figure 5.1 
shows this filter pattern, where R  is red, G is green and B  is blue. Each pixel of 
the CCD thus sees only one primary colour, determined by which filter overlays
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Figure 5.1: Bayer Colour Filter Array Pattern (U.S. Patent 3,971,065, issued 
1976)

it. This give us a mosaic of samples. More green filters are used because of the 
visual importance of this central area of the spectrum: the eye is more sensitive 
to green and this area is more significant to the perceived luminance. The pattern 
shown thus provides a higher spatial frequency sampling of green, in comparison 
with blue or red. There are as many green pixels as red and blue combined.

Since there is only one colour primary at each position, we can reconstruct the 
image at the spatial resolution of the CCD only if we interpolate the two missing 
primary values at each pixel. That is, at a green pixel we have to generate red 
and blue values by interpolating nearby red and blue values. A corresponding 
process is required at red (to get green and blue values) and at blue pixels (to 
get green and red values). This interpolation process is called CFA interpolation 
or demosaicing. The demosaicing process clearly has a significant influence and 
is thus the key factor in the production of high quality images. Given the limited 
computing resource of a digital camera and its in-built computer, the computation 
efficiency should also be considered.

The obvious place to start is with traditional image interpolation methods, such 
as nearest neighbour, bilinear interpolation and cubic convolution. Bilinear inter­
polation is often used due to its simplicity and efficiency[73]. However, it induces 
relatively large errors in the edge regions and the eye is especially sensitive to 
edge quality. To address this, other authors have proposed techniques which are 
sensitive to the data. Examples are Adams’ edge oriented method [1 ] and various 
colour correlation methods [43, 2 , 61]. Adams’ method interpolates the missing 
colour elements according to the edge orientation of the image but it only detects 
the vertical and horizontal edges. Interpolation methods using colour correlation 
produce better results because there is a high correlation between the red, green 
and blue channels. However they ignore the edge orientation in the images.
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Some more complicated methods have been proposed and they attempted to 
maintain edge details or limit hue transitions. Ramanath [6 8 ] used an adaptive 
interpolation, achieving edge orientation adaptation. Cok [2 0 ] proposed a method 
using a constant hue-based interpolation to make sure there are no sudden jumps 
in hue, especially over edges. The median-based interpolation [29] proposed by 
Freeman is a two pass process: the first one is a linear interpolation and the second 
one is a median filter of the colour differences (red-minus-green and blue-minus- 
green channels). Laroche and Prescott [44] proposed a method called gradient 
based interpolation and it is used in the Kodak DCS 2 0 0  digital camera system. 
This method is a three pass process with the first one being linear interpolation 
of the luminance channel (green) and the others being interpolation of colour 
difference channels. Hamilton and Adams [32] used an adaptive colour plane 
interpolation which is a modification of the method by Laroche and Prescott 
[44]. According to Ramanath’s survey [69], Freeman’s median based interpolation 
method[29] is the best overall method among these. However, all these methods 
are complicated and thus computationally slow.

We have shown that our pixel level data-dependent triangulation model can be 
applied to image interpolation which both matches the edge orientation of the 
images and correlates the red, green and blue channels. Our scheme generally 
produces superior reconstruction quality and is rapid. The model was applied to 
full-information images (that is, red, green and blue values for every pixel) with 
the aim of magnification or other image manipulations. In this chapter we show 
how our model can be adapted to supply the missing primary values of a CFA 
image -  demosaicing -  and the advantages it has in this application. Our method 
produces good results while remaining simple and efficient.

We will justify our algorithm by evaluating the results both subjectively and 
objectively. Our experiments show that images produced by our method have 
better visual quality than classical linear interpolation. Our approach is almost 
as simple as bilinear interpolation. Other methods are more complex.
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5.2 T h e D em osaicin g  A lgorithm

We have already considered data-dependent triangulation as a method for cal­
culating super-resolution image values; that is, values “in between” the pixel 
positions. This is useful in changing the resolution of an image, distorting it in 
various ways, rotating it etc. In all these applications however, the original data 
is complete: there is a known (R , G, B)  value at every source pixel. For demo­
saicing, we have to adjust the method to generate those primary values which 
are missing from the Bayer CFA pattern.

5 .2 .1  P r in c ip le  o f  th e  A lgorith m

The Bayer CFA pattern alternates red and green filters on one row, then green 
and blue filters on the next row. This pattern repeats on subsequent pairs of 
rows. This means that a blue sample has red samples diagonally adjacent and 
green samples orthogonally adjacent (Figure 5.2). A red sample has blue samples 
diagonally adjacent and green samples orthogonally adjacent.

Our task is to interpolate the missing primaries in order to get a complete 
(i?, G, B)  triple at each position. W hat Figure 5.2 illustrates is the equivalence of 
blue and red; while Figure 5.3 emphasises that the green samples are differently 
disposed. In fact, the green samples can be considered to be arranged on a grid 
at 45° relative to the other values. Moreover their spacing differs to tha t of the 
other values. The attraction of our DDT method is that it is independent of both 
the spacing and the orientation of the source data. It permits us to predict values 
at any spacing (regular or irregular) and orientation, wherever we need them.

If we consider just the red values, it can be seen that they form a regular grid of 
columns and rows. The same is true of blue values. It is easy to see tha t our DDT 
model can be applied here. We can triangulate each of these as already described, 
choosing the diagonals in the NW-SE or NE-SW direction, to favour the image 
edge directions. The green values can be thought of as forming a regular grid 
tilted at 45° (Figure 5.3). Triangulating this will produce diagonals which are in 
fact disposed either vertically or horizontally.
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Figure 5.2: Left: Red square. Right: Blue square
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Figure 5.3: Green crosses

Thus, given a sample mosaiced image, we apply our image model and produce 
three meshes, one for each primary, with the green mesh being spaced and ori­
ented differently to the other two.

Our input is thus three meshes, configured according to our image model. Because 
each pixel of the input image only has one primary colour, the other two primary 
colours will be sampled from the corresponding two meshes. These samples are 
calculated by triangle interpolation of the three values from the mesh triangle 
surrounding the sample point.

5.2 .2  O riginal C olour Space

We will first use our method in original colour space. In an implementation, there 
is no need to produce three meshes explicitly. Suppose the sample image is X  
and the output image to be generated is Y. We first scan the sample image X  
to initialise three lookup tables, one for each primary. Each table has one bit to 
record the edge direction at every 2 x 2  ‘square’ of pixels of that primary colour. 
To reconstruct an image pixel, we first determine which two primaries need to 
be recovered. We then use the corresponding lookup tables to establish in which 
triangle the image pixel sits in each mesh. This establishes three values to be 
interpolated for each of the two missing primaries.

65



In fact, only two values are needed. Suppose we are interpolating for red values 
of blue or green pixels. For demosaicing, the target pixel will always fall on the 
boundary of the triangle. Hence the interpolation is always the average of two 
vertex values.

Thus we get the following formulae for the Red and Blue squares (Figure 5.2):

R b 5  =  (R1 +  R9)/2 or R m  = (RS +  R7)/2  
R G4 = (R l + R7)/2  
R G8 = (R7 +  R9)/2

B r 5 =  (B 1 +  B  9)/2 or B R5 = {B 3 +  B7)/2
B G4 = (R1 +  R7)/2
B G8 = (R7  +  R9)/2

Similarly the following are the formulae for the Green crosses (Figure 5.3):

Grz =  (G1 +  G5)/2 or Grz =  [G2 -f G4)/2
Gb 3  =  {G\ +  G5)/2 or Gr^ =  (G2 +  G4)/2

In all cases therefore, the value is reconstructed as the average of two source 
values, those values being chosen by our DDT method. This simplifies the inter­
polation and avoids the need for inverse mapping.

5.2 .3  C olour D ifferen ce Space

Treating i£, G and B  planes independently ignores the correlation among the 
colour planes and produces colour mis-registration. Recent research [2, 61, 6 8 ] 
has shown that interpolation performance can be significantly improved by ex­
ploiting the correlation among the colour planes. These methods are based on 
the assumption that the red and blue values are perfectly correlated to the green 
value over the extent of the interpolation neighbourhood. They define the colour 
differences K R  = G — R  and K B  =  G — B  and interpolate in this colour dif­
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ference space. In other words, these methods transform the operation into the 
K R  or K B  domain instead of performing the interpolation in the G channel. 
We calculate the K R  and K B  values and interpolation using these values, then 
we reconstruct the original colour values: R  = G — K R , B  = G — K B  and 
G = R  + K R o x G  = B  + K B .

The formula for interpolation in colour difference space is therefore different to 
that for original colour space. First we need the formulae for calculating the 
colour difference value in R, B and G pixels. For every Green Cross (Figure 5.3) 
there is either a Red or a Blue pixel, thus

K R R3 = (Gl +  G2 +  G4 +  G5)/4  -  R3 
K R m  = (Gl +  G2 +  G4 +  G5)/4 -  B 3

and for Green pixels, there are always two Red and two Blue pixels surrounded, 
therefore the KR and KB value of G pixels are always G minus the average of 
two Red or Blue values, for KR and KB calculation, respectively.

Thus, we get the following formulae for the Red and Blue squares, according to 
the triangulations we have generated for each colour channel (choices between 
values reflect the choices of diagonals in the triangulations):

K R B5 =  (K R j h  +  K R r  g) / 2  or K R Bx> =  ( K R r 3  +  K R r 7) /2

G b 5 =  B5  +  ( K B q 2 +  K B q%)/2 or G B 5 =  B5  +  (K B ga +  K B gg)/2

R b5 ~  GB5 ~ K R B5
R g4 =  GA —  ( K R ri  +  K R ry) /2

Rgs  =  GS — (K  R r j  +  K R r q ) / 2

K B rs = (K B m  +  K B B9)/2 or K B R5 =  (K B m  +  K B B7)/2
Gr^ = R5 +  (K B q 2 +  KBg8)/2 or Gr$ =  B5  +  (K B q  4  +  K Bgq )/2
B r5 = Grs — K B R5
B Ga = G A -  (K B m  +  K B B7)/2
B gs =  G8 — (K B B7 -f K B bg) / 2
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and the following formulae for Green crosses:

Grz — R3  +  (K  Rgi  +  K R g $ ) / 2  or G r 3  —  R3 +  ( K R q  2 +  K R q a ) / 2  

G r  3 =  B3  +  (K B q i  -f -  KBg*>)/2 or Grz =  S3  +  (K B q 2 +  K B g ± ) / 2

In the image boundary areas, there is no enough information for the interpolation 
we have described. So we modify the interpolation in image boundaries. In 
particular, we get the G value for Red and Blue pixels by averaging the two 
Green pixels on the same boundary line. We get the R /B  value for Green pixels 
by averaging two Red/Blue pixels on the same boundary line and copy the nearest 
Blue/Red pixel to get B /R  value. Then the R value for Blue pixels and B value 
for R pixels can be calculated by averaging the R or B values from the two Green 
pixels on the same boundary line.

This method is based on the assumption that colour difference is relatively flat 
over small regions. This assumption is valid within smooth areas of the image 
but is not valid around the edges in the image. Colour mis-registration would 
still exist around the edges if bilinear interpolation was applied. Our method 
effectively solves the problem by interpolation along the edges in colour difference 
space, as Figure 5.4 shows. It avoids colour mis-registration by not interpolating 
across the edges in the colour difference space.

5.3 E xp erim en ta l R esu lts

5.3 .1  Q u ality  A ssessm en t

We have performed various tests on two images, one of a boat (Figures 4.4 and 
4.5) and one of a macaw (Figures 4.6 and 4.7). In each case, the top left image is 
the original 24 bit image of size 768 x 512. From this we prepared a mosaic image 
by, at each pixel, discarding the two primaries indicated by the CFA pattern. 
This mosaic image was then used to perform the various reconstructions shown, 
again at 768 x 512.

We applied several different demosaicing methods to the test images: bilinear
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F ig u re  5.4: P o rtio n s  of: a: o rig ina l b o a t  im age , b: m ed ian  based  in te rp o la tio n , 
c: b ilin ea r  in te rp o la tio n  in th e  o rig in a l co lo u r space, d: b ilin ea r in te rp o la tio n  in  
th e  co lou r difference space , e: o u r m e th o d  in th e  o rig ina l co lo u r space , f: o u r 
m e th o d  in  th e  co lou r d ifference space
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F ig u re  5.5: C lose-up  co m p ariso n  of: a: o rig in a l b o a t  im age, b: m ed ian  b ased  
in te rp o la tio n , c: b ilin ea r in te rp o la tio n  in  th e  o rig in a l co lo u r space, d : b ilin ea r  
in te rp o la tio n  in  th e  co lour difference space , e: o u r  m e th o d  in  th e  o rig in a l co lo u r 
space, f: o u r  m e th o d  in th e  co lour d ifference space
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F ig u re  5.6: P o rtio n s  of: a: o rig ina l m acaw  im age, b: m ed ian  b ased  in te rp o la tio n , 
c: b ilin e a r in te rp o la tio n  in th e  o rig in a l co lo u r space, d: b ilin ea r in te rp o la tio n  in 
th e  co lou r difference space, e: o u r m e th o d  in th e  o rig in a l co lou r space , f: o u r 
m e th o d  in  th e  co lou r difference space
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F ig u re  5.7: C lose-up  c o m p ariso n  of: a: o rig in a l m acaw  im age, b: m ed ian  b ased  
in te rp o la tio n , c: b ilin e a r  in te rp o la tio n  in th e  o rig in a l co lou r space, d : b ilin ea r  
in te rp o la tio n  in  th e  co lo u r d ifference space , e: o u r  m e th o d  in th e  o rig in a l co lo u r 
space , f: o u r m e th o d  in  th e  co lour d ifference space
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interpolation in both original colour space and colour difference space, our data- 
dependent triangulation method in both original colour space and colour differ­
ence space and Freeman’s median based method [29].

If we compare bilinear interpolation and our method in original colour space and 
in colour difference space, it can be seen that interpolation in the colour difference 
domain has better reconstruction quality than interpolation in the original colour 
space. When using original colour space, colour mis-registration is clearly visible 
near the thin lines in the boat picture and around the top of the macaw where 
there is a sharp colour transition. Interpolation in colour difference space reduces 
most of these errors, however some colour mis-registration and artifacts are still 
clearly visible in bilinear interpolation and median based interpolation. There are 
also noticeable dotted artifacts around those edges. Our method has the least 
colour mis-registration error in both images. It avoids both of these problems 
because it better preserves the geometric regularity and interpolates along the 
edge orientations of the image.

Direct visual inspection indicates that our method produces good reconstruction 
quality. However, we wanted to explore a more analytical assessment of the visual 
quality of the interpolated images, though this is not straightforward to define, 
let alone measure. We used the Peak Signal-to-Noise Ratio (PSNR) which is 
commonly used as a measure of image quality in digital image compression and 
reconstruction as our assessment tool.

The PSNR is based on Mean-Squared Error (MSE). The Mathematical formulae 
for the two are:

MSE = r ? E  (*« -  vaf

P S N R  =  20 log10 - = = =  
y/MSE

We used twenty 24-bit 768 x 512 colour nature images as our test set. The PSNR 
values are calculated for the three colour channels independently and averaged 
over the test set. Table 5.1 shows the corresponding PSNR results where B L  
means bilinear interpolation in original space, B L D  means bilinear interpola-
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B L B L D D D T D D T D M E D I A N
R 31.47 35.07 31.22 33.96 35.70
G 35.35 39.38 35.10 37.99 40.02
B 31.01 34.21 30.74 32.31 34.97

Table 5.1: PSNR results of different methods

tion in colour difference space, D D T  means data-dependent triangulation (our 
method), D D T D  means our method in colour difference space and M E D I A N  
is median-based interpolation. The values are averaged over the test set.

Table 5.2 shows the PSNR results of three colour channels for the different meth­
ods. The results are averaged over the twenty images.

The PSNR results show a clear benefit from the use of colour difference space, 
for both bilinear interpolation and our method (Median based interpolation also 
uses colour difference space). These results confirm earlier work supporting colour 
difference space [43, 2, 61]. When comparing the two methods, the PSNR results 
show that bilinear interpolation is only marginally better than ours. As we dis­
cussed, our method is designed for solving the problem of colour mis-registration 
in edge areas. So for images which mainly consist of smooth areas, bilinear in­
terpolation will give a better statistical result because it uses more information 
for interpolation. Median based interpolation gets the best score which means it 
produces the best overall reconstructed image.

