

University of Bath

PHD

Pixel level data-dependent triangulation with its applications

Su, Dan

Award date:
2003

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

PIXEL LEVEL DATA-DEPENDENT
TRIANGULATION WITH ITS

APPLICATIONS

Attention is drawn to the fact that copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and no
information derived from it may be published without the prior written consent
of the author.

This thesis may be made available for consultation within the University library
and may be photocopied or lent to other libraries for the purposes of consultation.

Submitted by Dan Su

for the degree of Doctor of Philosophy

of the University of Bath

2003

C O PY R IG H T

UMI Number: U207361

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U207361
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

Digital images are of great importance nowadays to life and technology. A good
model to represent digital images is essential to digital image processing and
other image-related applications. Many image models have been proposed from
researching the underlying statistical and spatial features of digital image arrays.
However most results are either complex or not adequate.

We propose a pixel level data-dependent triangulation image model, for a broad
range of applications, using a triangulation mesh to represent images. The trian­
gles are chosen so that image edges align with edges of the triangles; in particular
the hypotenuse is selected to follow oblique edges. The strength of this model
is that it represents the orientations of edges therefore keeps the most visually
important feature of images. It is a generic model and is applicable to all types
of images. It is very simple and efficient.

This has led to several important applications such as arbitrary resolution en­
hancement, arbitrary rotation, demosaicing of digital colour images and other
applications of still images in continuous space. Moreover, the simplicity and
efficiency of this model make it applicable in hardware which means real-time
high quality image reconstruction and manipulations can be achieved.

Acknowledgem ents

Firstly, I would like to express my sincere gratitude to my supervisor, Professor
Philip Willis, for his encouragement, support, help and his useful insights into
research. I especially appreciate his patience in guiding me into research.

I want to thank all the members in the Media Technology Research Centre at
the University of Bath for their advice and help. My special thanks to John
Collomosse, Dr. David Duke, Dr. Peter Hall, Dr. Joy Lu and Dr. Man Qi.

I would like to thank my family and my friends for their support. In particu­
lar, I would like to thank my parents for their love and support, my uncles for
their encouragement and support, and my girlfriend Wenjia Liu for her love and
support.

Declaration

The research presented in this thesis was conducted by the author.

All views expressed in this thesis are those of the author, and do not reflect those
of the University of Bath.

Contents

1 Introduction 1

1.1 C o n trib u tio n s ... 4

1.2 O rganisation... 5

2 Background 8

2.1 Image Modelling ... 8

2.2 Image In terpolation .. 10

2.3 Colour Image D em osaicing.. 11

2.4 Texture S yn thesis ... 12

3 Im age M odelling 16

3.1 In troduction ... 16

3.2 Pixel Level Data-Dependent T rian g u la tio n 19

3.2.1 In troduction ... 19

3.2.2 Edge M odelling ... 22

iii

3.2.3 A Generic P ro b le m .. 23

3.2.4 Pixel Level Data Dependent T riangu la tion 24

3.2.5 Optimisation .. 27

3.2.6 Extended Model .. 27

3.2.7 Algorithm C o m p lex ity .. 29

3.3 Concluding R e m a rk s ... 31

4 Im age Interpolation 32

4.1 In troduction ... 32

4.2 Principle of the A lg o rith m ... 34

4.3 Image M ag n ifica tio n ... 35

4.3.1 B ackground ... 35

4.3.2 Image Interpolation by Pixel Level D ata Dependent Trian­
gulation .. 36

4.3.3 Algorithm Analysis and C o m p a riso n 40

4.3.4 Implementations .. 41

4.4 Experimental Assessment... 42

4.4.1 Visual Assessment .. 42

4.4.2 Quality A ssessm ent.. 48

4.4.3 Quality of E d g e s .. 50

iv

4.4.4 Quality of Real Im ag es ... 51

4.4.5 Quality of Other Im a g e s ... 52

4.4.6 Performance A ssessm ent... 53

4.4.7 Hardware Im plem entation 56

4.5 Other A pp lica tions.. 58

4.6 Concluding R e m a rk s ... 58

5 Colour Image D em osaicing 61

5.1 In troduction ... 61

5.2 The Demosaicing A lg o rith m .. 64

5.2.1 Principle of the A lg o rith m .. 64

5.2.2 Original Colour S p a c e ... 65

5.2.3 Colour Difference S p a c e .. 66

5.3 Experimental R esu lts ... 68

5.3.1 Quality A ssessm ent.. 68

5.3.2 Performance A ssessm ent.. 74

5.4 Conclusion... 75

6 Texture Synthesis 76

6.1 In troduction ... 77

v

6.1.1 Texture Synthesis T a s k s .. 79

6.2 Previous Work ... 80

6.2.1 Traditional Texture Synthesis M e th o d s 80

6.2.2 Contemporary Methods .. 81

6.3 Texture Synthesis and Texture Transfer using Particle Swarm Op­
timisation .. 87

6.3.1 Texture Synthesis by Patch-Based S am p lin g 87

6.3.2 Texture Synthesis using Particle Swarm Optimisation . . . 89

6.3.3 Synthesis Results and Algorithm Analysis 92

6.4 PSO Based Texture T ransfer.. 96

6.5 Constrained Texture Synthesis... 99

6.6 Perspective Texture S y n th es is ...100

6.6.1 Extension to Perspective T e x tu r e ... 102

6.6.2 Experimental R esu lts .. 104

6.7 Conclusion.. 104

Conclusions and Future Work 109

7.1 Contribution... 109

7.1.1 Image In terpolation..110

7.1.2 Demosaicing of Colour Im ag es .. I l l

7.1.3 Texture Synthesis..I l l

7.2 Future W ork .. 112

7.3 Conclusion... 114

A P roof 115

References 117

vii

List of Figures

1.1 Digital image p ro cessin g ... 2

1.2 A sample image mesh DDT. Left: a flower image. Middle: a
magnified view of the bottom stamen. Right: the pixel level data-
dependent triangulation of the stamen .. 4

3.1 A Delaunay triangulation ... 20

3.2 Silver triangles are required to represent this surface......................... 21

3.3 An edge swap in a quadrilateral. The representation of the geom­
etry will be affected by such an edge s w a p 21

3.4 An edge image ... 22

3.5 Triangulation of the edge image in Figure 3.4 23

3.6 A generic problem .. 24

3.7 Triangulation in a four-pixel s q u a re ... 25

3.8 Top left: a part of a flower image. Top right: a magnified view of
the bottom stamen. Bottom left: the pixel level data dependent
triangulation of the stamen (NW-SE direction) Bottom right: NE-
SW direction ... 26

3.9 3 x 3 square neighbour w in d o w .. 28

3.10 Top: a magnified view of the stamen. Middle: the basic model.
Bottom: the extended model... 30

4.1 Interpolation in two triangles ... 37

4.2 Left: bilinear interpolation. Right: triangle in te rp o la tio n 38

4.3 Contours from different m ethods.. 41

4.4 Detail flower image magnifying by 4. Top: bilinear interpolation.
Middle: bicubic interpolation. Bottom: the NEDI method.............. 43

4.5 Comparison of our basic method and extended method. Top: in­
terpolation using basic method. Bottom: interpolation using ex­
tended method.. 44

4.6 Magnified view of the stamen. Left: selecting edge only by four-
pixel squares. Right: selecting edge by a 3 x 3 square neighbour
window... 44

4.7 Roof image magnified by a factor of two. Top left: original image.
Top right: bilinear interpolation. Middle: bicubic interpolation.
Bottom: our extended m e th o d .. 45

4.8 Flowers image magnified by a factor of two. Top left: original
image. Top right: bilinear interpolation. Middle: bicubic interpo­
lation. Bottom: our extended m eth o d ... 46

4.9 Launceston image magnified by a factor of two. Top left: original
image. Top right: bilinear interpolation. Middle: bicubic interpo­
lation. Bottom: our extended m eth o d ... 47

4.10 A portion of the flower image magnified by a factor of 3.5 using:
Top right: bilinear interpolation. Middle: bicubic interpolation.
Bottom: our extended method.. 49

ix

4.11 Image set of five images with different edges. The angles are 0, 30,
45, 60 and 90 deg rees.. 51

4.12 The X-ray head image on the top left is magnified by a factor
of 4 using: Top right: bilinear interpolation. Middle: bicubic
interpolation. Bottom: our extended method...................................... 54

4.13 The satellite image on the top left is magnified by a factor of 4
using: Top right: bilinear interpolation. Middle: bicubic interpo­
lation. Bottom: our extended method 55

4.14 Screenshot of the openGL implementation of using our method to
manipulate images. The parrot image is magnified in perspective
view... 57

4.15 a: Flower image rotated by 27 degrees, b: a perspective view of
the flower image, c: a lens effect of the flower im a g e 59

5.1 Bayer Colour Filter Array Pattern (U.S. Patent 3,971,065, issued
1976).. 62

5.2 Left: Red square. Right: Blue s q u a re .. 65

5.3 Green c ro s s e s .. 65

5.4 Portions of: a: original boat image, b: median based interpolation,
c: bilinear interpolation in the original colour space, d: bilinear
interpolation in the colour difference space, e: our method in the
original colour space, f: our method in the colour difference space 69

5.5 Close-up comparison of: a: original boat image, b: median based
interpolation, c: bilinear interpolation in the original colour space,
d: bilinear interpolation in the colour difference space, e: our
method in the original colour space, f: our method in the colour
difference s p a c e .. 70

x

5.6 Portions of: a: original macaw image, b: median based inter­
polation. c: bilinear interpolation in the original colour space, d:
bilinear interpolation in the colour difference space, e: our method
in the original colour space, f: our method in the colour difference
sp a c e .. 71