However, informal observation confirms that our method gives improved edge 
quality. It looks better because human eyes are more sensitive to edges and our 
method is better at retaining edges. Our overall result is very close to bilin­
ear interpolation which means our method produces good overall reconstruction 
images.

5.3 .2  P erform ance A ssessm en t

Table 5.3 shows the performance comparison on a Pentium 4 machine which 3G 
CPU and 1G DDR system memory. We used the 20 images again and timed the 
four methods. All the methods are implemented in C + +  code and all the figures 
in the table are seconds.
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B L  B L D D D T  D D T D M E D I A N
0.311 1.086 0.691 0.961 1.555

Table 5.2: Performance comparison of different methods

As we expected, median based interpolation is the slowest because it is a two 
pass process which adds extra computation time. Bilinear interpolation and 
our method using the colour difference space require more computation than the 
method in original colour space. Of the two methods using colour difference space, 
our method is faster. This is true even including the overhead of initialising the 
triangulations in three colour channels (about 0.23 seconds in this case). Our 
method is significantly faster because it only requires two pixels to interpolate 
while bilinear interpolation requires four pixels. We have already shown that it 
has good overall quality and visually better edges. We suggest that these features 
make it a better choice for demosaicing colour images.

5.4 C onclusion

In this chapter we have presented a new method for demoisaicing of colour im­
ages. The new method is based on our data-dependent triangulation model. The 
mosaiced image is represented as three primary colour triangulation meshes. The 
interpolation is done within these triangulations, which match the edge orienta­
tion of the images. By avoiding interpolation across edges, the new algorithm 
successfully solves the problem of colour artifacts around the edges. We also 
applied the scheme in colour difference space which helps to reduce the artifacts 
caused by colour mis-registration.

We have applied our method to the Bayer CFA pattern and our method offers 
simplicity and efficiency. The PSNR results also demonstrate tha t our method 
is very close to the best comparator in producing the ‘right’ data, while visual 
inspection shows that the data is more effectively deployed to produce sharp 
edges. It is also much faster.

Given the limited computing resource of a digital camera and its computer, we be­
lieve our method provides a reasonable solution to the colour image demosaicing 
problem because it produces good reconstruction efficiently.
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Chapter 6

Texture Synthesis

In this chapter, we will present a survey of traditional and contemporary texture 
synthesis methods. From this we introduce a texture synthesis method proposed 
by Yan Zhang at Jilin University, China [108]. It derives from a patch-based 
sampling method [49] and uses particle swarm optimisation to search for the 
best match patches, thus accelerating the synthesis process while ensuring image 
quality. We will present our extension of this method to texture transfer and 
constrained multi-sample texture synthesis.1

We also develop a new method based on patch-based sampling for synthesising 
textures on perspective surfaces from an input sample image. The method syn­
thesises the texture directly on the surface, rather than synthesising a texture 
image and then mapping it to the surface. The synthesised textures have the 
same qualitative visual appearance as the example texture, and cover the surface 
without distortion, repetition or aliasing artifacts.

1The tex tu re  synthesis using PSO  is the  work of Yan Zhang a t Jilin University, C hina (The 
au thor provided the  original im plem entation for patch-based sam pling tex tu re  synthesis). The 
tex tu re  transfer and  constrained m ulti-sam ple tex tu re  synthesis using PSO  were done during 
the  au th o r’s research visit a t Jilin  University working together w ith Yan Zhang in  A ugust 2003.
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Figure 6.1: Left: sample image. Right: the synthesised image with arbitrary size 
and similar visual appearance to the sample.

6.1 In tro d u ctio n

Normally, pictures generated by a computer do not appear as realistic as pho­
tographs or video images. This problem of lack of realism arises because the level 
of detail in a real picture is greater than the level that could be generated by the 
techniques to date. People are looking for higher realism images without much 
expense of computation time.

Adding shadows and texture mapping became highly developed methods to en­
hance Phong shaded scenes so that they were more visually interesting and looked 
more realistic or esoteric. Texture mapping was first introduced by Blinn [14] as 
a technique for adding the appearance of surface detail by projecting or wrapping 
a texture image onto an object surface. It can enhance the visual interest of a 
scene without adding too much processing cost.

While texture mapping itself is straightforward, acquiring the images to use for 
textures is not always easy. One way to generate texture images is texture syn­
thesis. The texture synthesis approach can be stated as follows: Given a texture 
sample, synthesise a new texture with arbitrary size that is sufficiently different 
from the given sample texture, yet appears to be generated by the same stochastic 
process when perceived by a human observer (Figure 6.1).

Potential benefits of texture synthesis include the ability to create large and/or 
tiled texture from a small sample. With this ability, texture synthesis can be used 
for image repair (for example, filling a hole in a texture), and for textures in games 
(i.e. the walls and grounds in “Tomb Raider”). It can be also used to improve
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the apparent realism of other rendered images (texture maps, environment maps 
etc).

Its power comes from its generality: any image can be used as a texture. Hence 
real images, hand-drawn images and synthetic images are all possible sources. 
Textures can be used one-off (i.e. to add the appearance of a desktop to a 
computer screen) or repeated (brickwork, sand, grass etc). They can also be 
blended with other information. Hence textures are supported by graphics cards 
and are widely used in rendering.

Simple texture mapping, as used on games cards, is a fast but trivial solution. 
This reveals some of the problems. It only copes with regularly repeated patterns. 
The patterns have to be chosen so they produce a plausible repeat and, where 
the tiling is required to be less visible, the values of the boundary pixels have to 
be manually set to hide the boundary.

In the general case, texture synthesis attempts to produce texture which is not 
identical to the sample but which is statistically similar to it. This is useful 
because it makes rendering more realistic by avoiding simple repetition.

In this chapter we will focus on texture strictly in the form of a design or a 
pattern whose intention is to deceive the viewer as to the regularity of the surface 
[18]. Textures are spatially homogeneous and consist of repeated elements, often 
subject to some randomisation in their location, size, colour, orientation, etc [65]. 
They can describe a wide variety of surface characteristics such as those of wall, 
fur and skin. There are two kinds of texture: regular (these can be characterised 
by a set of primitives and a placement rule, such as bricks in a wall) and stochastic 
(these do not have easily identifiable primitives, such as grass). Many texture 
images lie between these two categories. The texture of an image has a very 
important character, which is: given a proper size, any part of the texture image 
looks similar to any other part.

Texture synthesis has been an active research topic in computer graphics for many 
years and there are many ways to generate new textures. In order to evaluate an 
algorithm, we have to set the criteria for successful texture synthesis.

•  Quality: A good algorithm should generate a new image that looks like the
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sample image. There should be no obvious blur, repetition, or mismatching 
features in the output image. It should appear to show the same stochastic 
process as the input image. If we can analyse the sample image and the 
synthesised image by a model such as the steerable pyramid [66], the sample 
image and result image should be very similar. Additionally if the sample 
were taken from scanned photographs, the synthesised texture should be 
photo-realistic.

• Speed: The major motivation of texture synthesis is a method which aims
to enhance realism without much computation time. Most older algorithms
are extremely slow, even small images (256 x 256) need several hours on a 
mid-level PC. A good approach should synthesise in real-time or reasonably 
rapidly.

6.1 .1  T extu re  S y n th esis  Tasks

Texture synthesis proves difficult because it is always hard to discover the stochas­
tic process from a given texture sample.

The major challenges of texture synthesis are:

•  Recognition: how to capture the stochastic process and the texture scale 
from the given sample image. A successful recognition model is very im­
portant because the visual quality of the output image is dependent on 
the accuracy of the model. It is difficult to characterise texture images, 
using either deterministic or statistical models. There are many algorithms 
and models to analysis the texture images. They belong to two kinds of 
approaches, one is trying to catch texture globally and other is treating 
texture as local. None of the existing techniques can produce a completely 
satisfactory solution for all kinds of textures.

• Generation: how to develop an efficient sampling procedure to generate 
new textures from a given sample texture and the analysed model. This 
is essential for successful texture generation because it will determine the 
quality and the speed of the synthesis process. The operation of the sam­
pling procedure involved in assigning a value to a pixel depends on the
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rendering algorithm used and we can only ever calculate the value of an 
image function at these points [91].

6.2 P revious W ork

Over the past three decades, texture synthesis has been investigated in computer 
graphics and many algorithms have been developed.

6.2 .1  T raditional T extu re S yn th esis  M eth o d s

Most traditional texture synthesis approaches are based on procedural texture 
synthesis.

Procedural texture synthesis is the use of a function or set of functions applied 
to a set of points in order to generate a texture. Procedural methods can be very 
fast. It is easy to introduce a time-varying variable to the model thus creating 
animation. The method requires little memory because it synthesises on the fly 
[85]. These methods can produce textures directly on 3D meshes so the texture 
mapping distortion problem is avoided. However existing procedural methods are 
only specialised emulators of the generative processes of certain types of texture. 
Different textures are usually generated by different models so these methods are 
applicable to only limited classes of textures.

Solid T ex tu re : Solid texturing is a powerful way to add detail to the surface 
of rendered objects. A solid texture is a three-dimensional procedural texture 
field. The surface is textured by ‘placing’ the object in the field, and obtaining 
a texture from the intersection of the surface of the object and the field. This 
is done by evaluating the procedural texture at the surface points. Solid texture 
can increase the aliasing artifacts because a pixel may project into a region of 
texture that contains many variations over the projected area. An approach to 
anti-aliasing is to filter the three-dimensional field over a small volume of texture 
space that contains the surface element, just as we filtered over a small area of 
two-dimensional texture space. The advantage of solid texture is th a t objects of 
arbitrary shape can be textured [90, 60, 47].

80



H y p er te x tu re : In 1989 Perlin [63] extended the solid texture technique and 
developed a method that he called ‘hypertexture’. One of the main distinctions 
between solid texture and hypertexture is that hypertexture objects have no well- 
defined boundaries. Instead they have a density function that describes how the 
object should behave in the area where it transitions between the outside and 
inside of the object. Perlin uses this approach to produce such effects as hair, fur, 
fire and erosion effects. This method is both a modelling and a texture technique.

Perlin also defined a noise function that takes a three-dimensional position as its 
input and returns a single scalar value. It can simulate turbulence and produce a 
surprising variety of realistic, natural-looking texture effects [62]. A single piece 
of noise can be put to use to simulate a remarkable number of effects. By far the 
most versatile of its applications is the use of the so-called turbulence function, 
as defined by Perlin [62], which takes a position x and returns a turbulent scalar 
value.

C ellu lar T ex tu re : Worley [100] present a new basis function that complements 
Perlin noise, based on a partitioning of space into a random array of cells. He 
used this new basis function to produce textured surfaces resembling flagstone­
like tiled areas, organic crusty skin, crumpled paper, ice, rock, mountain ranges, 
and craters. The new basis function can be computed efficiently without the need 
for precalculation or table storage.

Reaction-D ifFusion: Turk [82] used a reaction-diffusion approach to do texture 
synthesis. Reaction-diffusion is a process in which two or more chemicals diffuse 
over a surface and react with one another to produce stable patterns. Reaction- 
diffusion can produce a variety of spot and stripe patterns, much like those found 
on many animals. Developmental biologists think that some of the patterns found 
in nature may be the result of reaction-diffusion processes. So a computer model 
can be textured by simulating a reaction-diffusion process on the surface of the 
model.

6 .2 .2  C ontem p orary  M eth o d s

Most recent work on texture synthesis can be put into three categories:
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(i) Feature M atching

These kinds of methods use models such as pyramids and wavelets to catch the 
features of the texture and then generate a new image by matching the model. 
They try to do the recognition process by defining a statistical model to com­
pute global statistics in feature space and sample images from the texture model 
directly.

Heeger and Bergen [36] used a steerable pyramid to analyse an input image and 
to catch a set of features in terms of histograms of filter responses. A new image 
can be synthesised by matching the histograms of these features. However they 
failed to capture relationships across scales and orientations and their method 
cannot get good results with more structured images.

De Bonet [16] improved Heeger’s method by using a multi-resolution filter-based 
approach. He extended the use of steerable pyramids to consider interactions 
between different levels in the pyramids. It works better than [36] but will produce 
boundary artifacts if the input texture is not tileable.

Portilla and Simoncelli [65] use a more advanced synthesis procedure by decom­
posing the texture image to complex wavelets and synthesising a new image by 
matching the joint statistics of these wavelets. Their method is better than [36] 
and can catch global structures very well but fails with local patterns and some 
highly structured patterns.

All these approaches are very complex and need extra work on building the 
appropriate model and analysing the sample image. They always are good at 
some kinds of textures that have been specified in advance. However, it is hard 
to find a generic feature set that can describe all textures. These methods try 
to compute global statistics, which is difficult, so none of the feature matching 
algorithms can provide a completely satisfactory solution.

(ii) Markov Random  Field (M RF)

Markov Random Field methods assume that a texture is “local” and “station­
ary” . That means each pixel of a texture image is determined by a small set of 
neighbouring pixels and is independent of the rest of the image. This character
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is the same for all the pixels and thus the image appears similar all over. The 
method works by estimating the local conditional probability density function 
(PDF) and synthesising pixels incrementally.

There are two approaches to MRF-based synthesis.

a. P ixel-based

The texture of an image can be expressed as interrelationships between pixels 
in that image. The synthesis process is to analyse and reproduce interactions 
between individual pixels. Pixel-based methods define a function to estimate the 
local conditional probability density of each pixel and generate a new image pixel 
by pixel. They are based on best-fit searching. Each pixel is selected by searching 
the input image for the patch of pixels that is most similar to the nearby pixels 
already synthesised in the output image.

Efros and Leung [26] developed a very good method by growing texture using non- 
parametric sampling. The neighbourhood of each pixel of the image is modelled 
as a square window around that pixel. The size of the window should correspond 
to the texture’s stochastic feature. Put another way, the size of the window 
has to cover an area big enough to represent the texture’s pattern. The next 
best-fit pixel, given its neighbours synthesised so far, is found by searching the 
sample image and finding all similar neighbourhoods. The difference between 
two windows is calculated by a normalised sum of squared differences. Efros’s 
method produces good results for most kinds of texture images (Figure 6.1) but 
it is very slow. For some textures, it has a tendency to “slip” into a wrong part 
of the search space and start to grow garbage.

Wei and Levoy [93] improved Efros’s method by using a multiresolution image 
pyramid based on a hierarchical statistical method. To generate each pixel in the 
output pyramid, a patch in the input pyramid similar to surrounding pixels in the 
current layer and the layers above is searched for. They also accelerated Efros’s 
method by using tree-structured vector quantisation (TSVQ). Wei’s approach 
also produces good result (as good as Efros’s) and is much faster than Efros’s. 
It has the same problem with growing garbage, even worse in some textures. 
(Figure 6.1).
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Some related work has been done by Harrison [34] and Zhu et al. [109]. They 
are also based on MRF and generate pixels one by one.

b. Patch-based

More recent papers based on Efros and Leung [27] have much better performance. 
They all define a patch with size depending on the features of the texture. They 
try  to find the best match of the whole patch, rather than of one pixel. The 
algorithms search for the best patch by comparing the overlap between patches 
synthesised so far and the new one. The new image is then generated patch-by- 
patch.

Xu et al. [102] proposed a texture synthesis algorithm based on random patch 
pasting. Their technique is a combination of traditional procedural methods and 
statistical sampling methods. The results of their algorithm are not as good as 
Efros’s because their method does no statistical modelling or analysis and pastes 
blocks by randomly choosing from input images. It also has a problem with 
mismatching features across patch boundaries. However their method provides a 
new idea by generating texture patch-by-patch, and is thus much faster.

This idea is developed and modified by other researchers to get better results. 
Liang et al. [49] developed Xu’s method and produced a real-time synthesis pro­
cess by patch-based sampling. It searches all patches from the sample texture 
and picks a best match patch to generate new texture. It avoids mismatching fea­
tures across patch boundaries by sampling texture patches according to the local 
conditional MRF density. Liang’s method can re-synthesise high-quality texture 
images in real-time. It remains effective when pixel-based sampling algorithms 
fail to produce good results. It uses feathering blending in the boundary zones, 
thus providing a smooth transition between adjacent texture patches.

Efros and Freeman [27] improved their paper [26] and got a similar method to 
Liang’s approach [49]. Efros’s algorithm searches for the best-match patch like 
Liang’s method but it reduces the mismatching feature across patch boundaries 
by making the minimum error boundary cut between two overlapping blocks.