5.7 Close-up comparison of: a: original macaw image, b: median
based interpolation, c: bilinear interpolation in the original colour
space, d: bilinear interpolation in the colour difference space, e:
our method in the original colour space, f: our method in the
colour difference s p a c e ... 72

6.1 Left: sample image. Right: the synthesised image with arbitrary
size and similar visual appearance to the sample................................ 77

6.2 Some examples of texture synthesis, Column 1: sample texture,
Column 2: Efros’s non-parametric sampling. Column 3: Wei’s
pyramid. Column 4: Liang’s patch-based. Column 5: Efros’s
image quilting... 85

6.3 Patch-based texture sy n th e s is ... 88

6.4 PSO based texture syn thesis .. 91

6.5 PSO based texture synthesis. Column (a) are input samples with
size 100 x 100, column (b) are synthesised by patch-based sampling
method and column (c) are our results using 20 particles and the
100 iterations. They both have size 200 x 200.................................... 93

6.6 PSO based texture synthesis with different particles, (a) are the
sample textures, (b) are the results generated by [49]. (c) uses 10
particles, (d) uses 20 particles and (e) uses 40 p a r t ic le s 95

6.7 PSO based texture synthesis with different iterations, (a) are the
sample textures, (b) are the results generated by [49]. (c) uses 500
iterations, (d) uses 230 iterations and (e) uses 100 iterations . . . 95

xi

6.8 PSO based texture transfer: transferring texture to picture, (a) is
sample texture, (b) is input picture (c) is our result and (d) is the
result from [103].. 97

6.9 PSO based texture transfer: transferring picture to texture, (a) is
sample texture, (b) is input picture (c) is our result and (d) is the
result from [103].. 98

6.10 Constrained texture synthesis, (a),(b) are two sample textures, (c)
is the target picture and (d) is the synthesised result........................... 100

6.11 Constrained texture synthesis, (a),(b) are two sample textures, (c)
is the target picture and (d) is the synthesised result........................... 101

6.12 Constrained texture synthesis. (a),(b) are two sample textures, (c)
is the target picture and (d) is the synthesised result........................... 101

6.13 Top left: original structured texture. Top right: synthesised image
rotated along Z axis by 30 degrees. Middle: synthesised image
rotated along X axis by 45 degrees. Bottom: synthesised image
rotated along both X and Y axis by 30 degrees................... 105

6.14 Top left: original statistical texture. Top right: synthesised image
rotated along Z axis by 30 degrees. Middle: synthesised image
rotated along X axis by 45 degrees. Bottom: synthesised image
rotated along both X and Y axis by 30 degrees 106

xii

List o f Tables

4.1 MSE results of edge images ... 51

4.2 MSE results of real im ag es .. 52

4.3 Performance com parison ... 53

5.1 PSNR results of different m ethods... 74

5.2 Performance comparison of different methods 75

6.1 Performance com parison ... 96

xiii

Chapter 1

Introduction

Images are produced by a variety of physical devices, including still and video
cameras, x-ray devices, electron microscopes and radar, and used for a variety of
purposes, including scientific research entertainment, medical, business, industry,
military, civil and security. The goal in each application is for an observer, human
or machine, to extract useful information about the scene being imaged.

There are two principle types of images: continuous and discrete. A scene in the
natural world is continuous. Image acquisition devices use a sampling process to
digitise the image and thus convert the continuous image into a discrete digital
form. This can be stored in a computer or on some form of storage media. The
term “digital image” is commonly used for this data. It has intensity values only
at a set of discrete points with intensities drawn from a set of discrete values.
The discrete locations are often called “pixels” and the intensity of each location
are often called “pixel value” .

There is almost no area of technical endeavour that is not affected in some way by
digital images. Their various applications raise the need to better represent, store,
analyse and manipulate vast amounts of visual data. Most digital computers, as
their names suggest, can only deal with discrete images. W hat we perceive in
the real word are continuous images, which are always one step away from the
data on which the computer operates. If we want a discrete image to be seen by
human, we must display it continuously. This leads to a fundamental problem:
reconstructing continuous images from discrete ones. In particular, how to return

1

Sampling process

Reconstruction

Other Processes (e.g. filtering, warping)

Continuous Image Discrete Representation

Other Discrete Representation

Figure 1.1: Digital image processing

from the discrete sampling data to a continuous space, thus escaping from the
limitations of pixels and the usual discrete sampling.

We illustrate this process in Figure 1.1. Digital images have been taken from
continuous images by the sampling process. Given the representation, we are
able to perform other processes on it: e.g. filtering, warping and segmentation.
Finally we can reconstruct continuous images from the discrete representation.

Developing an adequate tool to represent digital images therefore plays a critical
role in image processing and other image-related applications. The representa­
tion of digital images clearly affects other image processing applications and the
reconstruction of continuous images.

However this remains a challenging problem in image processing research. An
image is not a direct measurement of the properties of physical objects being
imaged. It is rather a complex interaction among several physical processes:
the intensity and distribution of illumination, the physics of the interaction of
illumination with the m atter comprising the scene, the geometry of projection of
the reflected or transm itted illumination and the electronic characteristics of the
sensor. Moreover, intensities are recorded to finite precision which always leads to
errors in the reconstructed continuous intensity. Representation of digital images
should also help in reducing the reconstruction errors.

A lot of researchers have studied the field of finding a suitable image model which
provides an abstraction of large amounts of image data and provides an analytical

2

representation for explaining the image’s intensity distribution.

The simplest and most popular image model can be represented as a two-dimensional
light-intensity function, denoted by f (x , y), where the value or amplitude of /
at spatial coordinates (x , y) gives the intensity of the image at that point. This
model is simple; however it ignores almost all the interactions among physical
processes and the geometry features of the images.

Spatial features, especially edges, are particular important in image processing.
Edges contain very important information about the image. When we perceive
an object in our environment, the edges of an object play an important role in
stimulating our vision system and conveying visual information to our mind. It is
edges that help us recognise objects and reveal their structure. Preserving edges
is important in almost all image processing tasks but it is difficult to find a good
model that preserves the characteristics of edges effectively and efficiently.

Among the characteristics of edges, edge orientation is the most important one.
However, edge orientation is an underlying parameter embedded in the 2D digital
image data array. It is not straightforward to reveal edge orientations by dealing
with image data directly. Moreover, edges have other two important spatial
features: the intensities across the edge vary significantly but they are almost
the same along the edge. These features makes edge play a significant role in
digital image representations.

It is well known that humans are better at judgement and machines are better
at measurement. Although it is easy for humans to distinguish the edges, edge
detection remains a difficult problem for image processing. Edge detection has
been an active research area in the past decades, however most existing algorithm
either do not detect edges effectively or employ very complex models to describe
edges. Moreover, the aim is not simply the detection of edges in the image,
but the representation of the intensity distribution and the preservation of the
underlying edge features.

We propose an image model using a data dependent triangulation (DDT) [27]:
the triangulation mesh is dependent on both the geometry and the intensity
distribution of the image data. The drawback of normal DDT schemes is that
they are too complex and one can always find another triangulation of the same

3

m i r r r i r f r X "x X[77" x 7 X7
I x 1 1 1 1 1 1 1 1 1 U XL X. x x Xx 7 z 7

7 E 7 X7 x x x x X7 7
f 11 ’ 1 ’! ’' I IT '' I I I T 1 ’ XX,VXZx x x z 7 X 7
11 t 1' T I T I r 1 1 / t i ’ •7 X x. x x x 5 'x

7 XXE Xx XXx X7 X
1' 1 > • i »• ’ 1 1 1 ' I '111 ’' I ••7 X,XX,x x 7 x \ 7 7 X
[[••••• J ' .• r ! ! M 11 XXXX,x X VX. 7 x 7 7

I i i 1 1 1 1 1 1 1 1 1 7 XX,Xx x x x 7 7 7 X
XXX Xx x 7 x X7 x 'x
\ 7 Xz X. Xx 5 \ 'x

11T I ';' 1 r I I T 1 1 1 ' XL X Xx x x A 'x
i 1 1 1 j ' I T I 1 1 r I’l ’ •X XX\ Xx x , x x1/

\ XX7 x x x X. Xx
[• t r l 1 11' 11 ’ 1 1 1 \ •••'7 X x x x x x X7 7 X
H ’d'd 1' 1 ['i i l l : : X XXX:xXx 7 7 7
KKKKJx.fxhrTNITL. XX 7 x XXx XXx x X

IdSrHMSrHHdd'TTFs XV7 x xz. \ XI. x x X
[I I T I t 1 I > t T i 1' X7 X, xx X . x x X

XX X XXX X7 Xx 7
X Xx x XX7 ,7 x X. .

[XJxJ\J\JXJxJ\J\JxX/|/T\|\ x x Xx x Xx 7 7 x
_

F XX. / Xx 7 7 : / 7
XXXx x Xx 7 7 7 7

11 1 11 I I I I 17 I 1 '.X X E x X x X z X 7 /

Figure 1.2: A sample image mesh DDT. Left: a flower image. Middle: a magnified
view of the bottom stamen. Right: the pixel level data-dependent triangulation
of the stamen

image and claim this triangulation is better. Another shortcoming of the normal
DDT is that it cannot handle very small features of the image because it cannot
triangulate at that level.

We suppose there is an edge passing through every square of four pixels in the
image. Then we triangulate the four-pixel square and represent the edge by the
diagonal of this square. A triangulation mesh is built by triangulating every four-
pixel square in the image and the edges of the triangles are chosen to correspond
to the edges in the image (Figure 1.2). We call this a pixel level deta-dependent
triangulation.

This model allows us to perform other applications on this representation and
to recover continuous intensities from discrete image data samples. Various ap­
plications can use this representation: such as arbitrary resolution enhancement,
arbitrary rotation and other applications of still images in continuous space. We
have studied its application in these image processing tasks and developed several
novel algorithms for them.