Figure 6.2 shows some samples of different methods. They were implemented 
in C + +  code on a Linux workstation with a Pentium 400 processor. The first
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F ig u re  6 .2 : Som e exam p les  o f  te x tu re  sy n th es is , C o lu m n  1 : sam p le  te x tu re , 
C o lu m n  2 : E fro s’s n o n -p a ra m e tr ic  sam p lin g . C o lu m n  3: W ei’s p y ram id . C o lu m n  
4: L ia n g ’s p a tch -b ased . C o lu m n  5: E fro s’s im age  q u iltin g .
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column contains sample images. The second column are results synthesised by 
Efros’s non-parametric sampling with weight window 23: computing times range 
from 33,195 secs to 35,196 secs. The third column are results synthesised by 
Wei’s method using a 4-level pyramid with the biggest weight window 11: com­
puting times range from 9,541 secs to 11,756 secs. The fourth column are results 
synthesised by Liang’s method with block size 40, computing times are about 2 
secs. The fifth column are results synthesised by Efros’s image quilting algorithm 
with patch size 40: computing times are about 6 secs.

(iii) Texture Synthesis on Surfaces

Some papers appeared recently showed successful approaches to texture synthesis 
on 3-D surfaces. Wei [94] presented a method to synthesise general textures over 
arbitrary manifold surfaces. He extended his texture synthesis algorithm [93] by 
generalising the definition of searching neighbourhoods. For each mesh vertex, 
the method establishes a local parameterisation surrounding the vertex, uses this 
parameterisation to create a small rectangular neighbourhood with the vertex 
at its centre, and searches a sample texture for similar neighbourhoods. The 
solution is robust and is applicable to a wide range of textures.

Turk [83] independently developed an algorithm for texture synthesis on surfaces. 
A hierarchy of points from low to high density over a given surface is created and 
these points are connected to form a hierarchy of meshes. Then the user specifies 
a vector field over the surface that indicates the orientation of the texture. The 
mesh vertexes on the surface are then sorted such that visiting the points in order 
will follow the vector field and will sweep across the surface from one end to the 
other. Each point is then visited in turn to determine its colour. The colour 
of a particular point is found by examining the colour of neighbouring points 
and finding the best match to a similar pixel neighbourhood in the given texture 
sample. The colour assignment is done in a coarse-to-fine manner using the mesh 
hierarchy. His method fits the surface naturally and seamlessly.

Ying [104] described two synthesis methods, based on the work of Wei [94] and 
Ashikhmin [8]; the results are similar to these two, but directly on surface. The 
synthesised textures have the same qualitative visual appearance as the example 
texture, and cover the surfaces without the distortion or seams of conventional 
texture mapping.
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6.3 T exture S yn thesis and T exture Transfer u s­

ing P artic le  Swarm  O p tim isation

We will now introduce a texture synthesis method proposed by Yan Zhang at Jilin 
University, China [108]. This method is based on patch-based sampling texture 
synthesis [49]. It uses particle swarm optimisation to search for the best match 
patches thus accelerating the synthesis process. It keeps the synthesis quality and 
is easy to extend to other applications such as texture transfer and constrained 
texture synthesis.

6.3 .1  T extu re S y n th esis  by P a tch -B a sed  S am p lin g

As we stated in section 6.2, the patch-based sampling method is a Markov Ran­
dom Field based method and it synthesises new texture one patch at a time. 
Define the unit of synthesis Bk to be one of the square patches from the set S b 
of all such patches in the input texture image I. The patch size W b x  W b of 
the Bk will be decided by the user. It must be big enough to capture the rele­
vant structure in the texture but small enough so that the interaction between 
these structures is left to the algorithm. To synthesise a new texture image, first 
randomly take a patch B 0 from Sb and paste it onto the left bottom of output 
image O. We now wish to find another patch to paste adjacent to it. Search S b 
for patches that by some measure agree with their neighbours along the region 
of overlap in O. Figure 6.3 shows how to match a new patch and an already 
synthesised area. The dark area is already synthesised, the blue patch is the new 
patch to be synthesised and the area in dotted lines is the boundary zone. The 
boundary areas of the already synthesised area and the new patch should overlap 
and should be similar within some error tolerance.

The searching process is important to texture synthesis because it determines 
the new patch to be pasted onto the output image. In order to keep stochastic 
features, the algorithm forms a set P  of patches so that the error in the overlap 
is within some error tolerance. Then we randomly pick one patch from set P  
and paste it onto the output image and repeat this process until all the image 
has been filled. After each patch has been chosen, we blend its boundary area to

87



new patchalready synthesised area

overlapped boundary

F ig u re  6 .3: P a tc h -b a s e d  t e x tu r e  s y n th e s is  

im p ro v e  th e  s y n th e s is  q u a lity .

T h e  w h o le  p ro c e s s  is a s  fo llow s,

1. R a n d o m ly  p ick  a  Wb x  Wb p a tc h  B0 f ro m  in p u t  t e x tu r e  I  a n d  p a s te  B0 o n  

th e  low er le f t c o rn e r  o f  o u tp u t  t e x tu r e  O.

2. S e a rc h  I  to  g e t a  s e t  P  o f  p a tc h e s  su c h  t h a t  e a c h  p a t c h ’s b o u n d a r y  m a tc h e s  

th e  a lr e a d y  s y n th e s is e d  a r e a  w ith in  so m e  e r ro r  to le ra n c e .

3. R a n d o m ly  ch o o se  o n e  p a tc h  fro m  P ,  p a s te  i t  o n to  th e  O a n d  b le n d  i ts  

b o u n d a r y  a re a .

4. R e p e a t  u n t i l  O is filled .

T h e  f e a th e r in g  b le n d in g  [80] is u se d  to  p ro v id e  a  s m o o th  t r a n s i t io n  b e tw e e n  a d ­

ja c e n t  t e x tu r e  p a tc h e s .

I t  is c le a r  t h a t  fo rm in g  th e  s e t  P  is th e  m a in  c o m p u ta t io n  lo a d  o f  th i s  m e th o d . 

W e n e e d  to  s e a rc h  th e  s e t  Sb o f  a ll WB x  Wb p a tc h e s  f ro m  I  fo r p a tc h e s  w h o se  

b o u n d a r y  m a tc h e s  th e  a lr e a d y  sy n th e s is e d  a re a . A s  L ia n g  [49] m e n tio n e d , th is  

se a rc h  is e s se n tia lly  a  k n e a re s t  s e a rc h  p ro b le m  in  th e  h ig h  d im e n s io n a l  sp a c e , 

w h ic h  is c o m p u ta t io n a l ly  d e m a n d in g . I t  is h a r d  to  fin d  a n  a lg o r i th m  b e t t e r  th a n  

b ru te - fo rc e  s e a rc h  if  w e in s is t  o n  g e t t in g  th e  e x a c t  n e a re s t  n e ig h b o u rs .  H o w ev er, 

d u e  to  th e  s p e c ia l  f e a tu re s  o f  t e x tu r e  s y n th e s is ,  i t  is a c c e p ta b le  t h a t  w e c a n  u se



the approximate nearest neighbours which leads to many optimisation algorithms. 
Liang optimised his method with an optimised KD-tree, a quadtree pyramid and 
principal components analysis. This accelerated the method substantially but is 
very complex to implement.

6.3 .2  T extu re  S yn th esis  u sin g  P a rtic le  Sw arm  O p tim isa ­

tio n

(i) P a r tic le  Sw arm  O p tim isa tio n

The original idea of PSO was proposed by J.Kennedy and R.C.Eberhart [42]. 
It was discovered through simulation of a simplified social model. Numerous 
variations of the basic algorithm has been developed and are applied to many 
applications.

The basic algorithm of PSO involved forming a set of particles over the search 
space, each with an individual, initially random, location and velocity vector. 
The particles travel over the search space, remembering the best fit location 
experienced. During each iteration, each particle adjusts its velocity vector based 
on its momentum and the influence of its best location and the best location of 
its neighbours. Then it computes a new point to examine. Each particle tends 
to a local, non-optimal extrema. However, by each particle considering both its 
own memory and that of its neighbours, the entire swarm tends to converge on 
the global extrema.

The particle uses the following formulae to update its velocity and location:

V (t + 1) = V(t) + randQ x cl x (pBest(t) — present(t))+  
randQ x c2 x (gBest(t) — present(t))) 

present(t +  1) =  present(t) + V(t + 1)

Here, t stands for time t, V(t) is the velocity vector, present(t) is the location 
factor. pBest(t) is the location vector for the best fitness the individual particle 
has yet encountered. gBest(t) is the global best fitness already encountered, which 
is the minimum of the pBest(t) of all particles. randQ is the random function
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and cl, c2 are the cognitive and social learning rates, respectively. These two 
rates control the relative influence of the memory of the neighbourhood to the 
memory of the individual. Normally they are set to 2 [42].

(ii)Texture Synthesis using PSO

As mentioned we are not aiming at always finding the best match due to texture 
synthesis’s special feature: synthesised texture should look like the sample texture 
and keep the randomness of textures. The PSO algorithm will either give us the 
best location or an approximate best location. Thus it is suitable for the texture 
synthesis search process as the approximate best location is good enough. Now 
we apply the PSO algorithm to texture synthesis.

Randomly set a number of positions in input image I  and treat these points as 
virtual particles. These particles can be thought as virtual points of the image 
and each particle determines a patch by setting the left upper corner of the patch 
as the position of this particle. When the particles travel through the image 
we compare the patches they determine with the synthesised area and find the 
best-match patch (the best fit position of the particles). We will now explain in 
detail how to apply PSO searching in texture synthesis.

•  Fitness Function Each particle will travel through /  according to its location 
and velocity function. At each location we need to calculate the fitness of 
the current location. The fitness is then the distance between the patch 
A  determined by particle and patch B  which is the patch just synthesised 
(Figure 6.4). The formula for calculating fitness between two patches A  
and B  is as follows:

d(A, B)  =  s q r t i j :  E [ ( f i (P^ ')-il(p*i))2+ (G (p«)-G (p«))2+ (B (p « )-B (P«))2]}
i= l j = 1

where R(), G(), B() are the RGB value of the pixel, p^ means the pixel at 
location i j  in patch A and k , I means the width and height of the boundary 
area of the patch.

• Attributes of the Particles Texture synthesis is performed in 2D space, so we
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F ig u re  6 .4 : P S O  b a s e d  te x tu r e  s y n th e s is

u p d a te  th e  p o s i t io n  a n d  v e lo c ity  o f  t h e  p a r t ic le s  u s in g  th e  fo rm u la  d e s c r ib e d  

in  6 .3 .2 ( i) . In  p a r t ic u la r ,  w e d e fin e  n p a r t ic le s  o n  th e  s a m p le  t e x tu r e  a n d  

r e c o rd  th e  b e s t  f itn e ss  lo c a t io n  o f  e a c h  p a r t ic le  to g e th e r  w i th  th e  g lo b a l 

f i tn e s s  w h ic h  is th e  b e s t  f itn e s s  a m o n g  a ll p a r t ic le s .

E a c h  p a r t ic le  w ill b e  g iv en  a n  in i t ia l  v e lo c ity  v e c to r  Vi =  (ViX,Viy). W e 

d e fin e  a n o th e r  tw o  v e c to rs  Li =  (L iX, Liy) a n d  Gi =  (GiX,Giy)

LiX =  LBestXi — PresentXi Liy =  LBestYi  — PresentYi

GiX =  GBestXi — PresentXi Giy =  GBestYi — PresentYi

N ow  w e u p d a te  th e  p a r t ic le s  u s in g  th e  fo rm u la e  d e s c r ib e d  in  th e  la s t  s e c tio n .

T h e  P S O  a lg o r i th m  is a n  i t e r a t io n  p ro c e ss . W e w ill t e r m in a te  th e  i t e r a t io n  

w h e n  i t  ex ceed s  th e  m a x im u m  i t e r a t io n  n u m b e r  d e f in e d  b y  th e  u s e r  o r  th e  

p ro g ra m  fin d s  th e  b e s t  lo c a t io n . In  th e  fo rm e r  c a se  i t  g ives a n  a p p r o p r ia te  

lo c a tio n . A  fu n c tio n  drain is u se d  to  d e te rm in e  th e  b e s t  lo c a tio n . I f  th e  

d iffe ren ce  b e tw e e n  a  p a tc h  a n d  th e  s y n th e s is e d  a r e a  is less  t h a n  dmin  t h e n  

w e g e t  th e  b e s t  lo c a tio n  a n d  s to p  th e  i te r a t io n .

dmin =  X sqrt(^2(R(pk)2 +  G{pk)2 4- B(pk)2))
k= 1

w h e re  A  is th e  n u m b e r  o f  p ix e ls  in  th e  b o u n d a r y  a r e a  a n d  pk r e p re s e n ts  th e

The patch ju st synthesised
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value of the kth  pixel in the boundary zone of the just synthesised patch.

Once we terminate the iteration we will then use the patch decided by the 
best global fitness location and paste the patch onto the output texture. A 
is the error tolerance and it is set to 0 . 2  in our algorithm because, as Liang 
mentions, this error threshold is most suitable for keeping the randomness 
while ensuring synthesis quality and avoiding repetition. [49]

The algorithm can be stated as follows:

1 . Randomly pick a Wb x  Wb texture B 0 from input texture I  and paste Bq 
on the lower left corner of output texture O.

2 . If the PSO algorithm found a best location then we paste the best location 
patch to O. Otherwise we terminate the iteration when it exceeds the 
maximum iteration number and we have found the best solution so far. 
Blend the corresponding patch and paste it to O.

3. Repeat until O is filled.

6 .3 .3  S y n th esis  R esu lts  and A lg o rith m  A n a ly sis

(i) Synthesis R esults

Figure 6.5 gives some examples of the synthesis results using the PSO algorithm 
and Liang’s patch-based sampling method [49]. These results are all generated 
by using 20 particles and an upper limit of 100 iterations. From visual inspection, 
our method is effective for both structure and stochastic textures. It is as good 
as the original patch-based sampling synthesis method.

(ii) A nalysis o f the Num ber of Particles and the N um ber o f Iterations

It is understood that the number of particles in the input texture will affect 
the synthesis quality. If we have more particles on the searching space, it is
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F ig u re  6.5: P S O  b ased  te x tu re  sy n th esis . C o lu m n  (a) are  in p u t sam p les  w ith  
size 100 x  100, co lu m n  (b) a re  sy n th esised  by p a tc h -b a se d  sam p lin g  m e th o d  an d  
co lum n  (c) a re  o u r  re su lts  u sing  20 p a rtic le s  an d  th e  100 ite ra tio n s . T h e y  b o th  
have size 200 x  200. 93



more likely the algorithm can find the best location. However, more particles 
also means longer computing time. It is a trade off between quality and time. 
We are aiming to find the number of particles which provides high quality while 
remaining efficient. We have tried different numbers of particles: 10, 20 and 30 
particles on a 100 x 100 sample texture. Figure 6 . 6  shows the results.

The stochastic features of the synthesised texture are increased when the number 
of the particles increases. However the computing time is also increased. It 
takes 3, 8  and 13 seconds for using 10, 20 and 40 particles, respectively. There 
is no numerial or objective measurement tool to assess the texture quality yet. 
However from our subjective visual experiments from Figure 6 . 6  that using 2 0  

particles is good enough for these sample textures with size 100 x 100. Obviously 
we have to use more particles if the input texture is big, and decrease the number 
of particles if input texture is small. And the particles are highly depend on the 
features of the texture, i.e. we have to use different number of particles for a 
structured texture such as wall and a stochastic texture such as grass.

When we are doing the synthesis, we either find the best solution or stop the 
iteration when it reaches the iteration limit. The number of iterations clearly 
affects the synthesis quality and the computing time. We tried 500, 350 and 100 
iterations for 100 x 100 sample textures. Figure 6.7 shows different synthesis 
results with different iterations. They all use 2 0  particles. The computing time 
for 500, 350 and 100 iterations are 10, 7 and 3 seconds, respectively.

The number of iterations marginally changes the synthesis quality. However it 
significantly affects the synthesis speed. As we can see from Figure 6.5 and 6.7 
with 2 0  particles for 1 0 0  x 1 0 0  sample textures, 1 0 0  iterations can generate good 
results. The number of iterations is also linear with the size of sample textures.