1.1 C on tr ib u tion s

This thesis gives a solution to the image modelling problem. We provide a data
dependent triangulation mesh to represent images. Unlike former approaches,

4

we do not assume knowledge of the low-pass filtering kernel, or attem pt to find
a statistical rule about the local geometry, or explicitly extract edge-orientation
information: we model the image as a triangulation mesh with the edges of
triangles corresponding to the edges of the images. It is a universal model for all
images and provides universal solutions to many image processing problems. It
is very simple to implement and efficient as well.

We have employed the model in several image related applications, i.e. image
interpolation and demosaicing of colour images. Our model is very simple which
makes it easy to adapt to various applications.

In particular, this model provides an image interpolation scheme which provides
higher visual quality than traditional interpolation schemes. A statistical assess­
ment also shows that this approach produces good overall image quality. The
complexity of the new method is similar to bilinear interpolation and better than
most existing methods. A hardware implementation shows that high-quality im­
age interpolation can be done in real-time. The model is also extended and ap­
plied to the image demosaicing problem. By avoiding interpolation across edges,
the new algorithm successfully solves the problem of colour artifacts around the
edges. It provides a reasonable solution to the colour image demosaicing problem
because it produces good reconstruction efficiently.

This thesis also studies the texture synthesis problem. We present a detailed
survey of texture synthesis and introduce a new texture synthesis method us­
ing particle swarm optimisation for patch-based texture synthesis. We extend
this method to texture transfer, constrained multi-sample texture synthesis and
perspective texture synthesis.

1.2 O rganisation

The rest of this thesis is organised as follows:

• C h a p te r 2: B ackground We will briefly review the history and the scien­
tific background of image modelling problem. We also study the background

5

of other applications we will cover in this thesis, e.g. image interpolation,
demosaicing of colour images and texture synthesis.

• C h a p te r 3: Im age M odelling We start by describing the traditional and
recent image modelling algorithms, especially those edge-directed schemes
and the triangulation approaches. We introduce the motivation behind
our work and importance of edges in image modelling. Then we introduce
triangulation and present a novel pixel level data dependent triangulation
approach for image modelling.

Image modelling is concerned with developing an empirical model to rep­
resent the global features from the discrete sampling tha t has produced
the image. In this thesis, the edge behaviour is a focus and so we use a
data-dependent triangulation that aligns well with edges to represent digi­
tal images. Other applications of digital images can be developed from this
model.

• C h a p te r 4: Im age In te rp o la tio n We then present how our image model
can be applied to image interpolation and how the results are improved
by interpolation along the edge orientation. We will study one important
and difficult application: the magnification of still images and some other
applications such as rotation, the perspective transform and a non-uniform
example, the lens effect. We assess our experimental results and simulate
the potential of our algorithm to be used in hardware.

Image interpolation is a particular instance of modelling where we create an
empirical model that reconstructs the image values at any arbitrary position
in a continuous space. Interpolation is performed according to the image
model which represents the features of the underlying image, especially the
edges. Image interpolation focuses on reconstructing continuous images
from the digital samples while image modelling focuses on representing the
features of the digital images.

• C h a p te r 5: D em osaicing of C olour Im ages In this chapter we will
adapt our model and use it in the demosaicing of colour images generated by
current single-chip digital cameras. We will demonstrate that our model is
effective compared to traditional methods, when applied to the commonly-
used Bayer Colour Filter Array pattern. We demonstrate that the proposed
method gives superior reconstruction quality, with smaller visual defects
than other methods.

6

Demosaicing is a particular application of interpolation where interpolation
is performed on the demosaiced discrete data samples.

• C h a p te r 6: T ex tu re S yn thesis We first give a survey of traditional and
contemporary texture synthesis methods. We will introduce a texture syn­
thesis method based on patch-based sampling texture synthesis method.
It uses Particle Swarm Optimisation for searching process thus accelerate
synthesis while keeps high quality. It is simple and easy to implement com­
pared to other acceleration schemes. Then we extended the basic method
to texture transfer and constrained texture synthesis. It is effective for
these applications. Then we extend the method to synthesising perspective
textures from an input sample image. The method synthesises the texture
directly on the surface, rather than synthesising a texture image and then
mapping it to the surface.

• C h a p te r 7: C onclusions and F u tu re W ork We finally make our con­
cluding remarks and provide an overview of future research orientation.

7

Chapter 2

Background

In this chapter we give the background to the image modelling problem. We also
study the some other image models and briefly introduce our image model and
solutions.

2.1 Im age M odelling

Image modelling refers to the analytical representation of discrete image data
and provides an explanation of the image’s intensity distribution. Clearly an
effective image model is important for applications based on this model. However,
although digital image processing has been an active research field for over thirty
years, image modelling is still very much an unsolved problem, in particular,
effective and efficient modelling preserving the edge features of the image. Some
solutions have been shown, however they are either very complex or are not
effective for all images.

Previous image models can be classified into four categories.

• The probabilistic models treat the image as a statistical representation of
numerical data taken from the image source according to various statisti­
cal distributions. One popular tool is the Discrete Markov Random Field

(MRF)[97] which models contextual information of digital images and spec­
ifies local characteristics of an image by conditional probability models.
Several improvements based on MRF such as the doubly stochastic process
[99] and the dual lattice process [31] have been proposed, aiming at better
capture of the global statistics and nonstationarities of the image source.

• The deterministic models treat a digital image as a two-dimensional data
matrix of discrete samples and seek global geometry features of the image.
Deterministic 2D sinusoidal models [50], polynomial models [15] and the
recently-proposed computed AM-FM models [35] all try to catch the global
features of images. These models are appropriate for a specific subset of im­
ages (e.g. highly structured images) but not for images containing complex
structures (e.g. textures with lots of edges). The alternative local models
can be thought of as a 3D extension of time-series models for images (e.g.
3D Casual [55], NSHP [98]). Another example is the PDE-based model [64]
which is used in nonlinear diffusion and also finds promising applications
in image enhancement and restoration [7, 52].

• The wavelet-based models have an energy compaction property, in both
the space and frequency domain. They facilitate the task of statistical
modelling of the image source. Current wavelet based models including a
classification strategy [51, 105, 39] to distinguish coefficients around edges
from those in smooth regions. A nonlinear approximation [4] is superior
to linear approximation. The statistical inference approach [48] determines
the image’s characteristics and estimates edge orientation by a Least-Square
estimation strategy.

• The triangulation models [25, 106] model the image as a data independent
triangulation or a data dependent triangulation (DDT) to represent the
image source. The data independent triangulation depends only on the
distribution of the data points while the latter depends on the data values
as well.

We introduced our new image model - the image mesh DDT. We represent the
image as a data dependent triangulation mesh with the diagonals of the mesh
corresponding to the edges in the image. In particular, we divide each four pixel
square into two triangles by the diagonal: the diagonal either goes to the NE-SW
or NW-SE direction. The direction of the diagonal is chosen to correspond to the

9

edge in the image. We also extend our model by considering the local intensity
instead of only each four-pixel square. Our triangulation mesh is very simple and
completely regular. We avoid the complexity of a full DDT method while keeping
the advantage of DDT that improves the reconstruction quality.

2.2 Im age Interpolation

Image interpolation is a link between the discrete world and the continuous one
by recovering the continuous intensity surface from discrete image data samples.
It is a well-studied area in computer graphics and image processing but it remains
a challenging problem.

Previous image interpolation methods can be classified into three categories:

• The classic methods including nearest-neighbour, linear interpolation (bi­
linear in 2D or trilinear in 3D) [81], bicubic [59] and cubic B-spline [84].
These methods are widely used in computer software. Typically they are
implemented through convolution of the image samples with a single kernel.
They suffer from edge blurring or artifacts along the edges.

• The advanced methods have been proposed to improve the interpolation
quality. There are many directions of these approaches. PDE-based ap­
proaches [9, 57] apply a nonlinear diffusion process controlled by the local
gradient. POCS (Projection-Onto-Convex-Set) schemes[70] formulate the
interpolation as an ill-posed inverse problem and solve it by regularised
iterative projection. Orthogonal transform methods focus on the use of
the discrete cosine transform (DCT) [56, 77], Directional methods [12, 37]
examine an image’s local structure around edge areas to direct the interpo­
lation. Variational methods formulate the interpolation as the constrained
minimisation of a functional [41, 75]. Adaptive interpolations [5, 45,19] spa­
tially adapt the interpolation to better match the local structure around
edge area.

• The recently developed edge-directed methods improve interpolated image
quality by taking edge information into account [48, 6, 11, 57, 58]. The
edge directed interpolation (EDI) [6] generates a high resolution edge map

10

and uses it to direct high-resolution interpolation. The New Edge Directed
Interpolation (NEDI) attempted to estimate local covariance characteristics
at low resolution and used them to direct interpolation at high resolution.
Battiato et al. [11] proposed a method taking into account information
about discontinuities or sharp luminance variations while doing the in­
terpolation. Morse et al. [57, 58] presented a scheme that uses existing
interpolation techniques as an initial approximation and then iteratively
reconstructs the isophotes using constrained smoothing.

We have used our model for the image interpolation problem. In particular,
we are interested in still image magnification. We used our model to generate
a triangulation mesh to represent this image. Then higher resolution images
are interpolated from this mesh. In particular, a higher resolution pixel will
be interpolated from a triangle rather than from a four pixel square (as bilinear
interpolation does) or from an even bigger window as (bicubic interpolation does).
Because the triangulation mesh is generated corresponding to the edges of the
image, the interpolator will always interpolate along the edge but not across it.
The new method will keep the edge sharp while retaining the smoothness along
the edge. We will compare our results with traditional methods and assess them
both visually and statistically. Our algorithm provides good image quality with
almost the same computational efficiency as bilinear interpolation.