(iii) Perform ance Analysis

The PSO based texture synthesis is simple and fairly easy to implement. It 
doesn’t require any analysis time in contrast to the optimised kd-tree (KD Tree), 
quadtree pyramid (QTP) and principal components analysis (PCA) in Liang’s 
method. We use sample textures with size 100 x 100 and synthesise new textures 
with size 200 x 200. We have assessed the computing time and table 6.1 shows
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F ig u re  6.6: P S O  b ased  te x tu re  sy n th esis  w ith  d iffe ren t p a rtic le s , (a) a re  th e  
sam p le  te x tu re s , (b) a re  th e  re su lts  g e n e ra te d  by [49]. (c) uses 10 p a rtic le s , (d) 
uses 20 p a rtic le s  an d  (e) u ses 40 p a rtic le s

W

(c)

F ig u re  6.7: P S O  b ased  te x tu re  sy n th esis  w ith  d iffe ren t ite ra tio n s , (a) a re  th e  
sam p le  te x tu re s , (b) a re  th e  re su lts  g e n e ra te d  by  [49]. (c) uses 500 ite ra tio n s , 
(d) uses 230 ite ra tio n s  a n d  (e) uses 100 i te ra tio n s
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Method Analysis Time Synthesis Time
Original Patch-based 0 . 0 0 13.1
Patch-based+KDTree+QTP+PCA 5.24 0.16
PSO based method 0 . 0 0 3.26

Table 6.1: Performance comparison

the performance comparison on a Dell 4100 Pentium 3 machine with 1 G CPU. 
All the methods are implemented in C + +  code and all the figures in the table 
are seconds. The PSO based method uses 20 particles and 100 iterations.

It is clear that our method using 100 iterations and 20 particles is simpler and 
faster than the patch-based method using QTP, KDTree and PCA.

6.4 PSO  B ased  T exture Transfer

Texture transfer takes a sample texture and a picture as input and transfers the 
features of the texture to the picture so that the picture shows texture features. 
It can also be thought of as transferring the features of the picture to texture. In 
his paper [103], Xiaogang Xu did texture transfer based on Ashikhmin’s method
[8 ]. However his method synthesises textures one pixel at a time and thus is very 
computationally expensive. We now extend our PSO based synthesis method to 
do texture transfer.

We use a YIQ system [38]. The Y channel of the YIQ system represents the 
brightness information of the image and the IQ channel keeps the colour infor­
mation. Our basic idea is blending the Y channels of texture and picture, then 
use the IQ information from the input picture (if we want to transfer texture to 
picture); or use IQ information from the input texture (if we want to transfer 
picture to texture). Once we get the new YIQ values, we can convert back to 
RGB and write to the output picture.

The YIQ and RGB system can be calculated from the following formula.
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F ig u re  6.8: P S O  b ased  te x tu re  tra n sfe r: tra n s fe r r in g  te x tu re  to  p ic tu re , (a) is 
sam p le  te x tu re , (b) is in p u t  p ic tu re  (c) is o u r re su lt an d  (d) is th e  re su lt from  
[103]

Y ' ’ 0.299 0 .587 0.114 ’  R '

I = 0.596 - 0 .2 7 4  - 0 .3 2 2 G
Q 0.211 - 0 .5 2 3  0.312 B

F irs tly  we sy n thesise  a  te m p o ra ry  te x tu re  T  from  th e  sam p le  te x tu re  I. T h e  

te m p o ra ry  te x tu re  h as  th e  sam e size as th e  in p u t p ic tu re . T h e n  we co n v ert th e  

in p u t p ic tu re  P  a n d  te m p o ra ry  te x tu re  T  to  Y IQ  fo rm a t. W e can  now  m ix  th e  

Y  v alue  of T  a n d  P ,  a d ju s tin g  th e  Y  value o f T  so t h a t  th e  p ic tu re  is ‘tra n s fe re d ’ 

to  th e  te x tu re . W e use th e  follow ing fo rm u la  to  g e t th e  new  Y  value.

OutY =  A x  Yt +  (1 -  A) x  YP 

w here  A is a  f lo a tin g  value  b etw een  0 a n d  1. Yt m ean s  th e  Y  value  of th e
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F ig u re  6.9: P S O  b ased  te x tu re  tra n sfe r: tra n s fe rr in g  p ic tu re  to  te x tu re , (a) is 
sam p le  te x tu re , (b) is in p u t  p ic tu re  (c) is o u r re su lt a n d  (d) is th e  re su lt from  
[103]

te m p o ra ry  te x tu re  T  an d  Yp m ean s th e  Y  value  o f th e  in p u t p ic tu re  P.

W e c an  a d ju s t  th e  A value to  co n tro l th e  o u tp u t  te x tu re , m ak in g  i t  look  m ore  

like te x tu re  o r p ic tu re . O nce we g e t th e  m ix ed  Y  value, we can  use th e  IQ  value  

from  e ith e r  in p u t  p ic tu re  P  o r te m p o ra ry  te x tu re  T , d ep en d in g  on w h e th e r  we 

w an t to  tra n s fe r  te x tu re  to  p ic tu re  o r tra n s fe r  p ic tu re  to  te x tu re .

T h e  te x tu re  tra n s fe r  p rocess can  be  s ta te d  as follows:

1. S y n thesise  a  te m p o ra ry  te x tu re  T  from  sam ple  te x tu re . T  is th e  sam e size 

as th e  in p u t p ic tu re  P.

2. C o n v e rt P  an d  T  to  Y IQ  fo rm a t.

3. For each  p o in t o f T , c a lc u la te  th e  m ix ed  Y  v alue  u sin g  th e  Y  values from

P  an d  T .

4. G e t th e  IQ  value from  e ith e r  T  o r P  to g e th e r  w ith  th e  m ixed  Y  value,

c a lc u la te  th e  R G B  value a n d  o u tp u t  to  th e  o u tp u t  p ic tu re  O.
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Figure 6 . 8  and 6.9 shows two results. Figure 6 . 8  is transferring texture to picture 
which uses the IQ value of input picture and A =  0.4. Figure 6.9 is transferring 
picture to texture which uses the IQ value of the temporary texture and A =  0.5 
Figure 6 . 8  and 6.9 (c) are our results and (d) are the results from [103]. It is 
clear that our results generate better transfer results due to our higher texture 
synthesis quality compared to their pixel based synthesis method.

6.5 C onstrained  T exture S ynthesis

A normal texture synthesis technique synthesises textures in an image or a sur­
face. The constrained texture synthesises textures on a specific area which can be 
used in many ways, e.g. photo repair, designing and image filling. Ashikhmin [8 ] 
proposed a constrained texture synthesis method using a single texture sample. 
However sometimes we need two or more textures or pictures as input. We have 
extended the PSO based texture synthesis method to be used in single and multi 
sample constrained texture synthesis.

We take n -1 - 1  images as input: an input picture P  and several texture samples 
Then we synthesise texture on different areas from different sample

textures.

This is easy to do by using texture transfer. Basically we first synthesise n 
temporary textures of suitable size from the sample textures Then we
transfer one of the temporary textures to a specific area according to the user’s 
need.

We will first examine two-sample constrained texture synthesis. We take three 
images as input: one is an input picture P  and the others are two texture samples 
t l  and t2. P  has a clearly defined background and foreground so that they are 
filled by textures synthesised from t l  and t2. We first generate two temporary 
texture T l  and T 2 from the two sample textures. They both have the same size 
as P . Then we take any point from P  and set it as background. Call the Y value 
of this point y. For each pixel of P , we check whether the Y value of this pixel 
is within some tolerance of y. If it is, then we transfer texture T l  to this pixel, 
otherwise we transfer T 2  to this pixel. We keep doing this until all the image
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F ig u re  6 .10 : C o n s t r a in e d  te x tu r e  s y n th e s is . ( a ) ,( b )  a re  tw o  s a m p le  te x tu r e s ,  (c) 
is th e  t a r g e t  p ic tu r e  a n d  (d )  is  th e  sy n th e s is e d  re s u l t .

h a s  b e e n  filled . F ig u re  6 .1 0 , 6 .11 a n d  6 .1 2  sh o w s th r e e  e x a m p le s  o f  c o n s tr a in e d  

t e x tu r e  s y n th e s is .

F o r  m u lt i  s a m p le  im a g e s , th e  u se r  sh a ll  d e fin e  w h ic h  a re a s  n e e d  to  b e  te x tu r e d  

a n d  w h ic h  s a m p le s  n e e d  to  b e  u se d . W h ile  in  tw o  s a m p le  c a se  w e c a n  d e fin e  a  

b a c k g ro u n d  a n d  fo re g ro u n d , m u lt i  s a m p le  ca se s  re q u ire  so m e  te c h n iq u e  to  d is t in ­

g u is h  e a c h  sp e c ia l  a r e a  sp e c if ie d  b y  th e  u se r .

6 .6  P e r sp e c tiv e  T ex tu re  S y n th esis

A ll th e  m e th o d s  p re s e n te d  g e n e ra te  r e s u l ts  o n  p la n a r  s u rfa c e s  o r  d i r e c t ly  o n to  3 -D  

s u rfa c e s . S o m e tim e s  w e n e e d  to  sy n th e s is e  t e x tu r e  o n  a  p la n a r  su r fa c e  t h a t  h a s  

b e e n  r o t a t e d  fo r  so m e  a n g le  f ro m  a  p e r s p e c tiv e  v iew . T e x tu re  s y n th e s is  o n  a  2D  

s u r fa c e  c a n n o t  ach ie v e  th i s  w h ile  te x tu r e  s y n th e s is  a p p ro a c h e s  o n  3D  s u rfa c e s  a re  

to o  c o m p le x  fo r  th i s  ta s k . W e w ill p re s e n t  a  m e th o d  fo r s y n th e s is in g  p e r s p e c tiv e  

t e x tu r e  - a  p la n a r  s u rfa c e  r o ta te d  a n d  v iew ed  in  3 D  sp a c e .

1 0 0
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F ig u re  6.11: C o n s tra in e d  te x tu re  sy n th esis . (a ) ,(b )  a re  tw o  sam p le  te x tu re s , (c) 
is th e  ta rg e t  p ic tu re  an d  (d) is th e  sy n th esised  resu lt.

F ig u re  6.12: C o n s tra in e d  te x tu re  syn th esis . (a ) ,(b )  a re  tw o  sam p le  te x tu re s , (c) 
is th e  ta rg e t  p ic tu re  an d  (d) is th e  sy n th es ised  re su lt.
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The 2D surface in perspective is of particular interest because it is commonly 
found in film and game applications. For example, when you play the game 
“Tomb Raider” , the walls and the ground are all 2 D planes viewed in perspec­
tive. Traditional texture mapping is less realistic and introduces texture repeti­
tion. Normal texture synthesis in 2D cannot handle this situation. One possible 
solution is to synthesise a 2D plane texture and map it onto the rotated surface. 
However this is highly expensive in computing time and memory. Texture syn­
thesis on a 3D surface is not suitable because this is a special case of a 3D surface 
which should offer a simpler solution. Our texture synthesis method is designed 
for this case. It avoids the complexity of synthesis method on 3D surface, it is 
effective and relatively fast. This method is also derived from the patch-based 
sampling method.

6 .6 .1  E x ten sio n  to  P ersp ectiv e  T ex tu re

The patch-based sampling approach synthesises new texture only on 2 D surfaces. 
Now if we consider there is a 2 D plane in perspective view - a 2D surface viewed 
in 3D, the patch-based method cannot synthesise textures directly on this sur­
face. Those methods [94, 83, 104] which synthesise texture on 3D surfaces are 
too complex for this situation because they involve 3D mesh generation and cal­
culation.

We adjust Liang’s patch-based method to be used in perspective projection. In 
principle, our method take a small sample texture as input and directly synthe­
sises texture onto a 2 D plane rotated in some angle in 3D space. The 2D plane 
can be of arbitrary size, rotated with arbitrary angle and viewed in perspective 
in 3D.

The user defines the rotation angles of the 2D plane in 3D space: a , /?, 7 ; and the 
patch size w. We define the input texture image to be / ,  the output image O. 
The output image O shows the 2D plane rotated by the above angles in 3D space. 
We will also need to refer to the unrotated plane in 2 D space: call this virtual 
plane V. Finally we need a temporary image T. T  is without any rotation and 
only contains two rows of patches: one row of patches are already synthesised 
and the other row has the patches to be synthesised. When the latter is full, we 
swap the roles of these two rows.
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The screen is defined at integer coordinate points but mapping each new patch 
onto the plane O produces image points that are not at integer coordinates. If the 
nearest displayable point is chosen, and this is repeated for all pixels in an area 
which the patch covers, the resulting image may have unset pixels in it. Moreover, 
if we generate perspective texture images, there is a many-to-one mapping, which 
leads to further loss of information.

Resampling [33] can solve this problem. Each patch after rotation will fall in 
a specific area on the output image. We call this area the target frame. Each 
pixel in the target frame is calculated by first checking whether it is rotated 
by the source patch and, if so, determining the source point from which it was 
rotated. Here inverse rotation working back from the target to source is used. 
The source point will not always have integer coordinates and therefore will fall 
in an area delimited by four pixels. A practical way to do resampling is to note 
the maximum and minimum x and y source coordinates of the patch. These 
four points are then rotated to give four target points, of which the maximum 
and minimum x and y coordinates determine a target rectangle. This rectangle 
encloses the rotated patch. The reverse rotation and interpolation process is 
repeated for each target pixel in the rectangle. The intensity of each target 
pixel is calculated by local interpolation. Bilinear interpolation is used here. It 
proceeds by forming a weighted average of the intensities of the four nearest 
neighbour pixels.

The complete algorithm is as follows:

1. We start by randomly picking one patch from I  and pasting it onto T.

2 . Go through the temporary image T  in raster scan order in steps of one 
patch. As before, search the sample texture I  for a set of patches that 
match, in their overlap with the patch in T (above and left) within some 
error tolerance (Figure 6.3). Randomly pick one such patch, blend the 
boundary area and paste it onto T.

3. Resampling. Find the axis-aligned bounding rectangle in O of the new 
patch. For all pixels within the bounding rectangle we perform an inverse 
mappping to V. If the pixel being inverse rotated is within the current 
virtual patch area of V , then we do a bilinear interpolation to get a value
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from T  and use this value to colour O. If it is outside, then this O pixel is 
not within the new patch, so we ignore it.

4. After one patch has been pasted, go to 2 , repeat until the output image has 
been filled.

6.6 .2  E xp erim en ta l R esu lts

The results of the synthesis process are shown in Figure 6.13 and 6.14. The top 
left is the original texture sample, top right is the synthesised image rotated along 
the Z  axis by 30 degrees, the middle is the synthesised image rotated along the 
x  axis by 45 degrees and the bottom is the synthesised image rotated along both 
the x  axis and y axis by 30 degrees. The performance is effective for structured 
texture, and it is quite good for statistical textures as well. Figure 6.14 shows 
a highly statistical texture with the synthesised perspective textures. Consider 
the criteria we have set for successful texture synthesis progress. The qualities of 
the textures are determined by Liang’s patch-based algorithm, which has been 
proved very good at a wide range of the textures. The new image looks similar 
to the sample image but with no excessive repetition. There are a few slightly 
mismatched or distorted boundaries, but the results are acceptable. From our 
observation, the quality of the texture is as good as most existing 2 D algorithms, 
or even better.

The algorithm is also very fast. Unoptimised C + +  code is used to generate these 
results on a Linux workstation with Pentium 3G processor. The top right image 
in figure 6.13 (192 x 192 for unrotated image) took 2.3 seconds and other images 
in figure 6.13 (320 x 320 for unrotated image) took 6.0 seconds each.

6.7  C onclusion

In this chapter we have made a survey of texture synthesis. We introduced some 
traditional and contemporary texture synthesis techniques and we implemented 
some of them for comparison. Most of these methods can be categorised into 
procedural texture or statistical sampling. Statistical methods are better than
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F ig u re  6 .13 : T o p  le ft: o r ig in a l s t r u c tu r e d  te x tu r e .  T o p  r ig h t:  s y n th e s is e d  im a g e  
r o t a t e d  a lo n g  Z a x is  b y  30 d e g re e s . M id d le : s y n th e s is e d  im a g e  r o t a t e d  a lo n g  X  
a x is  b y  45 d e g re e s . B o t to m : s y n th e s is e d  im a g e  r o t a t e d  a lo n g  b o th  X  a n d  Y  a x is  
b y  30 d e g re e s
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F ig u re  6 .14 : T o p  le ft: o r ig in a l  s t a t i s t i c a l  t e x tu r e .  T o p  r ig h t:  s y n th e s is e d  im a g e  
r o ta te d  a lo n g  Z a x is  b y  30 d e g re e s . M id d le : sy n th e s is e d  im a g e  r o t a t e d  a lo n g  X  
a x is  b y  45  d e g re e s . B o tto m : s y n th e s is e d  im a g e  r o ta te d  a lo n g  b o th  X  a n d  Y  a x is  
b y  30 d e g re e s
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procedural methods because the former produce higher quality results for gen­
eral textures while the latter are only applicable to limited classes of texture. 
Statistical methods can be further categorised into feature matching or Markov 
Random Field. Methods based on the Markov Random Field (MRF) have been 
demonstrated to be effective for a broad range of textures. They use pixels di­
rectly from input images and paste pixels onto the new image under relationships 
among pixels. MRF directly makes use of two of the most important aspects of 
texture, pixels and their interrelationships.

We presented an efficient texture synthesis method. It is based on the patch- 
based sampling texture synthesis method. However we use a particle swarm 
optimisation for the searching process thus accelerating searching. It is simple, 
easy to implement, more efficient compared to other acceleration schemes and it 
is faster. Visual inspection shows that it generates results as good as the original 
method.

Moreover we have extended the algorithm to texture transfer. It transfers texture 
features to pictures or inserts a picture into a texture. We have used the PSO 
based texture synthesis and the YIQ system and they produced better results 
than previous methods.

We have implemented multi-sample constrained texture synthesis. We take sev­
eral sample textures and one picture as input and then synthesise textures from 
different sample textures into different areas of the picture. The algorithm is very 
effective.

Additionally, we have presented an efficient method for synthesising a perspective 
texture from a 2 D example texture. The method produces textures with similar 
quality and speed to their 2D counterpart (Liang’s patch-based sampling). This 
means that those textures that work well with Liang’s algorithm also work well 
with our algorithm. The algorithm produces high quality synthesised images very 
rapidly.

The sample images we used here are all square images. For some samples from 
scanned photographs, it is very hard to get square samples. The samples would 
be rotated by an angle and we can only see the perspective pictures. For future 
work, we are interested in extending the methods presented here for perspective
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texture synthesis from rotated perspective samples.

The user has to specify the number of particles and the maximum iteration num­
ber according to the size of the input texture sample in the PSO based texture 
synthesis method. More research needs to be done to expose the relationship 
between the sample size and the particle number and the maximum iteration 
number.

Our future work focuses on extending the algorithm into 3D texture synthesis and 
dynamic texture synthesis which we see great as a potential of this algorithm.
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Chapter 7

Conclusions and Future Work

This thesis addresses a fundamental problem of digital image processing: to find 
an appropriate representation of digital images which provides a link between 
continuous images and digital ones. It is the foundation of all other image- 
related applications. However it still remains a challenging problem to researchers 
and this is the motivation of our image model. The intuition behind our image 
representation model is the importance of the roles edges play in images. The 
contribution of this thesis is that it provides an appropriate tool to exploit fun­
damental properties of edges and to represent digital images well so that efficient 
and effective practical applications can be drawn from this model. We also study 
the texture synthesis problem. We present a survey of texture synthesis and 
introduce a novel texture synthesis method using particle swarm optimisation 
for patch-based texture synthesis. We extend this method to texture transfer, 
constrained multi-sample texture synthesis and perspective texture synthesis.

7.1 C ontribution

We propose a pixel level data-dependent triangulation image model. The image 
is triangulated by a triangulation mesh and the edges are represented by the 
diagonals of the triangles. The main strength of this model is it represents the 
orientations of edges and thus keeps the most visual important feature of images. 
The main advantages of this model are its simplicity and efficiency. It is a generic
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model and is effective for all images.

This model allows various applications to use this representation and to recover 
continuous intensities from discrete image data samples. We have examined sev­
eral important applications such as arbitrary resolution enhancement, arbitrary 
rotation, demosaicing of digital colour images and other applications of still im­
ages in continuous space. The simplicity of the underlying model leads to simple, 
effective and efficient applications in those different areas.

Conventional approaches to represent image edges try  to detect edge orientations 
using various techniques. The drawbacks of these approaches are they are often 
complex and are not robust for all images. Moreover, it is difficult to employ 
their models in different applications. This thesis provides another direction to 
image representation and image analysis. Our model does not try to detect a 
long-range edge or attem pt to find a statistical rule for the local geometry. It 
simply triangulates each four-pixel square according to the intensity of the four 
pixels or a bigger neighbour window. By doing this in every local square, the 
global edges of the images are well presented.

We have presented a basic model and an extended model by considering the local 
neighbouring information to represent local edges. Algorithm analysis shows both 
have O(n) time complexities which are linear with the image size and similar to 
bilinear interpolation.

At heart, out model recognises that simple interpolation suffices, provided it 
covers a sufficiently small area. Any errors in the interpolation is strictly limited 
by the tiny triangles and the choice of diagonal.

We have used this model in the following applications.

7 .1 .1  Im age In terp o la tion

The model is applied to image interpolation and in particular: arbitrary magni­
fication, arbitrary rotation and other manipulations on still images. The images 
are first triangulated by our basic or extended model, then we interpolate from the 
triangulation mesh. The triangulation mesh generated corresponds to the edges
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of the image so that the algorithm will always interpolate along the edge but not 
across it. Thus the interpolated image will keep the edge sharp while retaining 
smoothness along the edge. Visual inspection suggests that it generates better 
results than the traditional methods, e.g. bilinear and bicubic interpolation. It 
is as simple and efficient as bilinear interpolation.

We also examined the interpolated image quality by using mean square error 
(MSE). MSE is a fidelity measure between the interpolated image and the original 
image. The objective MSE results confirm this model is effective.

This model can be implemented in hardware. Thanks to the rapidly-improving 
technology, a graphics card can now handle tens of millions of triangles per second 
and interpolate within the triangles. This means our triangulation mesh can be 
stored and manipulated by graphics card in real-time. We have demonstrated 
a hardware implementation by using OpenGL and we are pleased to see high- 
quality real-time image interpolations. This leads to great industrial potential of 
this model.

7.1 .2  D em osa ic in g  o f C olour Im ages

Mosaic images have only one primary colour (R, G or B) in each pixel. Digital 
cameras use such a moscaic and so the “demosaicing” process is essential to get 
full colour photographs.

We modified our basic model to use a colour-difference space because it explains 
the correlation between different colour channels. Because our model can tune 
the interpolator along the edges, it avoids the colour mis-registration in edge 
areas which traditional linear interpolation suffers. Visual and MSE inspection 
show our model gives superior reconstruction quality. It is also very fast.

7 .1 .3  T extu re S yn th esis

This research started by studying texture and texture representation and later 
widened to image representation. The texture work represented here is therefore
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in the discrete domain. Even here however, we use interpolation in small areas, 
in keeping with our general approach. Texture has an excessive number of edges 
and it has some special applications such as mapping and synthesis rather than 
interpolation.

We have made a detailed survey of texture synthesis and compared different 
methods. The patch-based Markov Random Field methods are so far the best 
ones. We extended the patch-based sampling method into perspective which 
means texture synthesis can be done in two and a half dimensional space.

Another experiment done together with Yan Zhang at Jilin University, China is 
extending their PSO based texture synthesis method into texture transfer and 
constrained texture synthesis. The PSO based texture synthesis is derived from 
the patch-based sampling method and it accelerates the searching process which 
reduces the computing time. We have used the PSO based texture synthesis 
for texture transfer (which transfer a picture to a texture) and multi-sample 
constrained texture synthesis (which synthesises texture on different constrained 
areas from different samples).

7.2 Future W ork

There are a number of directions in which the work of this thesis can be continued.

•  In te rp o la tio n  in  o th e r  co lour spaces Our method performs very well 
in full RGB colour space, however it would have been interesting to do 
some of the interpolation in colour difference space, as we introduced in the 
demosaicing problem in chapter 5. Colour difference space considers the 
correlation between colour channels which might improve the interpolation 
quality.

We are also considering performing interpolation in the YIQ colour space 
which we introduced in chapter 6 . In principle our method triangulates 
the image according to the luminance of the image. The Y channel of the 
YIQ colour space represents the brightness and IQ channel keeps colour 
information.
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• C M Y K  C olour P r in tin g  The CMYK (cyan, magenta, yellow, black) 
colour space is commonly used in colour printers. Cyan, magenta, and yel­
low are the complements of red, green, and blue, respectively. Mixing cyan, 
yellow, and magenta produces black. To maintain black colour purity, a 
separate black ink is used rather than printing three colour inks to gener­
ate it. However, the density of CMYK inks cannot be varied continuously 
across an image, so a range is produced by halftones. In halftones, translu­
cent CMYK ink dots of variable size are printed in overlapping grids. Each 
grid is placed at a different angle for each ink colour. Smaller halftone dots 
mean more reflected light from the white paper and thus lighter appear­
ance in that colour. By printing different sizes of halftone dots of different 
colours and mixing them together, a full colour image can be produced by 
printers.

Our image model can be applied to a more accurate CMYK colour printing. 
The size of the halftone dots depends on how much colour it needs in that 
particular location. Because halftone grids are placed with different angles, 
each halftone dot will be in floating point coordinates in the sample image. 
Therefore it is possible to use our model to interpolate the value of the 
halftone dots and get the colour amounts. As our model avoids interpolating 
across edges, the interpolated halftone dots might reducing colour blurring 
across the edge thus improving printing quality compared to the traditional 
bilinear interpolation.

•  P ix e l O rd erin g  Many image related algorithms work on a linearised ver­
sion of the digital images, assuming a strong coherence among nearby pixels. 
The scan-line order, where the pixels are traversed horizontally line by line, 
is the most common one. However, the spatial coherence among the nearby 
pixels is typically anisotropic rather than directional along the horizontal 
lines. Other scan methods such as the Peano-Hilbert space filling curve 
have been proposed to take advantage of the local similarities inherent in 
images. The sequence of pixels visited along the scan order is called pixel 
ordering. A good choice increases the autocorrelation of the resulting pixel 
sequence and thus increases the lossless image compression rates.

Our image model might be applied to the pixel ordering problem. As we 
mentioned, our extended model considers the local geometry information 
and triangulates the four-pixel square. Careful study of the triangulation 
mesh reveals that the triangles tend to cluster together representing areas
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along the edge in the image. Thus it is possible to find the underlying local 
similarities by following some rules defined by our image model. It is clear 
that pixels along edges have more similarities than pixels across edges. If 
a scan order along the edge can be applied according to the triangulation 
mesh, it might increase the lossless image compression rates.

7.3 C onclusion

The author intended to tackle the fundamental problem of digital image process­
ing and tried to find a good representation of digital images which is generic for 
all kinds of images and is effective for other digital image applications. This leads 
to the research in this thesis which presents an effective image model to exploit 
fundamental properties of edges in the images using pixel level data-dependent 
triangulation. It is not only a better representation than other approaches but 
also much more efficient and is generic for different kinds of images.
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A ppendix A

P roof

Consider a four pixel square abed. We will first prove that, if pair ac has smaller 
difference than bd, then b or d is the outlier pixel and we should connect ac. That 
is to say, if \a — c\ < \b — d\ then b or d is either the biggest or the smallest pixel.

Suppose |a — c| < \b — d\, and suppose a >  c, then a — c < \b — d\.

1. Suppose b > d. Then a — c < b — d (b > d, a > c), hence a — b < c — d 
(b > d ,a >  c).

We suppose a > b and c < d, then a — b > 0 and c — d < 0, so we get 
a — b > c — d. However, we have the formula a — b < c — d before which 
means our assumption that a > b and c < d is wrong.

Because a > b and c < d is wrong, either a < b or c > d or a < b, c > d 
with the condition ( 6  > d, a > c). In these cases, either b is the biggest 
pixel ( 6  > a, b > c, b > d) or d is the smallest pixel (d < c,d  < a, d < b).

2 . Suppose b < d, then a — c < d — b (b < d,a > c), hence a — d < c — b 
(b < d, a > c).

115



We suppose a > d and c < b. Then a — d > 0 and c — b < 0, so we get 
a — d > c — b. However, we have the formula a — d < c — b before which 
means our assumption that a > d and c < b is wrong.

Because a > d and c < b is wrong, either a < d o v c > b o v a < d , c > b  
with the condition (b < d, a > c). In these cases, either b is the smallest
pixel (b < c, b < a, b < d) or d is the biggest pixel (d > b,d > a,d > c).

We have proved that if pair ac has the smaller difference (\a — c\ < \b — d|), there 
are two situations. One is that either b is the biggest pixel or d is the smallest 
pixel. The second is that either b is the smallest pixel or d is the biggest pixel. In 
either case the outlier is either b or d and ac should be the edge. Using the same 
method we can prove that if pair bd has the smaller difference (\b — d\ < \a — c|), 
the outlier is either a or c and bd should be the edge.

So we can conclude that drawing the edge between the least-different diagonal
pair gives the same result as drawing the edge which isolates the outlier.
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Abstract
We present a novel image interpolation algorithm. The algorithm can be used in arbitrary resolution enhance­
ment, arbitrary rotation and other applications of still images in continuous space. High resolution images are 
interpolated from the pixel level data-dependent triangulation of lower resolution images. It is simpler than other 
methods and is adaptable to a variety of image manipulations. Experimental results show that the new "mesh 
image" algorithm is as fast as the bilinear interpolation method. We assess the interpolated images’ quality vi­
sually and also by the MSE measure which shows our method generates results comparable in quality to slower 
established methods. We also implement our method in graphics card hardware using OpenGL which leads to 
real-time high-quality image reconstruction. These features give it the potential to be used in gaming and image 
processing applications.

1. Introduction

Digital image interpolation is the recovery of a continuous 
intensity surface from discrete image data samples. It is a 
link between the discrete world and the continuous one. In 
general, almost every geometric transformation requires in­
terpolation to be performed on an image, e.g. translating, ro­
tating, scaling, warping or other applications. Such opera­
tions are basic to any commercial digital image processing 
software.

There are several issues which affect the perceived qual­
ity of the interpolated images: sharpness of edges, freedom 
from artifacts and reconstruction of high frequency details. 
We also seek computational efficiency, both in time and in 
memory. Classical techniques, such as pixel replication, bi­
linear or bicubic interpolation have the problem of blurred 
edges or artifacts around edges. Although these methods pre­
serve the low frequency content of the sample image, they 
are not able to recover the high frequencies which provide a 
picture with visual sharpness.

Standard interpolation methods are often based on at­
tempts to generate continuous data from a set of discrete data 
samples through an interpolation function. These methods 
attempt to improve the ultimate appearance of re-sampled

images and minimise the visual defects arising from the in­
evitable resampling error.

Traditionally, interpolation is accomplished through con­
volution of the image samples with a single kernel -  typ­
ically a bilinear, bicubic1, or cubic B-spline2. A number of 
algorithms have been proposed to improve the magnification 
results. PDE-based approaches3 apply a nonlinear diffusion 
process controlled by the local gradient. POCS (Projection- 
Onto-Convex-Set) schemes4 formulate the interpolation as 
an ill-posed inverse problem and solve it by regularised iter­
ative projection. Orthogonal transform methods focus on the 
use of the discrete cosine transform (DCT)5-6. Directional 
methods7’8 examine an image’s local structure around edge 
areas to direct the interpolation. Variational methods formu­
late the interpolation as the constrained minimisation of a 
functional9’10.

It has been recognised that taking edge information 
into account will improve the interpolated image’s qual­
ity u’12’,3’14 and it is known that the human visual system 
makes significant use of edges18. Instead of approaching in­
terpolation as simply fitting the interpolation function, these 
methods consider also the geometry of the image. Li11 as­
serts that the quality of an interpolated image mainly de­
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pends on the sharpness across the edge and the smoothness 
along the edge.

Li et al.11 attempted to estimate local covariance charac­
teristics at low resolution and used them to direct interpo­
lation at high resolution (NEDI - New Edge Directed Inter­
polation) while Allebach et al.12 generated a high resolution 
edge map and used it to direct high-resolution interpolation 
(EDI - Edge Directed Interpolation). Battiato et al.13 pro­
posed a method by taking into account information about 
discontinuities or sharp luminance variations while doing 
the interpolation. Morse et al.14’15 presented a scheme that 
uses existing interpolation techniques as an initial approxi­
mation and then iteratively reconstructs the isophotes using 
constrained smoothing. They emphasise the importance of 
the “smoothness” quality, if the isophotes are not to be vi­
sually intrusive. As will shortly become clear, we too accept 
this need to fit the visual geometry.

The above schemes demonstrate improved visual quality 
(in terms of sharpening edges or suppressing artifacts) by us­
ing a model to preserve the edges of the image and to tune 
the interpolation to fit the source model. However they are 
complex compared to traditional methods and thus compu­
tationally expensive.