2.3 Colour Im age D em osaicing

One very important industry problem is the reconstruction of a full-resolution
colour image from the mosaiced sample taken by current single-chip colour digital
cameras. The digital cameras acquire images through a colour filter array which
leads to mosaiced images: only one primary colour (R, G or B) in one pixel. The
so-called “demosaicing” process is thus needed to interpolate full colour images.

Previous demosaicing approaches can be classified into two categories:

• The colour correlation methods address the problem introduced by tradi­
tional methods such as bilinear interpolation. This induces relatively large

11

errors in the edge regions and the eye is especially sensitive to edge quality
[73]. Various methods [43, 2, 61] use colour correlation instead of original
colour space. They produce better results because there is a high correla­
tion between the red, green and blue channels. However, they ignore the
edge orientation in the images.

• The edge-directed approaches attem pt to maintain edge details or limit
hue transitions. Adams’ edge oriented method [1] interpolates the missing
colour elements according to the edge orientation of the image but it only
detects the vertical and horizontal edges. Ramanath [68] used an adaptive
interpolation, achieving edge orientation adaptation. Cok [20] proposed a
method using a constant hue-based interpolation to make sure there are
no sudden jumps in hue, especially over edges. The median-based interpo­
lation [29] proposed by Freeman first does a linear interpolation and then
applies a median filter of the colour differences (red-minus-green and blue-
minus-green channels). Laroche and Prescott [44] proposed a method called
gradient based interpolation and it is used in the Kodak DCS 200 digital
camera system. Hamilton and Adams [32] used an adaptive colour plane in­
terpolation which is a modification of the method by Laroche and Prescott
[44]. However, all these methods are complicated and computationally slow.

We adjusted our model and applied it to the demosaicing problem. Moreover,
we used colour-difference space [61] instead of original space as the former better
explains the correlation between different colour channels. We demonstrated
that our model is effective compared to traditional methods, when applied to the
commonly-used Bayer Colour Filter Array pattern [1]. Our experimental results
show that the proposed method gives superior reconstruction quality, with smaller
visual defects than other methods. Furthermore, the complexity and efficiency
of the proposed method is very close to simple bilinear interpolation, making it
easy to implement and fast to run.

2.4 T exture Synthesis

Texture is a particular problem. Texture has an excessive number of edges which
makes it difficult for normal triangulation approaches. Texture also has some

12

particular applications other than magnification and rotation. Normally in com­
puter graphics and image processing, texture is mapped on the object surface to
make it more realistic. These features make texture a special situation. An alter­
native way to represent textures in continuous space is to synthesise a matching
texture, using relatively few parameters without much expense of computation
time. The synthesised texture should have the same spatial feature as the sample
texture. It is thus possible to use the synthesised texture, with arbitrary size and
orientation, to map the object surface.

Previous texture synthesis methods can be classified into several categories:

• The procedural texture synthesis is the use of a function or set of functions
applied to a set of points in order to generate a texture [110]. Solid tex­
ture [90, 60, 47] textures the surface by ‘placing’ the object in the field,
and obtaining a texture from the intersection of the surface of the object
and the field. Hypertexture [63] used a density function that describes
how the object should behave in the area where it transitions between the
outside and inside of the object. Cellular Texture [100] used a new basis
function to produce textured surfaces resembling flagstone-like tiled areas.
The Reaction-Diffusion [82] approach is based on a process in which two or
more chemicals diffuse over a surface and react with one another to produce
stable patterns.

• The Feature Matching texture synthesis uses models such as pyramids and
wavelets to catch the features of the texture and then generates a new image
by matching the model. Examples are the steerable pyramid introduced by
Heeger and Bergen [36] and the multi-resolution filter-based approach by
De Bonet [16]. They use the pyramid to analysis input texture and to
catch spatial features of textures. Wavelet approaches [65] are used to
model textures by decomposing the texture image to complex wavelets and
synthesising new textures by matching the joint statistics of these wavelets.

• The Markov Random Field (MRF) approaches assume that a texture is
“local” and “stationary” . They estimate the local conditional probabil­
ity density function (PDF) and synthesise pixels incrementally. The non-
parametric sampling scheme by Efros [26] models each pixel of the image
as a square window around that pixel and then synthesises the next pixel

13

by searching for the best-fit (least error) pixel through matching the neigh­
bouring window. Wei and Levoy [93] improved Efros’s method by using
a multiresolution image pyramid. These methods synthesised one pixel at
a time. Xu et al. [102] proposed a texture synthesis algorithm based on
random patch pasting. This idea is developed and modified by other re­
searchers, for example, the patch-based sampling method [49] and the image
quilting approach [27]. They synthesise new texture one patch at a time
thus are much faster.

• The surface texture synthesis directly synthesises textures on 3D surfaces.
Wei [94] presented a method to synthesise general textures over arbitrary
manifold surfaces by generalising the definition of searching neighbour­
hoods. Turk [83] developed an algorithm by sorting a hierarchy of points
from low to high density over a given surface and searching for the best-fit
pixel from the set.

Liang et al. [49] produced a real-time synthesis process by patch-based sampling.
It searches all patches from the sample texture and picks a best match patch to
generate new texture. It avoids mismatching features across patch boundaries by
sampling texture patches according to the local conditional MRF density. Liang’s
method can re-synthesise high-quality texture images in real-time. It remains ef­
fective when pixel-based sampling algorithms fail to produce good results. It uses
feathering blending in the boundary zones, thus providing a smooth transition
between adjacent texture patches.

Yan Zhang proposed a texture synthesis method [108] based on patch-based sam­
pling method. It uses Particle Swarm Optimisation for searching the best match
patches; this accelerates the synthesis process and keeps the synthesis quality.
The PSO algorithm either gives a best match or an approximate best match
which is good for texture synthesis because texture synthesis needs some ran­
domness and the synthesised texture should ‘look like’ the original one. Zhang’s
method is simple, easy to implement and more efficient compared to the tech­
niques used in Liang’s method.

Xiaogang Xu [103] did some research on texture transfer based on Ashikhmin’s
method [8]. However his method is synthesising textures one pixel at a time thus
very computationally expensive. We extend the PSO based method to texture

14

transfer and visual inspection shows that our method produces better results and
is much more efficient.

Constrained texture synthesis is also studied by other researchers [8]. However
most of them only take one sample texture and synthesise textures on constrained
areas from that sample texture. We have extended PSO based texture synthesis to
multi-sample constrained texture synthesis. We take several sample textures and
one picture as input and then synthesise textures from different sample textures
into different areas of the picture.

Most previous methods synthesise textures on 2D plane or 3D surfaces. Consider
there is a 2D plane in perspective view (a 2D surface viewed in 3D), synthesis
methods on 2D plane cannot synthesise textures on this surface. Those methods
[94, 83, 104] which synthesise texture on 3D surfaces are too complex for this
situation because they involve 3D mesh generation and calculation. We present
a new method which is derived from the PSO texture synthesis. We adjusted his
method to be used in perspective projection. This application leads to some new
problems such as aliasing, which we also address. It produces textures with sim­
ilar quality and speed to the 2D counterpart (Efros’s image quilting algorithm).
The algorithm is effective and efficient, producing high quality synthesised images
very rapidly.

15

Chapter 3

Image M odelling

3.1 In troduction

Digital images now routinely convey information in most branches of science and
technology. There is almost no area of technical endeavour that is not impacted
in some way by digital images. A digital image is composed of a finite number of
elements, each of which has a particular location and value. The most obvious
feature of digital images, considered as numerical data, is their very large size.
A natural image with normal resolution and size consists of millions of pixels
and each pixel takes one of hundreds of different values. Another key feature
of image data is its spatial structure. The interplay between stochastic digital
data and spatial variations is one of the most interesting aspects of digital image
processing. To construct a model of digital images to represent the features from
such a huge database can be a considerable challenge.

Image modelling, as defined in this thesis, is a general phrase which can be applied
to all of the following aspects:

• It provides an abstraction of large amounts of data contained in images.

• It refers to analytical representation for explaining the image’s intensity
distribution.

16

• It facilitates the development of systematic algorithms to accomplish spe­
cific tasks.

However, the representation of an image is very much an unsolved problem in
image processing. Finding a model that is able to accurately characterise and
represent images is very difficult because of the huge number of images and their
countless spatial structures. Over the past two decades, a lot of research has
been done within this field and image models have gone through several phases
of improvements.

Traditional image modelling techniques can be put into two categories: proba­
bilistic models and deterministic models.

The probabilistic approaches treat the image as a statistical representation of
numerical data taken from the image source. Probabilistic image models suppose
the image is spatially stationary, which makes implementation simple: effectively
the same statistical rules and computations are performed repeatedly at different
locations in the image [48]. The multivariate Gaussian model is one of the earliest
approaches to represent the global statistics of an image source. Another popular
tool is the Discrete Markov Random Field (MRF) [97]. It models contextual
information of digital images and specifies local characteristics of an image by
conditional probability models. Several improvements based on MRF such as
the doubly stochastic process [99] and the dual lattice process [31] have been
proposed, aiming at better capture of the global statistics and nonstationarities
of the image source. MRF theory has been applied to many applications in image
segmentation [24] and restoration [99].

The deterministic methods treat an image as a two-dimensional data matrix of
discrete samples taken from a two-dimensional continuous space. Instead of trying
to find the statistical rules from the image source, deterministic methods seek the
global geometry features of the image. Deterministic 2D sinusoidal models [50],
polynomial models [15] and the recently-proposed computed AM-FM models [35]
all try to catch the global features of images. These models are appropriate for
a specific subset of images (e.g. highly structured images) but not for images
containing complex structures (e.g. textures with lots of edges). The alternative
local models can be thought of as a 3D extension of time-series models for images
(e.g. 3D Casual [55], NSHP [98]). Another example is the PDE-based model

17

[64] which is used in nonlinear diffusion and also finds promising applications in
image enhancement and restoration [7, 52].

Recent development of image modelling is mainly due to the discovery of bases
suitable to represent the characteristics of images. One class of models known as
fractals [10] is good for describing natural scenes with a large amount of self­
similarity. Fractal models have found many successful applications in image
synthesis, compression and analysis. Another popular class of models is the
wavelet-based representation [53, 88] of images. These approaches model the
image features by wavelet transforms in both the space and the frequency do­
main. Current statistical modelling techniques in the wavelet domain mostly use
a classification strategy [51, 105, 39] to distinguish coefficients around edges from
those in smooth regions. Deterministic models in the wavelet domain mainly
focus on using functions in Besov space to describe the behaviour of wavelet co­
efficients. Nonlinear approximation [4, 21] has also been found to be superior to
linear approximation. The statistical inference approach [48] determines the im­
age’s characteristics and estimate edge orientation by a Least-Square estimation
strategy. Another important class of models uses a triangulation mesh. Given a
set of data points and corresponding data values, the data independent triangu­
lation methods [13, 78] build a triangulation mesh to represent the image source
depending only on the distribution of the data points. In the data dependent
triangulation approaches [25, 106], the triangulating of the image depends on the
data values as well.

A lot of effort has been put into the area of image modelling but it remains a dif­
ficult and unsolved problem. Effective and efficient image models should capture
fundamental features of digital images and should be fairly easy to implement
compared to the traditional and widely used bilinear interpolation. In particular,
they should cope with edges of images well because, as we will explain later in
this section, edges are fundamental features in the image source and contain lots
of information. Although several approaches based on geometric or statistical
analysis have been proposed, these edge models are either very complex or can
only handle vertical or horizontal edges. In this chapter, we will present a novel
approach to representing images which achieves edge orientation adaptation by
modelling the image as a data dependent triangulation.

18

3.2 P ix e l Level D ata -D ep en d en t T riangulation

3.2 .1 In trod u ction

The need for triangulation arises in a wide variety of applications ranging from
physics to meteorology, from mathematics to computer graphics. It is used in
robotics to plan the motion of a robot. Triangulation is also used in computer
vision to present stereo data. It is useful in rendering images because current
graphics cards use triangles as primitives and can draw triangles rather efficiently.
It is widely used to model surface geometry. Significant theoretical advances in
using triangulations for geometric modelling have been made. It is a well-studied
problem in computer graphics [89].

Before we move on, we define some notation.

P represents a set of data points in the xy plane, V represents a set of data
values in which each element is the data value of a point in set P. T means a
triangulation which is a set of triangles with each of them consisting of three
points from P.

The triangulation shall satisfy the following conditions:

• P is the set of all vertexes of triangles in T. That means every triangle
vertex is an element of P and vice versa.

• Every edge of a triangle in T contains only two points from P

• The union of all triangles in T is the convex hull of P.

• The intersection of any two different triangles in T is either empty, or is a
shared edge or vertex.

Triangulation can be classified into two categories: data independent triangula­
tion and data dependent triangulation according to whether or not its topology
is determined by V.

19

Figure 3.1: A Delaunay triangulation

The most popular data independent triangulation method, a method which only
considers the data points’ domain positions P, is the Delaunay Triangulation
[72, 74]. A Delaunay triangulation T is such that for each triangle t , there is no
vertex of T in the interior of t's circumcircle (Figure 3.1). An optimal Delaunay
triangulation means the triangles have good aspect ratios and the triangles should
be as equiangular as possible, hence avoiding ‘sliver’ (very thin) triangles. Sliver
triangles are undesirable for many applications such as Finite Element Modelling
and graphical rendering since their shape can cause numerical inaccuracies in
FEM calculations and visual discontinuities in smoothly shaded surfaces. In
many applications, the Delaunay triangulation is useful. However, Delaunay
triangulations do not necessarily produce the triangulation which is the best
approximation to a given surface, for two reasons:

1. sliver triangles are necessary to give a good approximation to some surfaces
(Figure 3.2) [72];

2. the swapping of edges which the Delaunay criterion invokes can cause arti­
ficial break lines where none exist in the original terrain (Figure 3.3) [74].

As its name suggests, data dependent triangulation also depends on the under­
lying data set V as well as the positions P. Data dependent triangulation will
provide a better approximation to the underlying surface V [25, 106]. Data de­
pendent triangulations sometimes produce sliver triangles, with their long side
in the direction of small curvature. Although regarded as ‘bad’ for interpolation,
sliver triangles are good for approximating a preferred direction, as we have seen
in Figure 3.2. Many data dependent triangulation approaches have been shown

20

Figure 3.2: Silver triangles are required to represent this surface

Figure 3.3: An edge swap in a quadrilateral. The representation of the geometry
will be affected by such an edge swap

in the last two decades [71, 17, 76, 67] in a variety of applications. It is intuitively
clear, and supported by their work that the interpolation over such a data depen­
dent triangulation will provide a better approximation to the underlying surface
V. Thus, the problem of adapting the shapes of the triangles to the behaviour of
the underlying data set is important and proved difficult. Those triangulation ap­
proaches normally use optimisation procedures (e.g. Lawson’s local optimisation
[25]) in order to produce a better approximation of the function V. A good data
dependent triangulation of a given function V over a given set P will optimise
some quality, which can be referred to as “smoothness” . The smoothest trian­
gulation will usually differ for two different underlying functions over the same
set of points P while the data independent triangulation will always produce the
same triangulation over the same set P. Different optimal algorithms have also
been proposed in order to yield a better (smoother) triangulation mesh [25, 106].
However they are all complex and no perfect optimal algorithm has been found
for all functions.

For an image, if we let P correspond to the set of pixels and V(x,y) be the

21

Figure 3.4: An edge image

intensity of the pixel (r r ,y) , we can then model the image as a triangulation
mesh. It is easy to conclude that data dependent triangulation is desired because
data dependent triangulation is a better representation of given function (image
intensity) over a given set (image pixels). It can be seen that the data dependent
triangulation will better represent the intensity distribution of the image. This
gives us a hint that data dependent triangulation might be a good solution for
the image modelling as it represent the intensity distributions well. In particular,
the edges of the images can be well preserves by the data-dependent triangulation
as we can swap the triangles according the edges to force the triangles align well
with edges.

In the following section, we will study the geometry of the edges and present how
to model edges by a data-dependent triangulation mesh.

3.2.2 Edge M odelling

In this section we look at the concept of digital edges and their geometry features
a little closer. Intuitively, an edge is a set of connected pixels that lie on the
boundary between two regions. An edge is a purely ‘local’ concept whereas a
region boundary is a more global variant of the same idea. In a digital image,
an edge manifests itself as a spatially coherent discontinuity in image intensity.
A reasonable definition of “edge” requires the ability to measure grey-level tran­
sitions in a meaningful way. We start by modelling an edge intuitively. Figure
3.4 shows an image contains an edge and the triangulation outcome is shown in
Figure 3.5.

Although triangulation is popular in geometric modelling, it isn’t widely used in
image processing, e.g. image reconstruction. Triangulation methods are com-

22

Figure 3.5: Triangulation of the edge image in Figure 3.4

plex to implement compared to bilinear reconstruction which is also simpler to
compute. (The bilinear reconstruction is a well-known approach that uses the
intensity of the four nearest neighbours to predict the desired pixel. Different
coordinates (weights) are given to each neighbour to interpolate the unknown
pixel. It is quite straightforward and is widely used in image processing because
of its simplicity.)

In the following section, we will present a pixel level data dependent triangulation
which is as simple as bilinear interpolation while keeping the advantages of normal
data dependent triangulation.

3 .2 .3 A G eneric P rob lem

We address the problem of modelling an arbitrarily-oriented edge in a triangu­
lation mesh. Sampling gives information about the intensity distribution of the
image. In image processing, when the sampling includes an edge, the triangu­
lation mesh should fully exploit the edge information provided by the samples.
Intuitively, the edges of the triangulation mesh should correspond to the edges
in the images.

We start with a generic problem of image reconstruction. Let’s look at Figure
3.6. Assuming P is the unknown pixel, our main problem is how to estimate P
from its local neighbourhood pixels N. For example, in Figure 3.6, N contains
all available local neighbours of P and we predict P from N.

Traditional methods such as bilinear reconstruction or bicubic reconstruction take
all the pixels of N and predict the unknown pixel P by weighting, a terminology

23

Figure 3.6: A generic problem

used to indicate that pixels within the set N are given different coefficients when
calculating P , thus giving them different importance (weight). The weighting
coefficients are chosen from a weighting function which is normally decided by
the distance from P.

However, those methods simply ignore the edge information of N. If there is an
edge across the neighbour set TV, as we see in Figure 3.6, the prediction of P needs
to be altered. We’ve already noted in the last section that the intensity field will
have a significant change across the edge and will be almost homogeneous along
the edge. That is to say, the P will be more like the pixels on the same side
of the edge and should be predicted from the pixels on the upper side of the
edge. Any unknown pixel falling in one subset should be predicted only using
that subset and avoiding the subset on the other side. The spatial features of
the edges, sharpness across edges and smoothness along the edge, can be kept by
doing this.

We can model this by triangulating N such that the edge of the triangles corre­
sponds to the edge of N. So the prediction of P will be done within the triangle
in which it falls. This is just normal data dependent triangulation. However, it
is very complex to triangulate the whole image and get an optimal triangulation
mesh.