Another approach is triangulation modelling. Triangula­
tion has been an active research topic during the past decade. 
It is popular in geometric modelling. However, image re­
construction using triangles isn’t widely used, probably be­
cause of the large number of triangles needed. Yu et al.16 
modelled images as data dependent triangulation meshes 
and reconstructed images from the triangulation mesh. Their 
approach adapted traditional data-dependent triangulation17 
(DDT) with their new cost functions and optimisations. The 
data dependent triangulation thus matches the edges in the 
image and improves the reconstructed image. Their method 
is relatively complex and computationally expensive.

We develop a new edge-directed method for image inter­
polation. We call this an image mesh DDT. We do not assume 
knowledge of the low-pass filtering kernel or attempt to find 
a statistical rule about the local geometry. Our approach is 
related to that of Yu but is simpler and faster because it does 
not involve any cost function or repeating optimisation pro­
cess. Our mesh is very simple and completely regular. We 
avoid the complexity of a full DDT method while keeping 
the feature of DDT that improves the reconstruction quality. 
We will demonstrate our algorithm used in arbitrary magni­
fication of still images and other applications.

2. Image Mesh Data-Dependent Triangulation

2.1. Principle of the Algorithm

We first consider the case that there is an edge passing be­
tween a square of four pixels. If this edge cuts off one comer, 
one pixel will have a value substantially different to the other

b c

Figure 1: Triangulation in a four-pixel square

three. We call this pixel the outlier. Imagine that we repre­
sent the brightness of the pixel as the height of a terrain. In 
effect, the three similar pixels define a plateau, relatively flat, 
while the outlier value is at the bottom of the cliff (if smaller) 
or the top of a peak (if higher) (Figure 1). This gives us a hint 
that if we want to interpolate a high resolution pixel within 
the relatively flat region we should not use the outlier. Clas­
sical interpolation methods like bilinear interpolation suffer 
from edge blurring because they use all four pixels to do in­
terpolation. We only use three.

The strength of employing triangles in this way is that we 
model edges in the image. In effect we tune the interpolator 
to match edges. In Figure 1, when interpolating the high- 
resolution pixel falling in triangle abc, the interpolator won’t 
use the value of d  which is very different to this plateau. 
For two pixels falling in different triangles, the height of the 
vertices will be quite different and thus the sharpness of the 
edge is kept. It is easy to see that in very smooth regions, the 
interpolator keeps smoothness as well, even across triangle 
boundaries.

This simple geometry suggest a way to guide the interpo­
lation so that smoothness within the regions and sharpness 
between the flat region and cliff region can both be kept. 
If the diagonal is to correspond to the edge in the image, 
the diagonal should be the one which does not connect to 
the outlying pixel value, the one most different to the other 
three.

Suppose pixels a, b and c are the same height while d  is 
higher than these three. Obviously a, b and c define a flat 
region while d  is the most different pixel to the other three. 
Thus we connect diagonal ac and get the triangles abc and 
adc. In general, if b or d  is the most different pixel, the edge 
should be ac, otherwise bd will be the edge. There are other 
situations if a and d  are very different to b and c; or a and 
b are very different to c and d. In these cases it makes little 
difference which diagonal is chosen. The edge is roughly 
either horizontal (ad are different to be) or vertical (ab are
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different to cd) and the triangle will always cross the edge. 
It is similar to bilinear interpolation in these cases.

Obviously, using the diagonal to triangulate the four-pixel 
square cannot correspond to edges of arbitrary angle. The 
diagonal can only roughly represent the orientation of the 
edge. We could use sub-pixel triangulation to represent arbi­
trary angles, but that would add more complexity to the algo­
rithm. Our aim is to keep the algorithm as simple as possible. 
We will demonstrate in this paper that triangulation by diag­
onal is enough in most situations and can provide excellent 
results. It is the direction-seiection method that is the key.

Our method thus fits the finest triangular mesh to the 
source pixels. This “image mesh” is completely regular ex­
cept that the diagonals are locally selected to run in the same 
general direction as any visible edge. To generate a new im­
age, possibly at higher resolution, the target pixels are lo­
cated in the source mesh. We then evaluate each target pixel 
from the triangle in which it sits. It is interpolated using only 
the information from the three triangle vertices. In edge ar­
eas, the interpolator won’t interpolate any two pixels that fall 
in different triangles. In other words, the new high-resolution 
image has the edges sharp and the smooth areas smooth.

2.2. Implementation and Optimisation

Suppose the low-resolution image is X and the high- 
resolution image to be generated is Y. Our algorithm can 
be expressed as two steps. We first scan the sample image 
X to initialise a 2D array which records the edge direction 
of all four-pixel squares. In the second step we scan Y. For 
each yij we inverse map to the sample image X and use the 
array to identify the triangle in which the point falls. Then 
we interpolate within that triangle to get the value of y,y.

In the first step, the algorithm has to determine the outlier 
pixel. This has to be done repeatedly, so speed is important. 
Instead of finding the outlier directly, we compare the dif­
ference |a — c\ with the difference |b — d\ and connect the 
pair with smaller difference. The proof that this is equiva­
lent to finding the outlier pixel is in Appendix A. This saves 
computing time, needing only two subtractions and a com­
parison. Doing it directly would require sorting four pixels 
and then comparing the highest and lowest pixels with the 
average value.

We use inverse mapping in the interpolation step because 
it has a number of benefits. First it can be used at arbitrary 
resolution. We are not constrained in any way by the reso­
lution of the source data. Second, there is no requirement to 
align the target grid parallel to the source grid, so arbitrary 
rotation is possible at no additional cost. Third, sampling 
can be irregular to provide warps, although the sampling rate 
must not be too low because this would cause break-up. Fi­
nally it is a single-step method.

We use linear interpolation within the triangles. How­
ever there is some confusion of terminology in the literature,

which we need to clarify before proceeding. “Bilinear inter­
polation” strictly refers to interpolating between four values 
and we will use the term only in that sense. In the graphics 
community, three-value interpolation, as used in Gouraud 
shading, is also called bilinear interpolation, although it is 
only a degenerate case. We will distinguish this by calling it 
“triangle interpolation”.

Figure 2 shows a flower image with the magnified view of 
the tip of the lowest stamen and the pixel level data depen­
dent triangulation mesh of that stamen. (We only show the 
diagonals of the triangles for a clearer view.) We represent 
the triangulation in two diagrams, each one only containing a 
specific direction. The stamen and a black edge near the sta­
men both roughly have NW-SE orientation. It is clear to see 
that the corresponding triangles also cluster in the NW-SE 
direction, which matches the edges of the image. In particu­
lar, note the absence of NE-SW diagonals near these linear 
features.

2.3. Extended Method

Some problems still remain in our basic model. For exam­
ple, close study of the triangulation of the stamen (Figure 2) 
reveals a problem. The actual local edge goes in the NW-SE 
direction while a few diagonals in the lowest stamen areas 
give the NE-SW direction. This leads to some small deteri­
oration of edge quality. These diagonals contradict the local 
edge orientation because our basic method only considers 
the four-pixel square, ignoring the surrounding values. This 
only catches the micro-geometry (pixel level), not the local 
geometry due to edges passing through several pixels. To 
correct this we have developed an extended model where we 
consider this extra information.

We assume the image is locally stationary. That is to say, 
the intensity of a pixel is dependent on its spatial neighbour­
hood while independent of the rest of the image. The neigh­
bourhood of a pixel can be modelled as a window around this 
pixel. Instead of a normal least-square adaptive edge pre­
diction scheme, we simply consider the neighbourhood win­
dow’s edge direction. Our basic method considers four pix­
els arranged in a square. Our extended method considers 16 
pixels arranged as 3 x 3 squares. To predict the edge direc­
tion in the central square, we consider all of them (Figure 3). 
If most of these squares have their diagonals in one partic­
ular direction, then we impose that direction on the central 
square. In our case we do this if at least 6 of the 9 squares 
have the same direction. All decisions are made on the orig­
inal data so that changes do not influence nearby decisions 
taken later.

Obviously our extended model increases complexity, but 
very marginally. It is worth noting that this additional com­
plexity is only in preparing the diagonals, not in using the 
mesh to interpolate an image.

Figure 4 shows the diagonals resulting from our extended
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Figure 4: The triangulation mesh o f  the extended method. 
Top: NW-SE direction. Bottom: NE-SW direction

Figure 2: Top: a part o f  a flow er image. Second: a magnified 
view o f  the bottom stamen. Third: the pixel level data depen­
dent triangulation o f  the stamen (NW-SE direction) Bottom: 
NE-SW direction
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method. The stamen of Figure 2 has 625 diagonals. Our ba­
sic method generates 418 diagonals in the NW-SE direction 
and 207 diagonals in the NE-SW direction while our ex­
tended method produces 438 and 187 diagonals respectively. 
They differ only in 20 diagonals, mainly along the stamen 
and the black edge: the extended method better preserves 
the local geometry.

2.4. Algorithm Analysis

We analyse the complexity of the basic method and the ex­
tended method in this section. Suppose the image I has width 
and height m, so the number of pixels is n =  m2. The number 
of triangles in the triangulation is then (m — 1) x (m — 1) x 2. 
In our implementation, we use a table to record the orienta­
tion of the diagonal in each square. As there are only two 
diagonal directions we use one bit to store this information. 
Thus, the total memory requirement for the triangulation 
mesh is 2(m — l ) 2 «  2n bits. For a normal image with size 
1024 x 1024 the memory requirement is 256KB. Compared 
to the standard 256MB memory in current PCs, this is very 
small. Moreover, the memory requirement 2n is linear with 
the number of pixels n.

In our basic method, each triangle needs two subtractions 
and one comparison, so the total computation is (m — 1) x 
( m - l ) x 2 x 3 « 6 n .

Our extended method has two steps in preparing the mesh. 
In the first step, we calculate just like the basic method and 
set each triangle’s diagonal direction. In the second step, 
each triangle needs a sum of eight surrounding squares and 
a comparison to decide if there is an overriding edge orien­
tation in local area. Thus, the computation for each triangle 
needs two extra computations, and the whole image needs 
10/z computation which is still linear with image size n.

Then follows the interpolation step. It is easy to see that 
the triangle interpolation has the same complexity as bilin­
ear interpolation which is linear with n. Thus, both the basic 
method and the extended method have a time complexity of 
0(n).

Our method is thus efficient in both memory and time, 
and is suitable for handling large images with a linear de­
pendency on the image size.

2.5. Algorithm Comparison

Yu et al.16 propose an image reconstruction method using 
data dependent triangulation. They use a new cost function 
and an improved optimisation algorithm to generate an opti­
mised triangulation mesh. Their method is able to model an 
image effectively. It is complex to implement and is compu­
tationally slow. It takes several iterations to get an optimised 
triangulation and each iteration takes “between 0.5 and 5 
seconds” even for a small image (80 x 80) on a consumer- 
grade PC. Another limitation of the method is it cannot catch 
single-pixel and small features.

Our method can be thought of as a simplified data de­
pendent triangulation (DDT). It generates the triangulation 
mesh simply by inserting diagonals. This leads to some 
degradation in quality since a normal DDT can model the 
edge at arbitrary angles. However our method provides a 
notable trade-off between quality and speed. Although the 
DDT method can in principle give higher quality, ours is 
very easy to implement and much faster. Also our method 
needs only a small byte array to store the triangulation mesh 
while a full DDT requires a more complicated structure and 
more storage space. An advantage of our extended method 
is it is able to catch small and local features.

Other researchers19 also use DDT for data interpola­
tion, aiming at a better optimisation of DDT according to 
their cost functions and optimisation processes. Our method 
avoids this. We will now demonstrate that the method is ef­
fective and that it does provide high-quality reconstructed 
images compared to conventional methods.

3. Experimental Assessment

3.1. Implementations

We implemented several interpolation methods. The im­
ages from bilinear interpolation and bicubic interpolation 
were produced from Matlab 5 built-in functions. The NEDI 
method was tested from a Matlab program kindly provided 
by its originator. We used a C++ program and our own 
graphics library to implement our methods.

Greyscale images were processed exactly as already de­
scribed. When selecting edge directions in colour images, 
we converted the RGB components of each pixel into lu­
minance using the following formula16 where L stands for 
luminance:

L =  0.21267R +  0.71516G +  0.07217B

The edge direction was determined by these luminance 
values. Interpolation was performed in the R,G,B planes in­
dependently.

3.2. Visual Assessment

We performed preliminary tests both to check the implemen­
tations and to permit a visual assessment of the methods. We 
wanted to use an image in both in greyscale and in colour. 
The flower image we have used has well-defined edges (to 
test edge sharpness), thin linear features and small details 
(to ensure they are retained) and smoothly varying areas (to 
reveal any discontinuity).

Figures 5 and 6 show the comparison results. All the im­
ages in Figures 5 and 6 are magnified from the flower image 
of Figure 2 by a factor of 4.

Figure 7 shows a close-up view of the stamen using our 
basic and extended method. This illustrates that the basic
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Figure 6: Detail o f  image magnified by 4. Top: our basic  
method. Bottom: our extended method

Figure 7: Magnified view o f  the stamen. Left: our basic 
method. Right: our extended m ethod

Figure 5: Detail o f  image magnified by 4. Top: bilinear in­
terpolation. Middle: bicubic interpolation. Bottom: NEDI
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method has some artifacts along the stamen which are re­
duced in the extended method.

Figure 8 shows the various methods used to magnify the 
colour flower image by a factor of 3.5.

From visual inspection our method produces better im­
ages than bilinear and bicubic interpolation, while the NEDI 
method is better still (Figures 5 and 6). However, it seems 
NEDI’s weighting algorithm changes the contrast of the im­
age. The bilinear interpolation suffers from blurring of the 
edges. The bicubic method introduces sharper edges but 
more artifacts.

We next performed analytical testing.

3.3. Quality Assessment

To perform analytical assessment of the the interpolated im­
ages, we need a quality measure. The degradation based 
method20 is not able to report the “jagged” artifacts re­
lated to the orientation of edges. Daly’s visible differences 
predictor21 produces an error image which characterises the 
regions in the test image that are visually different from the 
original image. It is however difficult to use error images for 
reconstructed image quality ranking as Daly mentioned in 
his paper. Therefore we used mean-square error (MSE) as 
our assessment tool. The MSE is the cumulative squared er­
ror between the reconstructed and the original image. It is 
widely used in image processing to evaluate reconstructed 
image fidelity.

Our method aims at improving edge quality on magnified 
images and retaining a good overall quality as well. Thus we 
produced one sample image set of five “edge” images with 
size 200 x 200 (Figure 9) and used twenty 768 x 512 real 
nature images as a more general test set.

In theory, there is no perfect way to judge the magnifica­
tion quality. Because the image we have is of fixed resolu­
tion, we don’t know what the ‘correct’ magnified image is. 
In order to analyse error, we need to know or simulate this 
image. So we start with an original image, generate a lower 
resolution version, then use different methods to magnify it. 
Then we compare the magnified image with the original im­
age. This is not perfect but it provides a reasonable reference 
against which to measure the reconstruction quality.

The down-sampled images could be obtained by averag­
ing or sub-sampling. However, edge blurring and ringing are 
introduced by averaging, while sub-sampling breaks down 
the geometry and introduces artifacts. We chose a Gaussian 
filter as the point-spread function with its standard deviation 
representing the radius of the point-spread function. Each 
pixel at the target image (the down-sampled image) is con­
sidered as a point-spread function represented by a Gaus­
sian distribution. It is down-sampled from some part of the 
source image, represented by another point-spread function.

Figure 8: A flower image magnified by a factor of 3.5 using: 
Top: bilinear interpolation. Middle: bicubic interpolation. 
Bottom: our extended method.
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30° 45° 60° 0°,90°

Our methods 28.8 28.9 28.8 26.0

Bicubic 29.7 31.5 29.3 22.2

Bilinear 34.0 38.4 34.0 26.0

Figure 9: Set o f  five edge images. The angles are 30, 45, 60, 
0  and 90 degrees

In this case the radius of the point-spread in the source im­
age is double that of the radius in the target image. Thus, we 
calculate the standard deviation of the target Gaussian distri­
bution, then double this to get that of the source image. This 
is then used to down-sample, by convolution.

We used pixel replication, bilinear interpolation, bicubic 
interpolation, NEDI, our basic method and our extended 
method to obtain the reconstructed images. All reconstructed 
images are magnified by a factor of two and then compared 
to the original image.