3.2.4 P ixel Level D ata D ep en dent T riangulation

With these considerations in mind, we develop a new data-dependent triangula­
tion approach at pixel level. We only consider a four pixel square. Firstly, we
suppose that there is an edge passing within a square of four pixels. If this edge

24

b c

Figure 3.7: Triangulation in a four-pixel square

cuts off one corner, one pixel will have a value substantially different to (it could
be bigger or smaller) the other three. Call this pixel the outlier. Imagine that
we represent the intensity of the pixel as the height of a terrain. In effect, the
three similar pixels define a plateau, relatively flat, while the outlier value is at
the bottom of the cliff (if smaller) or the top of a peak (if higher) (Figure 3.7).
This gives us a hint that if we want to predict a pixel within the relatively flat
region we should not use the outlier. Classical interpolation methods like bilinear
reconstruction suffer from edge blurring because they use all four pixels.

So we can use the diagonal of the square to correspond to the edge in the image.
The diagonal should be the one which does not connect to the outlying pixel
value, the one most different to the other three.

Obviously, using the diagonal to triangulate the four pixels cannot correspond to
arbitrary angle edges. The diagonal can only roughly represent the orientation
of the edge. We would have to use sub-pixel triangulation to represent arbitrary
angles, but that adds more complexity to the algorithm. Our aim is to keep
the algorithm as simple as possible. We will demonstrate in this thesis that
triangulation by diagonal is enough in most situations and can provide excellent
results. It is the direction-selection method that is key.

For a grey-scale image, we represent the brightness of the pixel as height. Suppose
pixels a, b and c are the same height while d is higher than these three (Figure
3.7). Obviously a, b and c define a flat region while d is the most different pixel
to the other three. Thus we connect diagonal ac and get the triangles AB C and
ADC. In general, if b or d is the most different pixel, the edge should be ac,
otherwise bd will be the edge.

25

/ / / / / / / / / / / / /
/ / / / / / / /
/ / / / / / / /

/ / /
/ / / / / / / /

/ / / / / / /
/ / / / / / / /

/ / / / / /
/ / /

/ / / /
/ / / /

/ / / / / / / /
/ / / / / / / / /

/ / / / / / / /
/ / / / / / / / /

/ / / / / / /
/ / / / / /

/ / / / / / / /
/ / / / / / / /

/ / / / / / / / / / / /
/ / / / / / / / / / /

/ / / / / / / / / / /
/ / / / / / / / / / / / / / /

/ / / / / / / /
/ / / / / /

Figure 3.8: Top left: a part of a flower image. Top right: a magnified view of the
bottom stamen. Bottom left: the pixel level data dependent triangulation of the
stamen (NW-SE direction) Bottom right: NE-SW direction

There are other situations if a and d are very different to b and c; or a and b are
very different to c and d. In these cases it makes little difference which diagonal
is chosen. The edge is roughly either horizontal (ad are different to be) or vertical
(ab are different to cd) and the triangle will always cross the edge. It is similar
to bilinear interpolation in these cases.

Thus, we can match the edge by the diagonals. In Figure 3.7, when predicting the
pixel falling in triangle ABC, we won’t use the value of d which is very different
to this plateau. For two pixels falling in different triangles, the height of the
pixels will be quite different and thus the sharpness of edge is kept. It is easy to
see that in very smooth regions, the interpolating is able to keep its smoothness
as well, even across triangle boundaries because the terrain is relatively flat and
there is no strong edge in the local area.

Our method is thus to fit the finest triangular mesh to the source pixels. This
mesh is completely regular except that the diagonals are locally selected to run

in the same general directions as any visible edge. It makes the model easy to
implement and to use in other applications.

So any Pn within the square Nn will be predicted from the subset Mn, which
consists of the three vertices of the triangle in which it falls. Figure 3.8 shows
a magnified view of the stamen of a flower and its pixel level data dependent
triangulation. (We only show the diagonals of the triangles for a clearer view.)
We divide the triangulation into two meshes, each one only containing a specific
direction. The stamen and a black edge near the stamen both roughly have NW-
SE orientation. It is clear to see that the corresponding triangles also cluster in
the NW-SE direction, which matches the edges of the image. In particular, note
the absence of NE-SW diagonals near these linear features.

3.2 .5 O p tim isa tion

The algorithm should recognise either the highest or the lowest pixel as the most
different one in order to find the outlier pixel. There is an efficient way to choose
the direction of the edge. Instead of finding the outlier, we simply compare the
difference \a — c\ with \b — d\ and connect the pair with smaller difference as
the diagonal. The proof that this is equivalent to finding the outlier pixel is in
Appendix A. This saves computing time, needing only two subtractions and a
comparison instead of sorting four pixels and then comparing between the highest
or the lowest pixel and the average value to determine the most different one.

3 .2 .6 E x ten d ed M od el

Some problems still remain in our basic model. For example, close study of the
triangulation of the stamen reveals a problem. The actual local edge, goes in the
NW-SE direction while some diagonals in the lowest stamen areas give the NE-
SW direction. This contradicts the local edges leading to some deterioration of
edge quality. The reason that some diagonals contradict the local edge orientation
is because our basic method only considers the four pixel square, ignores the local
intensity and thus it is unable to catch the local geometry. To correct this problem
we need to apply our extended model and consider information in the local area.

27

-e o

Figure 3.9: 3 x 3 square neighbour window

We assume the image is locally stationary. That is to say the intensity of a
pixel is dependent on its spatial neighbourhood while independent of the rest of
the image. Instead of a normal least-square adaptive edge prediction scheme,
we simply consider the neighbour window’s edge direction. To predict the edge
direction in a four pixel square, we consider the eight squares around the target
square (Figure 3.9) and adjust each square’s edge direction if needed. In partic­
ular, if the most of the eight surrounding squares are in one direction while the
middle square is the other, we will adjust the middle square’s diagonal direction
according to the majority of the eight surrounding squares.

Actually the extended model can be considered as a two-pass process. In the
first pass, we apply the basic model: go through every four pixel square and
calculate its direction. Then, in the second pass, we adjust the direction in
a four pixel square by considering the surrounding eight squares. We use a
threshold (which is set to 6 in all experiments in this thesis) to determine whether
there is a strong edge orientation within a local area. If the total of the eight
surrounding directions exceeds the threshold then most edges in these squares go
in one direction. This means there is a strong edge orientation in this window.
Then we adjust the edge in the central target square to that direction. If there is
no strong local direction, then we accept the direction given by the four pixels.

Obviously our extended model increases complexity, but not much. It is a trade
off of complexity and quality. It is worth noting that this additional complexity
is only in preparing the mesh, not in using it to generate an image. We will show
in this thesis that in most situations our basic model is effective.

Figure 3.10 is the comparison of our basic model and the extended model which
considers the local intensity. We can make the observation that most triangles
remain the same as in the basic model but the extended model is better able to
catch the local geometry and match the orientation of the stamen and the black

28

edge. Figure 3.10 is a triangulation of 625 triangles, our basic model generates
418 diagonals in NW-SE direction and 207 diagonals in NE-SW direction while
our extended model produces 438 and 187 respectively. They differ only on 20
diagonals, mainly along the stamen and the black edge. The extended model
better preserves the local geometry.

3 .2 .7 A lgorith m C om p lex ity

We analyse the complexity of the basic model and the extended model in this
section. Suppose the image I has width and height m, so the number of pixels is
n = m 2. The number of triangles in the triangulation is then (ra — l) x (m —l)x2.
In our implementation, we use a table to record the orientation of the diagonal
in each square. As there are only two directions of each diagonal so we can use
one bit to store this information. Thus, the total memory requirement for the
triangulation is (m — l) 2 « n bits. For a normal image with size 1024 x 1024
the memory requirement is about 12Sk bytes. Compared to the standard 128M
memory in current PCs, it is very small. Moreover, the memory requirement n
is linear with image size n.

In our basic model, each triangle needs two subtractions and one comparison, so
the total computation is (m - 1) x (m - 1) x 2 x 3 « 6n. Thus, the basic model
has a time complexity of 0(n).

Our extended model is a two pass process. In the first pass, we calculate just
like the basic model and set each triangle’s diagonal direction. In the second
pass, each triangle needs a sum of eight surrounding squares and a comparison to
decide if there is overriding edge orientation in local area. Thus, the computation
for each triangle needs two extra computations, and the whole image needs lOn
computations which is still linear to image size n. The time complexity of the
extended model is also 0(n).

In conclusion, our model is efficient in both memory and time, and is suitable
for handling large images with a linear dependency on the image size. We note
a favourable feature: the mesh rendering routine is independent of the method
used to determine the diagonals.

29

/
/

/ /
/ /

/ / / / / /
/ / /

/ / / / / /
/ / / / / / /

/ / / / /
/ / / / /

/ / / / / /
/ / / / / / / / / / /

/ / / / / / / / / / / /
/ / / / / / / / / / /

/ / / / / / / / / / /
/ / / / / / / / / / / / / / /

/ / / / / / / / / / / /
/ / / / / / / / / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / /

/ / / / / / /

Figure 3.10: Top: a magnified view of the stamen.
Bottom: the extended model.

Middle: the basic model.

30

3.3 C oncluding R em arks

Pessimistically speaking, image modelling is still very much an unsolved prob­
lem. In this thesis, we present a possible solution to this problem. We model
the image trying to satisfy some deterministic spatial features related to edge
orientation, where edges exist. As edges contain the visually important infor­
mation of an image, such an approach provides the opportunity of challenging
many existing image processing algorithms and developing new algorithms with
better performance. We will demonstrate in later chapters of this thesis that our
data dependent triangulation model reaches many areas of image processing and
produces superior applications in these areas.

The contribution of our algorithm is that it provides a universal model for all
images and a universal solution to many image processing problems. It challenges
many other algorithms and generates better results. Moreover, it is very simple
which makes it easy to implement various applications and it is efficient and easy
to use.

31

Chapter 4

Image Interpolation

In this chapter we will present how our image model can be applied to image
interpolation and how the results are improved by interpolation along the edge
orientation. We will study one important and difficult application: the magnifi­
cation of still images (including colour images) and some other applications such
as rotation, the perspective transform and a non-uniform example, the lens effect.