3.3.1. Quality of edges

Our first test was to check the quality of well-defined edges. 
For the test set we generated five samples with a single edge 
of varying angle (30, 45, 60, 0 and 90 degrees). Each edge 
is black one side and white the other side (Figure 9). The 
down-sampled edge images are magnified by a factor of two 
and compared to the original edge images to get the MSE 
results which is reported in Table 1. The MSE is performed 
on 0 255 range for the grey-scale edge images. We put 0° and 
90° in the same column because they give the same results 
for all methods. Our basic and extended methods have the 
same results in all these situations because our basic method 
is able to preserve the geometry well in these simple cases.

The MSE results report that our method gets the best (low­
est) score in every case except at 0° and 90°. In these two 
cases pixel replication gets the best score, which it is triv­
ially able to do. (In principle it should achieve zero MSE but 
the Gaussian sampling introduces some grey edge pixels.) 
Bicubic beats us here because its interpolation more sharply 
models these high-contrast edges. Our method is the equal 
of bilinear interpolation as we expect. Although our triangu­
lation gives edges of 45°, it also performs well on 30° and 
60°. Bicubic and bilinear interpolation are slightly worse be­
cause they suffer from artifacts or blurring on the edge. Pixel 
replication does not generally catch the geometry very well 
and NEDI suffers from the effects of its weighting algorithm.

Replication 41.8 45.4 41.5 9.2

NEDI 43.3 47.6 43.4 27.6

Table 1: MSE results o f  edge images

3.3.2. Quality of real images

In order to test the method on “smoother” and more typi­
cal images, we used twenty 24-bit 768 x 512 colour nature 
images as another test set. These images are down-sampled, 
magnified by different methods by a factor of two and com­
pared to the original images. We perform the MSE compar­
ison on R,G,B channels independently and Table 2 reported 
the averaged MSE values / stdandard deviations over 20 im­
ages from the test set. BC is the bicubic interpolation, EXT 
is our extended method, BL is bilinear interpolation, DDT is 
our basic method and PR is pixel replication.

R G B  

BC 109.4/85.1 119.4/ 106.7 123.8/121.2

EXT 117.6/92.8 127.8/ 115.2 132.7/131.3

BL 118.2/92.9 128.4/ 115.2 133.1 / 130.9

DDT 118.6/93.6 128.8/ 116.1 133.7/ 132.3

PR 126.1 /99.7 134.8/ 120.8 138.7/ 137.2

NEDI 198.6/ 180.1 197.9/ 159.9 187.4/ 154.5

Table 2: MSE results o f  real images

There is a clear consistency of each channel’s perfor­
mance and there is also a clear consistency of each method’s 
performance. Bicubic interpolation gets the best score (least 
error). Our methods rank close to the bilinear method. Our 
basic method is slightly worse than the bilinear method be­
cause it sometimes gives the wrong edge direction. Our ex­
tended method is slighter better than bilinear interpolation 
because our approach is better in edge areas and is almost 
the same in smooth areas.

Pixel replication gets a low score as we expect. NEDI sur­
prisingly gets the lowest score although it has good visual 
reconstruction quality. We presume this is because the con­
trast of the image has been changed by NEDI’s weighting al­
gorithm and thus it produces numerically the wrong image,
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albeit a pleasing one. This emphasises the need to moderate 
any analysis with visual inspection.

We also did a statistical t-test over the MSE results of the 
different methods and the results shows no significant differ­
ence between our method and the bilinear and bicubic inter­
polation. The NEDI method performs the weakest here but 
the results do not show that is worse than ours at the 95% 
confidence level.

We can conclude that bicubic interpolation produces the 
lowest overall mean squared error. Our extended method is 
quite close to this and is statistically indistinguishable from 
other methods (except significantly better than NEDI). Vi­
sual inspection of our method shows that it produces good 
results, which we believe are due to its better edge perfor­
mance. We will now show that our method is much quicker 
than bicubic interpolation and comparable in speed to infe­
rior methods.

3.4. Performance Assessment

We implemented bilinear interpolation, bicubic interpola­
tion, our basic method and our extended method by C++ 
code and compared their computational performance. We 
used the real natural colour images test set again. We down- 
sampled every image to 384 x 256 pixels (using the method 
described earlier). Then we magnified the down-sampled im­
ages by a factor of 2 and also by a factor of 3.5. We used the 
bicubic interpolation proposed by Keys22. Table 3 shows the 
performance comparison on a machine with an Intel Pen- 
tium4 3G processor and 1G DDR system memory. Our ex­
tended method uses the 3 x 3 square window. All figures are 
in seconds.

Bilinear Basic Extended Bicubic

magnify 2 0.359 0.406 0.412 3.621

magnify 3.5 1.105 1.162 1.170 10.914

Table 3: Performance comparison

We can see from the table that our method is only slightly 
slower than bilinear interpolation. Importantly, bicubic is an 
order of magnitude slower than the other methods. The aver­
aged times for calculating the triangle mesh are included in 
the above figures. For our basic and extended method these 
are 0.041 and 0.049 seconds respectively. Factoring these out 
reveals that our methods are linear with the number of pixels 
generated.

In conclusion, our extended method is comparable in 
speed to bilinear interpolation while providing better recon­
struction results visually. In comparison to bicubic interpola­
tion, our extended method is much faster and visually better, 
especially in edge reconstruction. These two methods have

almost identical MSE values. Our method is fast, simple and 
modest in memory needs.

3.5. Hardware Implementation

More and more complex graphics operations have moved to 
the graphics co-processor or accelerator, including shading, 
texturing, anti-aliasing and bilinear interpolation. These fea­
tures of graphics cards make it possible to create extremely 
realistic games and simulations.

However the only interpolation algorithms currently avail­
able on graphics cards are triangular and bilinear interpola­
tion: the others are too complex. High quality image recon­
struction in real-time still remains a difficult and unsolved 
problem. Our pixel level data dependent triangulation makes 
a step in this direction.

A graphics card can handle tens of millions of triangles 
per second and it can interpolate within triangles. This sug­
gests that we convert any image to a triangle mesh and then 
pass the mesh to the graphics card. The card will deal with 
the mesh in real-time.

We have used OpenGL to explore the potential of our 
method in hardware implementation. We first generated a 
triangle mesh using our basic or extended model. Then we 
used OpenGL to pass the mesh to the graphics card so that 
it could manipulate the mesh, such as by scaling and rotat­
ing. These manipulations can be in 3D, at no extra cost. Our 
experimental results showed that high quality reconstructed 
images can be generated in real-time.

We used the OpenGL GL-TRIANGLE-STRIP to build 
the triangle mesh. This routine needs all of the trian­
gles to have the same orientation. Thus we started a new 
GL-TRIANGLE-STRIP whenever the diagonal direction 
changes. All of these strips were saved in a display list which 
was then used to render the image.

The program flow of the OpenGL process is as follows:

1. Build a byte array to record the diagonals of the triangles.
2. Set up all the GL-TRIANGLE-STRIP and save them in a

display list.
3. Render the image and call an OpenGL loop, waiting for

keyboard response and doing manipulation correspond­
ing to the key pressed.

We have tested several images with size 768 x 512 pix­
els, in the same machine: an Intel Pentium 4 3G processor 
and an NVidia GeForce 4 graphics card with 128M memory. 
Using our extended method, the time for preparing the mesh 
for an image with 768 x 512 pixels was under 0.2 seconds. 
Once the triangle mesh was loaded, the graphics card did all 
further manipulation. We used key presses for scaling or ro­
tation, causing the appropriate updates to the transformation 
matrix.

The GeForce 4 graphics card specification claims a ren­
dering speed of 136 million vertices per second. This equates
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to about 45M independent triangles per second. This latter 
rate could increase with triangle strips (due to vertex shar­
ing), though of course the number of triangles which can be 
rendered at full speed is limited by the card memory. With 
our test image meshes having less than 1M triangles, the 
graphics card easily gives real-time zooms, translations and 
rotations.

4. Other Applications

Figure 10 shows our extended method applied to three colour 
images chosen to include edge, texture and smooth features, 
magnified by a factor of 2.

Due to the simplicity of our algorithm, it is easy to apply 
in other ways. For example, we can rotate the image by any 
angle (Figure 11 -  top). We inverse rotate each target pixel 
back to the sample image and interpolate the value. We can 
also generate a perspective transform of an image. On any 
given y scan line, we calculate the pixel at (x,y) by sampling 
the source image at (sx,ty) where s,t are scale factors which 
vary linearly with height (We are assuming the y axis is the 
centre of the screen). Figure 11 (middle) shows the result. 
We can produce a magnifying lens effect (Figure 11 -  bot­
tom). If the lens has radius R, then its disc is filled with the 
image from a smaller disc with radius r at the same centre. 
For any pixel inside R, we scale down to r, evaluate the orig­
inal value at r and apply it at radius R.

In general, these are variants on the same technique: to 
evaluate the target pixel p, we evaluate pixel F(p)  where F 
is a simple inverse mapping to the original image. Then we 
interpolate in the triangle where it falls.

5. Discussion

In this paper we have presented a new method of image in­
terpolation. We represent an image as a data-dependent tri­
angulation mesh. Every four-pixel square is divided into two 
triangles with the diagonal corresponding to the local edge 
of the image. The desired pixel can then be interpolated from 
the triangle in which it falls, determined by inverse mapping.

Other variants of the diagonal choice procedure can also 
be tried. For example, a pair of suitable digital filters might 
be better at distinguishing the local edge direction; or the 
threshold could be different to the one we chose. Other vari­
ants of the sampling procedure can be used, the interpolation 
providing some security against sampling defects. These two 
procedures are independent and neatly correspond to the im­
age modelling and image rendering phases.

The new interpolation approach generates images with 
better visual quality than traditional interpolation schemes. 
The error assessment also shows that our scheme produces 
good overall image accuracy. The complexity of the new 
method is similar to bilinear interpolation and much lower

Figure 11: Top:Flower image rotated by 27 degrees. Mid­
dle: a perspective view o f the flower image. Bottom: a lens 
effect of the flower image
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Figure 10: Three sample images o f 192 x 192 shown upper left. The corresponding larger images are magnified o f a factor o f  
2, using our extended method.

than the bicubic method. We avoid the time-consuming opti­
misations that others use but still produce good results very 
quickly.

Our method has several advantages. It requires no itera­
tion. It achieves arbitrary factor magnification, rotation, per­
spective transform and warp through a single mechanism. 
Our scheme is very simple to implement and computation­
ally fast. It requires little data structure overhead to generate 
the mesh image. Moreover, our meshes can be rendered on 
a graphics card which makes real-time image reconstruction 
possible. There is a potential for our method to be used in 
gaming and image manipulation generally. We have also ex­

tended our model to an important commercial application: 
demosaicing of colour images (the reconstruction of a full- 
resolution colour image from the mosaiced sample gener­
ated by current single-chip digital cameras)23. We are inves­
tigating its use in 4-colour separation for printing. Above all, 
we have demonstrated that a simple approach, sensibly used, 
can rapidly generate excellent results.
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Appendix A: Proof

Consider a four pixel square abed. We will first prove that, 
if pair ac has smaller difference than bd, then b or d is the 
outlier pixel and we should connect ac. That is to say, if |a — 
c\ < \b  — d\ then b or d is either the biggest or the smallest 
pixel.

b c

Suppose \a — c\ <  \b — d\, and suppose a > c ,  then a — c <  
\b - d \ .

1. Suppose b >  d. Then a — c < b  — d (b >  d ,a  >  c), hence 
a — b < c  — d ( b > d , a > c ) .
We suppose a >  b and c < d ,  then a — b >  0 and c —d <  0, 
so we get a — b >  c — d. However, we have the formula 
a — b < c — d  before which means our assumption that 
a > b and c <  d  is wrong.
Because a >  b and c <  d  is wrong, either a < b o r c >  d 
or a < b , c > d  with the condition ( b >  d,a >  c). In these 
cases, either b is the biggest pixel ( b >  a, b >  c , b >  d) or 
d  is the smallest pixel (d <  c,d <  a,d <  b).

2. Suppose b < d ,  then a — c < d  — b ( b < d , a > c ) ,  hence 
a — d < c  — b ( b < d , a > c ) .
We suppose a >  d  and c <  b. Then a — d >  0 and c — b <  
0, so we get a — d > c  — b. However, we have the formula 
a — d < c — b before which means our assumption that 
a >  d  and c <  b is wrong.
Because a >  d  and c <  b is wrong, either a < d o x c >  b 
or a <  d, c >  b with the condition (b <  d, a >  c). In these 
cases, either b is the smallest pixel (b <  c,b <  a,b <  d) 
or d  is the biggest pixel ( d >  b , d >  a , d >  c).

We have proved that if pair ac has the smaller difference 
(|a — c\ <  \b — d\), there are two situations. One is that either 
b is the biggest pixel or d  is the smallest pixel. The second 
is that either b is the smallest pixel or d  is the biggest pixel. 
In either case the outlier is either b or d  and ac should be the 
edge. Using the same method we can prove that if pair bd 
has the smaller difference (|b — d\ <  \a — c|), the outlier is 
either a or c and bd should be the edge.

So we can conclude that drawing the edge between the 
least-different diagonal pair gives the same result as drawing 
the edge which isolates the outlier.

submitted to COMPUTER GRAPHICS Forum (12/2003).
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Abstract

Single-chip dig ita l cameras use an array o f  broad- 
spectrum Charge-Coupled Devices (CCD) overlayed with 
a colour filter array. The filter layer consists o f  transpar­
ent patches o f  red, green and blue, such that each CCD  
pixel captures one o f  these prim ary colours. To reconstruct 
a colour image a t the fu ll CCD resolution, the ‘m issing’ 
prim ary values have to be interpolated from  nearby sam ­
ples. We present an effective colour interpolation using a  
sim ple pixel level data-dependent triangulation. This inter­
polation technique is applied  to the commonly-used Bayer 
Colour Filter Array pattern. Results show that the proposed  
method gives superior reconstruction quality, with sm aller 
visual defects than other methods. Furthermore, the com­
plexity and efficiency o f  the proposed method is very close to 
sim ple bilinear interpolation, making it easy to implement 
and fa s t to run.

1 Introduction

Colour digital cameras have become widely available 
consumer products in recent years. In order to reduce cost, 
these digital cameras use a single Charge-Coupled Device 
(CCD) sensor with an overlayed colour filter array (CFA) 
to acquire colour images, thus avoiding the need for three 
separate arrays (one for each primary colour) and the asso­
ciated complex optical system to split the light path.

The Kodak Bayer CFA pattern is the filter pattern most 
frequently used. Figure 1 shows this filter pattern, where R  
is red, G  is green and B  is blue. Each pixel of the CCD thus 
sees only one primary colour, determined by which filter 
overlays it. More green filters are used because of the visual 
importance of this central area of the spectrum: the eye is 
more sensitive to green and this area is more significant to 
the perceived luminance. The pattern shown thus provides 
a higher spatial frequency sampling of green, in comparison 
with blue or red. There are as many green pixels as red and

G B G B G B

R G R G R G

G B G B G B

R G R G R G
G B G B G B

R G R G R G

Figure 1. Bayer Colour Filter Array Pattern 
(U.S. Patent 3,971065, issued 1976)

and blue combined.
Since there is only one colour primary at each position, 

we can reconstruct the image at the spatial resolution of the 
CCD only if we interpolate the two missing primary values 
at each pixel. That is, at a green pixel we have to gener­
ate red and blue values by interpolating nearby red and blue 
values. A corresponding process is required at red (to get 
green and blue values) and at blue pixels (to get green and 
red values). This interpolation process is called CFA inter­
polation or dem osaicing. The demosaicing process clearly 
has a significant influence and is thus the key factor in the 
production of high quality images.

The obvious place to start is with traditional image in­
terpolation methods, such as nearest neighbour, bilinear in­
terpolation and cubic convolution. Bilinear interpolation is 
often used due to its simplicity and efficiency[l]. However, 
it induces relatively large errors in the edge regions and the 
eye is especially sensitive to edge quality. To address this, 
other authors have proposed techniques which are sensitive 
to the data. Examples are Adams’ edge oriented method [2] 
and various colour correlation methods [3, 4, 6]. Adams’ 
method interpolates the missing colour elements according 
to the edge orientation of the image but it only detects the 
vertical and horizontal edges. Interpolation methods using 
colour correlation produce better results because there is a
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high correlation between the red, green and blue channels. 
However they ignore the edge orientation in the images.