4.1 In troduction

Digital image interpolation refers to the recovery of a continuous intensity surface
from discrete image data samples. It is a link between the discrete world and the
continuous one. There are three important hypotheses for interpolation [81]:

• The underlying data is continuously defined.

• Given data samples, it is possible to compute a data value of the underlying
continuous function at any abscissa.

• The evaluation of the underlying continuous function at the sampling points
yields the same value as the data themselves.

32

In general, almost every geometric transformation requires interpolation to be
performed on an image, e.g. translating, rotating, scaling, warping or other ap­
plications. Such operations are basic to any commercial digital image processing
software. Obviously, the quality of the interpolator determines the quality of the
desired image.

There are several issues which affect the perceived quality of the interpolated im­
ages: sharpness of edges, freedom from artifacts, reconstruction of high frequency
details. We also seek computational efficiency, both in time and in memory re­
quirements. Classical interpolation techniques, such as pixel replication, bilinear
or bicubic interpolation have the problems of blurring edges or of artifacts around
edges. Although these methods preserve the low frequency content of the sample
image, they are not able to recover the high frequencies which provide a picture
with visual sharpness.

Standard interpolation methods are often based on attempts to generate contin­
uous data from a set of discrete data samples through an interpolation function.
These methods attem pt to improve the ultimate appearance of re-sampled images
and minimise the visual defects arising from the inevitable resampling error.

It has been recognised that taking edge information into account will improve
the interpolated image’s quality [48, 6, 11, 57, 58] and it is known that the
human visual system makes significant use of edges [86]. Instead of approaching
interpolation as simply fitting the interpolation function, these methods consider
also the geometry of the image. Li [48] asserts that the quality of an interpolated
image mainly depends on the sharpness across the edge and the smoothness along
the edge.

Li et al. [48] attempted to estimate local covariance characteristics at low resolu­
tion and used them to direct interpolation at high resolution (NEDI - New Edge
Directed Interpolation) while Allebach et al. [6] generated a high resolution edge
map and used it to direct high-resolution interpolation (EDI - Edge Directed
Interpolation). Battiato et al. [11] proposed a method by taking into account
information about discontinuities or sharp luminance variations while doing the
interpolation. Morse et al. [57, 58] presented a scheme that uses existing inter­
polation techniques as an initial approximation and then iteratively reconstructs
the isophotes using constrained smoothing. They emphasise the importance of

33

the “smoothness” quality, if the isophotes are not to be visually intrusive. As
will shortly become clear, we too accept this need to fit the visual geometry.

The above schemes demonstrate improved visual quality (in terms of sharpening
edges or suppressing artifacts) by using a model to preserve the edges of the
image and to tune the interpolation to fit the source model. However they are
complex compared to traditional methods and thus computationally expensive.

Another approach is triangulation modelling. Triangulation has been an active
research topic during the past decade. It is popular in geometric modelling. How­
ever, image reconstruction using triangles isn’t widely used, probably because of
the complexity of the triangulation method. Yu et al.[106] modelled images as
data dependent triangulation meshes and reconstructed images from the trian­
gulation mesh. Their approach adapted traditional data-dependent triangulation
with their new cost functions and optimisations. The data dependent triangula­
tion thus matches the edges in the image and improves the reconstructed image.
However their methods are relatively complex.

We have discussed in the last chapter that our pixel level data dependent trian­
gulation model is able to preserve the edge orientation of the image. It is clear
that this model can be applied to the image interpolation problem. Our scheme
is thus an edge-directed interpolation but differs from those previously published
[106, 6, 11, 57, 58]. We do not assume knowledge of the low-pass filtering kernel
or attem pt to find a statistical rule about the local geometry. Our approach is
related to that of Yu but is simpler and faster because it does not involve any
cost function or repeating optimisation process. Our mesh is very simple and
completely regular. We avoid the complexity of a full DDT method while keep­
ing the feature of DDT that improves the reconstruction quality. In the following
sections, we will demonstrate our algorithm used in arbitrary magnification of
still images and other applications.

4.2 P rincip le o f th e A lgorithm

An image can be represented as a pixel level data dependent triangulation mesh,
with the edges of triangles correspond to edges in the image. Thus, given a

34

sample image, we get a triangulation mesh M produced by our image model.

An interpolation technique is then used to render the image from mesh M. The
mesh M is taken as input to the interpolation process and a pixel image I will
be output, where each pixel is sampled from the mesh. The image I is thus the
desired image reconstructed from the sample image.

The sample is calculated by triangle interpolation (we will discuss this shortly)
of the three values from the mesh triangle surrounding the sample point. We can
choose our output grid of pixels to be any resolution and any orientation. This
allows arbitrary magnification, rotation or other applications. We can also vary
the sample spacing, to produce other effects, such as warping.

This process is quite straightforward. It takes the triangulation mesh from our
model as input and applies simple triangle interpolation to get the interpolated
image. The complexity of the algorithm is thus very low: it depends on the
triangle interpolation which is similar to bilinear interpolation.

4.3 Im age M agnification

4 .3 .1 B ackground

Image magnification is the term given to the image processing operation which
achieves a higher resolution image than the one afforded by the physical sen­
sor. Image magnification has been used in obtaining high quality images and
is found in areas such as surveillance and automatic target recognition. Image
magnification is also called super-resolution, zooming, resolution enhancement,
enlargement, etc. However these all refer to the same operation.

Traditionally, magnification is accomplished through convolution of the image
samples with a single kernel - typically bilinear, bicubic [59], or cubic B-spline
[84]. Many recent algorithms have been proposed to improve the magnification
results. PDE-based approaches [9, 57] apply a nonlinear diffusion process con­
trolled by the local gradient. POCS (Projection-Onto-Convex-Set) schemes[70]

35

formulate the interpolation as an ill-posed inverse problem and solve it by reg­
ularised iterative projection. Orthogonal transform methods focus on the use of
the discrete cosine transform (DCT) [56, 77]. Directional methods [12, 37] ex­
amine an image’s local structure around edge areas to direct the interpolation.
Variational methods formulate the interpolation as the constrained minimisation
of a functional [41, 75]. Those interpolation schemes we have mentioned in the
first section can all be used in magnification.

We will first apply our image model to image magnification. In particular, we
are interested in magnifying still images, both in grey scale and colour. We will
justify our algorithm by evaluating the results both subjectively and objectively.
The understanding of perceived image quality is still very limited and we still
have to rely on subjective evaluation. However, there are some statistical tools
which allows us to assess the performance objectively although these tools are
not perfect.

4.3 .2 Im age In terp o la tion by P ix e l L evel D a ta D ep en d en t

T riangulation

As we mentioned earlier, spatial features of edges play an important role in nat­
ural images. An ideal interpolation scheme should therefore always adapt to
edge orientation. Edge sharpness across the edge and smoothness along the edge
should be well kept by doing this.

We apply the pixel level data dependent triangulation to the image and build a
triangulation mesh where the edges of triangles correspond to edges in the image.
So each four pixel square is divided into two triangles. The diagonal either goes in
the NE-SW or NW-SE direction depending on the local spatial geometry. Thus
if we want to interpolate a higher resolution pixel falling in one of the triangles,
we will use only the three vertices to do interpolation. This will not blur the edge
and will preserve the smoothness along the edge. Classical interpolation methods
like bilinear interpolation suffer from edge blurring because they interpolate from
all four pixels.

To illustrate the approach, Figure 4.1 shows a triangulation in a four-pixel square.

36

Figure 4.1: Interpolation in two triangles

Suppose e and / are two super resolution pixels falling in different triangles. We
will interpolate e within triangle abc and interpolate / within triangle acd. The
height of e and / correspond to their interpolated value. It is easy to see that e
and / are significantly different and thus the edge will remain sharp in magnified
images. Clearly if the areas are relatively smooth, the two triangles should have
similar height and the interpolator is able to keep its smoothness as well, even
across triangle boundaries.

Suppose the low-resolution source image is X and the high-resolution image to
be generated is Y. We first scan the sample image X to initialise a lookup
table which records the edge direction of all four-pixel squares. For any super­
resolution pixel we can distinguish in which triangle of X the pixel falls. The
high-resolution image Y is then produced by interpolation. For each yij we do
an inverse mapping to the sample image X and determine the surrounding four
pixel square. We use the lookup table to select the right triangle, then interpolate
within the triangle to get yij.

We use inverse mapping because it has a number of benefits. First it can be used
at arbitrary resolution. We are not constrained in any way by the resolution of
the source data. Second, there is no requirement to align the target grid parallel
to the source grid, so arbitrary rotation is possible at no additional cost. Third,
sampling can be irregular to provide warps, although the sampling rate must not
be too low because this would cause break-up.

We use linear interpolation within the triangles. However there is some confusion
of terminology in the literature, which we need to clarify before proceeding. “Bi-

37

a d a d

c

Figure 4.2: Left: bilinear interpolation. Right: triangle interpolation

linear interpolation” strictly refers to interpolating four points and we will use the
term only in that sense. In the graphics community, three-value interpolation, as
used in Gouraud shading, is also called bilinear interpolation, although it is only
a degenerate case. We will distinguish this by calling it “triangle interpolation” .
(We are grateful to Professor Ken Brodlie, at the University of Leeds, UK, for
drawing our attention to this.)

Figure 4.2 illustrates how bilinear interpolation and our triangle interpolation
are performed in a unit square. We give the mathematical formula of these two
interpolations.