We have earlier proposed an effective interpolation 
algorithm using a simple pixel level data-dependent 
triangulation[5] which both matches the edge orientation 
of the images and correlates the red, green and blue chan­
nels. Our scheme generally produces superior reconstruc­
tion quality and is rapid. The method was applied to full- 
information images (that is, red, green and blue values for 
every pixel) with the aim of magnifying or rotating them. 
In this paper we show how our method can be adapted to 
supply the missing primary values of a CFA image -  demo­
saicing -  and the advantages it has in this application. First 
we need to summarize the principles of our earlier-reported 
method.

2 Our Data-Dependent Method

We consider an image to be an array of triangles, with 
an apex on each pixel value. In other words, we produce 
the finest mesh that the data directly supports. Our motiva­
tion is that processing images in this form is simpler than in 
pixel form. Significantly, the mesh permits us to think of the 
image as a continuous object rather than a discrete one: we 
can readily calculate the colour value at any position within 
the image, using interpolation across the triangle containing 
the point being sought.

There is some confusion of terminology in the literature, 
which we need to clarify before proceeding. “Bilinear in­
terpolation” strictly refers to interpolating four points and 
we will use the term only in that sense. In the graphics 
community, three-value interpolation, as used in Gouraud 
shading, is also called bilinear interpolation, although it is 
only a degenerate case. We will distinguish this by calling it 
“triangle interpolation”. (We are grateful to Professor Ken 
Brodlie, at the University of Leeds UK, for drawing our at­
tention to this.)

Our scheme is based on the technique of data-dependent 
triangulation (DDT)[7] but we use it at pixel level. The 
algorithm attempts to minimize the visibility of the recon­
struction errors, thus producing visually pleasing results.

Each four pixel square is divided into two triangles by 
a diagonal. The diagonal either goes in the NE-SW or the 
NW-SE direction, so we are free to choose which direction 
to use at each square. We choose the direction which more 
closely approximates the edge in that small area of the im­
age. It is this which allows our method to be sensitive to 
edge direction.

We first consider the case that there is an edge passing 
between a square o f four pixels. If this edge cuts off one 
comer, that corner’s pixel will have a value substantially 
different (it could be bigger or smaller) to the other three. 
We call this pixel the outlier. If the luminance of the pixel

b c

Figure 2. Triangulation in a four-pixel square

is the height of a terrain, then the three similar pixels are a 
plateau, relatively flat, while the outlier value is at the bot­
tom of the cliff (if smaller) or the top of a peak (if higher) 
(Figure 2). So, if we want to interpolate a value within the 
relatively flat region we do not use the outlier. Choosing a 
diagonal the ends of which are not the outlier, we ensure that 
it runs in much the same direction as the actual edge. We 
then use triangle interpolation, avoiding the blurring pro­
duced by four-pixel bilinear interpolation.

Our mesh is thus regular in that there is a triangle apex 
at every pixel: it is a complete, regular grid and an m  x n 
picture will always have 2 x m x n  triangles. However, close 
examination will reveal that the diagonals are locally chosen 
to match the image edges. This completes our consideration 
of edge direction.

We now consider the choice of colour space. Recent 
demosaicing methods[3, 4, 6] have shown that taking the 
strong dependency among the colour planes into account 
can significantly improve the interpolation performance. In 
particular, Adams [4] and Pei[6] proposed interpolation in 
colour difference space instead o f in the original colour 
space. (We will explain colour difference space later, in 
section 3.1.2) However, their methods do not directly take 
into account the edges of the image and so generate some 
colour misregistration. Our new method combined their use 
of colour difference space with our edge-sensitive mesh.

We use inverse mapping to do the interpolations^]. In 
general, to evaluate the target pixel p, we evaluate pixel 
F(p) where F  is a simple inverse mapping to the original 
image. Then we interpolate in the triangle where it falls.

Experiments showed that images reconstructed by our 
scheme have better visual quality than those produced by 
bilinear interpolation. They lack the artifacts of colour mis­
registration of the edges thus improved subjective quality 
because human visual system are more sensitive to edges. 
We used two statistical tools to evaluate the reconstruction 
quality and the results showed that our method gets very 
close scores to bilinear interpolation in colour difference
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Figure 3. Left: Red square. Right: Blue 
square
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Figure 4. Green crosses

space which means good overall reconstruction quality.
The rest of the paper is organized as follows. In the next 

section we describe the new demosaicing method, justify it 
and describe the implementation. Then we briefly suggest 
some other applications. Next we show some experimental 
results. Finally we make some concluding remarks.

3 The Demosaicing Algorithm

So far we have considered data-dependent triangulation 
as a method for calculating super-resolution image values; 
that is, values “in between” the pixel positions. This is 
useful in changing the resolution of an image, distorting it 
in various ways, rotating it etc. In all these applications 
however, the original data is complete: there is a known 
(R, G y B) value at every source pixel. For demosaicing, we 
have to adjust it to generate those primary values which are 
missing from the Bayer CFA pattern.

3.1 Implementation

3.1.1 O riginal C olour Space

The Bayer CFA pattern alternates red and green filters on 
one row, then green and blue filters on the next row. This 
pattern repeats on subsequent pairs of rows. This means 
that a blue sample has red samples diagonally adjacent and 
green samples orthogonally adjacent (Figure 3). A red sam­
ple has blue samples diagonally adjacent and green samples 
orthogonally adjacent.

Our task is to interpolate the missing primaries in order 
to get a complete (R , G, B ) triple at each position. What 
Figure 3 illustrates is the equivalence of blue and red; while 
Figure 4 emphasizes that the green samples are differently 
disposed. In fact, the green samples can be considered to

be arranged on a grid at 45° relative to the other values. 
Moreover their spacing differs to that of the other values. 
The attraction of our DDT method is that it is independent 
of both the spacing and the orientation of the source data. 
It permits us to predict values at any spacing (regular or 
irregular) and orientation, wherever we need them.

If we consider just the red values, it can be seen that they 
form a regular grid of columns and rows. The same is true 
of blue values. We can triangulate each of these as already 
described, choosing the diagonals in the NW-SE or NE-SW  
direction, to favour the image edge directions. The green 
values can be thought of as forming a regular grid tilted at 
45° (Figure 4). Triangulating this will produce diagonals 
which are in fact disposed either vertically or horizontally.

We therefore need to produce three meshes, one for each 
primary, with the green mesh being spaced and oriented dif­
ferently to the other two. However, there is no need to pro­
duce these meshes explicitly. Suppose the sample image is 
X  and the output image to be generated is Y . We first scan 
the sample image X  to initialize three lookup tables, one 
for each primary. Each table has one bit to record the edge 
direction at every 2 x 2  ‘square’ of pixels o f that primary 
colour. To reconstruct an image pixel, we first determine 
which two primaries need to be recovered. We then use the 
corresponding lookup tables to establish in which triangle 
the image pixel sits in each mesh. This establishes three 
values to be interpolated for each of the two missing pri­
maries.

In fact, only two values are needed. Suppose we are in­
terpolating for red values of blue or green pixels. For de­
mosaicing, the target pixel will alway fall on the boundary 
of the triangle. Hence the interpolation is always the aver­
age of two vertex values. For example, in Figure 3 left, the 
red value in B  5 is actually the average of R1 and R9  or the 
average of R3  and R 7  depending on the direction of the di­
agonal. The red value in G4 is the average of R1 and R7  
and in G8 it is the average of R7  and R9.

The interpolation of blue values for red or green pixels 
can be done in exactly the same way as for red values. To 
interpolate green values of red or blue pixels, we simply lo­
cate the surrounding green cross and then interpolate either 
vertically or horizontally. For example, in Figure 4 left, the 
green value for R3  is either the average of G1 and G5 or 
the average o f G2 and G4. In all cases therefore, the value 
is reconstructed as the average of two source values, those 
values being chosen by our DDT method. This improves 
on our earlier method, both in simplifying the interpolation 
and in avoiding the need for inverse mapping.

3.1.2 C olour D ifference Space

Treating R , G  and B  planes independently ignores the cor­
relation among the colour planes and produces colour mis­



registration. Recent research [4, 6] has shown that inter­
polation performance can be significantly improved by ex­
ploiting the correlation among the colour planes. Those 
methods are based on the assumption that the red and blue 
values are perfectly correlated to the green value over the 
extent of the interpolation neighborhood. They define the 
colour differences K r  =  G — R  and K b  — G — B  and 
interpolate in this colour difference space.

In other words, these methods transform the operation 
into the K r ox K b  domain instead of performing the inter­
polation in the G  channel. For example, using our method 
to interpolate the missing green element at a red pixel, say 
R3  in Figure 4 left, would use either G 1 and G 5 or G2 
and G4. In fact we use the colour difference approach, so 
instead interpolate K r  from K r I and K r 5\ or K r 2 and 
K r 4. The green value of this red pixel is thus recovered by 
G =  R  — K r . The missing green element of blue pixels 
can be interpolated in the same way and the interpolation of 
red and blue elements uses the same approach.

This method is based on the assumption that colour dif­
ference are relatively flat over small regions. This assump­
tion is valid within smooth areas of the image but is not 
valid around the edges in the image. Colour misregistration 
would still exist around the edges if bilinear interpolation 
was applied. Our method effectively solves the problem by 
interpolation along the edges in colour difference space, as 
Figure 5 shows. It avoids colour misregistration by not in­
terpolating across the edges in the colour difference space.

3.2 Other Applications

As already mentioned, pixel level data-dependent trian­
gulation can be used in arbitrary resolution enhancement, 
arbitrary rotation and other applications of still images in 
continuous space. This remains true for demosaicing: we 
are not obliged to reconstruct at the CCD resolution or ori­
entation. However, there is less information available than 
in a full colour image, so we cannot expect the quality to be 
as high. What we do claim is that there is less introduced 
visible error; what there is, is visually acceptable.

4 Experimental Results

4.1 Quality Assessment

We have performed various tests on two images, one of 
a boat (Figures 5 and 6) and one of a macaw (Figures 7 and 
8). In each case, the top image is the original 24 bit image of 
size 768 x 512. From this we prepared a mosaic image by, 
at each pixel, discarding the two primaries indicated by the 
CFA pattern. This mosaic image was then used to perform 
the various reconstructions shown, again at 768 x 512.

We applied three different demosaicing methods for the 
test images: bilinear interpolation in the original colour 
space, bilinear interpolation in colour difference space and 
our data-dependent triangulation method in colour differ­
ence space.

If we compare Figure 6(b) and Figure 6(c), it can be 
seen that interpolation in the colour difference domain has 
better reconstruction quality than interpolation in the orig­
inal colour space. Colour misregistration is clearly visible 
near the thin lines in the boat picture and around the top of 
the macaw where there is a sharp colour transition. There 
are also noticeable dotted artifacts around those edges. Our 
method avoids both of these problems because it better pre­
serves the geometric regularity and interpolates along the 
edge orientations of the image.

Direct visual inspection indicates that our method pro­
duces good reconstruction quality. However, we wanted 
to explore a more analytical assessment of the visual qual­
ity of the interpolated images, though this is not straight­
forward to define, let alone measure. Degradation-based 
quality measures[8] and the visible differences predictor 
(VDP)[9] have been proposed. These two vision models 
are quite complicated and it is difficult to compare differ­
ent reconstruction methods. Instead we chose two methods 
to assess the reconstruction. One is cross-correlation pro­
posed by Battiao et a /.[10] and Lehmann et al.[ 11]. They 
use cross-correlation between the original picture and the 
reconstructed picture to assess the quality of reconstruction. 
The other is Peak Signal-to-Noise Ratio (PSNR) which is 
commonly used as a measure of image quality in digital im­
age compression and reconstruction.

The cross-correlation coefficient C between two images 
X ,Y  is:

g  x ijVij  ~  I  Jab)_________

VdZij 4  -  iW Z i j  y% - IJb2))

where a and b denote respectively the average value of 
image X  and Y \  and I  and J  are the image’s width and 
height. The cross-correlation coefficient is between 0 and 
1, where a higher score means better reconstruction quality.

The PSNR is based on Mean-Squared Error (MSE). The 
MSE is the cumulative squared error between the recon­
structed and the original image. The Mathematical formu­
lae for the two are:

M S E = j j ' £ ( x i j - y i j ) 2

i,3

PSNR = 20lo*'°7M s
where S is the maximum pixel value. Logically, a higher 

value of PSNR is better because it means that the ratio of



Figure 5. Portions of: a: original boat image, 
b: bilinear interpolation in the  original colour 
space ,  c: bilinear interpolation in the  colour 
difference space ,  d: our method in the  colour 
difference sp ace

Figure 6. Close-up comparision of: a: orig­
inal boat image, b: bilinear interpolation in 
the  original colour space ,  c: bilinear interpo­
lation in the  colour difference space , d: our 
m ethod in the  colour difference space



Figure 7. Portions of: a: original macaw im­
age. b: bilinear interpolation in the original 
colour space, c: bilinear interpolation in the 
colour difference space, d: our method in the 
colour difference space

Figure 8. Close-up com parision of: a: origi­
nal macaw image, b: bilinear interpolation in 
the  original colour space ,  c: bilinear interpo­
lation in the  colour difference space , d: our 
method in the  colour difference space



Signal to Noise is higher. Here, the ’signal’ means the orig­
inal image and the ’noise’ is the error in reconstruction.

We used twenty 24-bit 768 x 512 colour nature images 
as our test set. Because we use colour images, we compute 
the cross-correlation coefficients of the R, G, B planes in­
dependently and average these three. The PSNR values are 
calculated for the three colour channels independently.

The table below shows the corresponding cross­
correlation results where B L  means bilinear interpolation 
in original space, B L D  means bilinear interpolation in 
colour difference space, D D T  means data-dependent 
triangulation (our method) and D D T D  means our method 
in colour difference space. The values are averaged over 
the test set.

B L  B L D D D T  D D T D
0.989957 0.995719 0.988859 0.993706

Cross-correlation results show that bilinear interpolation 
is marginally better than our method, when both use the 
same colour space. Colour difference space is better than 
original colour space but only by a very small amount, 
approximately 0.5%. The table below shows the PSNR 
results of three colour channels for the different methods. 
The results are averaged over the twenty images.

B L B L D D D T D D T D
R 31.4685 35.0733 31.2224 33.9629
G 35.3369 39.3796 35.0995 37.9909
B 31.0098 34.2068 30.7429 32.3131

The PSNR results show a clear benefit from the use of 
colour difference space, for both bilinear interpolation and 
our method. These results confirm earlier work supporting 
colour difference space. When comparing the two methods, 
the PSNR results show that bilinear interpolation is only 
marginally better than ours. As we discussed, our method 
is designed for solving the problem of colour misregistra­
tion in edge areas. So for images which mainly consist of 
smooth areas, bilinear interpolation will give a better statis­
tical result because it uses more information for interpola­
tion. Informally observation confirms that our method gives 
improved edge quality. It looks better because human eyes 
are more sensitive to edges and our method is better at re­
taining edges. Our overall result is very close to bilinear in­
terpolation which means our method produces good overall 
reconstruction images. It is however simpler to implement.

4.2 Performance Assessment

The following table shows the performance comparison 
on a Pentium I I400 machine with 256M memory. We used 
the 20 images again and timed the four methods. All the 
methods are implemented by C++ code and all the figures 
in the table are seconds.

B L  B L D D D T  D D T D
1.82 5.71 2.32 3.66

As we expected, both methods using the colour differ­
ence space require more computation than the method in 
original colour space. Of the two methods using colour dif­
ference space, our method is faster. This is true even includ­
ing the overhead of initializing the triangulations in three 
colour channels (About 1.05 seconds in this case). Our 
method is significant faster because it only requires two pix­
els to interpolate while bilinear interpolation requires four 
pixels. We have already shown that it has good overall qual­
ity and visually better edges. We suggest that these features 
make it a better choice for demosaicing colour images.

5 Conclusion

In this paper we have presented a new method for demoi- 
saicing of colour images. The new method is based on data- 
dependent triangulation but we use it at pixel level. The in­
terpolation is done within the triangulation, which matches 
the edge orientation of the images. By avoiding interpola­
tion across edges, the new algorithm successfully solves the 
problem of colour artifacts around the edges. We also ap­
plied the scheme in colour difference space which helps to 
reduce the artifacts caused by colour misregistration.

We have applied our method to the Bayer CFA pat­
tern and our method offers simplicity and efficiency. The 
cross-correlation and PSNR results also demonstrate that 
our method is very close the best comparator in producing 
the ‘right’ data, while visual inspection shows that the data 
is more effectively deployed to produce sharp edges. It is 
also much faster.

Our method can also be used for general image manipu­
lations such as arbitrary scaling, rotation, perspective trans­
form, warp and so on. Thus it can be used for digital zoom 
and simple effects.
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