B{x i y) = h + {~~h + Ic)% + {la — h) y + {—Ia + h — Ic + Id)xy
T{x, y) — Ib + { - I b + I c)x + {Ia - Ib)y

B{x,y) is the bilinear interpolation and T{x,y) is the triangle interpolation. For
0 < x ,y < 1 , {%,y) is the position of the point being interpolated relative to
the four corners. Ia is the pixel value of pixel a and so on. It is clear from the
above formula that bilinear interpolation differs from triangle interpolation in
the xy term: the bilinear interpolation is controlled by all the four pixels and the
triangle interpolation is a piecewise linear interpolation.

For simplicity, we first consider that Ia = Ib = 0, Ic = Id = 1 which means there is
a vertical edge across the square. In this case, the bilinear interpolation becomes
B{x,y) = x and triangle interpolation becomes T{x,y) = x which is identical to
bilinear interpolation. It is easy to see that if Ia = Id = 0, Ib = Ic — 1 (there is a
horizontal edge), bilinear interpolation will again give the same result as triangle
interpolation. However, if we set Ia = Ib = Ic = 0, Id = 1, then Id is different
to the other pixels. In this case, we triangulate the square as Figure 4.2 right
shows. Bilinear interpolation becomes B{x ,y) = xy and triangle interpolation

38

T (x ,y) = 0 . It is clear that triangle interpolation is better in this case because
P is in a triangle with three vertices being zero.

It is clear from the above analysis that if the square is flat or the edge is roughly
horizontal or vertical, the triangulation approach will produce almost identical
results as bilinear interpolation. This feature will keep the smoothness along the
edge and in the smooth area in images. However if there is a clear edge defined
(not horizontal or vertical), i.e. one pixel is quite different to the other three, our
method is superior to bilinear interpolation and keeps the edge sharp.

We mentioned in the last chapter that our basic model has some limits in that
it only considers the four-pixel square, ignoring the surrounding values. We have
seen in figure 3.10 that the diagonals of the lowest of the stamen contradict the
local edge orientation. This will leads to some deterioration of edge reconstruction
quality. It only catches the micro-geometry (pixel-level), not the local geometry
due to edges passing through several pixels. To correct this we need to apply our
extended model, as discussed in 3.2.6.

Our extended model considers a local neighbouring window by arranging 16 pixels
as 3 x 3 squares. To predict the edge direction in a four pixel square, we will
first set directions in each square and then, in a second pass, we consider the
eight squares around the target square and see whether there is a strong edge
orientation in this window. If most edges in these squares go in one direction
then we adjust the edge in the target square to that direction. In our case we do
this if at least 6 of the 9 squares have the same direction. If there is no strong
edge direction in the local area then we only consider the target square when
choosing the edge. All decisions are made on the original data so that changes
do not influence nearby decisions taken later.

It is worth noting that the interpolation process of the extended method remains
exactly the same, but the input triangulation mesh is now generated by our
extended model.

39

4.3 .3 A lgorith m A n a lysis and C om parison

It is easy to see that the triangle interpolation has the same complexity as bilinear
interpolation which is linear with image size n. We discussed the complexity of
our models in 3.2.7 and explained that both our basic and extended model have
time complexity 0(n). Thus, combining with the interpolation, both the basic
and extended method have time complexity of 0(n). Our method is thus efficient
in both memory and time, and is suitable for handling large images with a linear
dependency on the image size.

Yu et al. [106] propose an image reconstruction method using data dependent
triangulation. They use a new cost function and an improved optimisation al­
gorithm to generate an optimised triangulation mesh. Their method is able to
model an image effectively. It is complex to implement and is computation­
ally slow. It takes several iterations to get an optimised triangulation and each
iteration takes “between 0.5 and 5 seconds” even for a small image (80 x 80)
on a consumer-grade PC. Another limitation of the method is it cannot catch
single-pixel and small features.

Figure 4.3 shows some contours resulting from different methods. Figure 4.3a
is the contour from bilinear interpolation of a simple image of 25 pixels whose
intensities are zero or one and the vertexes of the square are pixel centres. No
triangles are involved in this bilinear interpolation. Figure 4.3b shows the con­
tours from a Delaunay triangulation of the image, Figure 4.3c shows the contours
from Yu’s DDT method [106] and Figure 4.3d is the contour from our method.

It is clear that Yu’s DDT method and our methods generated straighter contours
than the bilinear interpolation and Delaunay triangulation. Smoother contours
tend to produce the least offensive artifacts in interpolation. Yu’s DDT method
produces even straighter contours than our method because it can model edges at
any arbitrary angle while ours are modelling 45 degree angles. Our method can be
thought of as a simplified data dependent triangulation and it actually produces
the same contour as the widely used Lawson’s local optimisation algorithm in the
data-dependent triangulation method [106]. This Yu’s method used an iterative
look-ahead edge swap optimisation which produced smoother contours.

Our method generates the triangulation mesh simply by inserting diagonals. This

40

a: bilinear b: Delaunay c: DDT[106] d: Our method

Figure 4.3: Contours from different methods

leads to some degradation in quality since normal DDT methods can model the
edge at arbitrary angles. However our method provides a notable trade-off be­
tween quality and speed. Although the DDT method can in principle give higher
quality, ours is very easy to implement and much faster. Also our method needs
only a small byte array to store the triangulation mesh while a full DDT requires
a more complicated structure and more storage space. Another advantage of our
extended method is it is able to catch small and local features.

Other researchers [67] also use DDT for data interpolation, aiming at a better op­
timisation of DDT according to their cost functions and optimisation processes.
Our method avoids this. We will now demonstrate that the method is effective
and that it does provide high-quality reconstructed images compared to conven­
tional methods.

4.3.4 Im plem entations

We implemented several interpolation methods and applied them to a test image
to show the results. (Figure 4.3, 4.4) The image should have well-defined edges
(to test edge sharpness), thin linear features and small details (to ensure they are
retained) and smoothly varying areas (to reveal any discontinuity). The flower
image we have used has these features. We compare our method with bilinear
interpolation and bicubic interpolation which were produced from Matlab 5 built
in functions. We also compare to New Edge Directed Interpolation (NEDI) [48]
as to our best knowledge it is a good interpolation method providing high inter­
polation quality. The NEDI is implemented by a Matlab program provided by

41

its author. We use a C + + program and the giga image library [96] to implement
our methods.

Greyscale images were processed exactly as already described. When selecting
edge direction in colour images, we convert the RGB components of each pixel
into luminance using the following formula [106] where L stands for luminance:

L = 0.21267R + 0.71516G + 0.07217B

The edge direction is decided by the luminance values. Interpolation is performed
in the R,G,B planes independently. This method generates good results because
colour does not contribute as significantly as intensity to the information content
of images, as Van Essen et al.[8 6] say. Figures 4.6, 4.7 and 4.8 show three examples
of magnification of colour images, one with edges, one with some textures and
one with some fine details. Our subjective visual experiments suggest that out
method generated good results on all the images.

4.4 E xperim ental A ssessm en t

4.4 .1 V isu a l A ssessm en t

We performed preliminary tests both to check the implementations and to permit
a visual assessment of the methods.

Figures 4.3 and 4.4 show the comparison results. All the images in Figures 4.3
and 4.4 are magnified from the original flower image on left top of Figure 4.3 by
a factor of 4. Figure 4.5 shows a close-up view of the stamen using our basic
and extended method. This illustrates that the basic method has some artifacts
along the stamen which are reduced in the extended method. Figure 4.9 shows
the various methods used to magnify the colour flowers image by a factor of 3.5.

From visual inspection our method produces better images than bilinear and
bicubic interpolation, and the NEDI method is good as well (Figures 4.3 and

42

Figure 4.4: Detail flower image magnifying by 4. Top: bilinear interpolation.
Middle: bicubic interpolation. Bottom: the NEDI method.

43

Figure 4.5: Comparison of our basic method and extended method. Top: inter­
polation using basic method. Bottom: interpolation using extended method.

Figure 4.6: Magnified view of the stamen. Left: selecting edge only by four-pixel
squares. Right: selecting edge by a 3 x 3 square neighbour window.

44

Figure 4.7: Roof image magnified by a factor of two. Top left: original image.
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method

45

Figure 4.8: Flowers image magnified by a factor of two. Top left: original image.
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method

46

Figure 4.9: Launceston image magnified by a factor of two. Top left: original
image. Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom:
our extended method

47

4.4). However, it seems NEDI’s weighting algorithm changes the contrast of the
image. The bilinear interpolation suffers from blurring of the edges. The bicubic
method introduces sharper edges but more artifacts.

This visual assessment is however very subjective, depending on the viewer and
the images used. Our visual assessment shows that our method produced good
results on different kinds of images, i.e. textures, fine details and edges. It is
as good as other methods in smooth areas but improved in edges. Due to the
printing process, it is hard to detect the differences with some images. Some high
quality images are provided in the attached CD.

Our method is subjectively good by our visual experiments. In order to obtain
objective results, we next performed analytical testing.

4 .4 .2 Q u a lity A ssessm en t

To perform analytical assessment of the interpolated images, we need a quality
measure. The degradation based method [87] is not able to report the “jagged”
artifacts related to the orientation of edges. Daly’s visible differences predictor
[23] produces an error image which characterises the regions in the test image
that are visually different from the original image. It is however difficult to use
error images to compare different methods. Therefore we used mean-square error
(MSE) as our assessment tool. The MSE is the cumulative squared error between
the reconstructed and the original image. It is widely used in image processing
to evaluate reconstructed image fidelity. The formula for calculating MSE is as
follows:

MSE = r y Z (*« - va?

where I, J are the width and height of the image, Xij is the value of pixel i j in
original image and yij is the value of pixel i j in reconstructed image.

Our method aims at improving edge quality on magnified images and retaining
a good overall quality as well. Thus we produced one sample image set of five

48

Figure 4.10: A portion of the flower image magnified by a factor of 3.5 using:
Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom: our
extended method.

49

‘edge’ images with size 200 x 200 (Figure 4.10). This set is used to assess the
edge reconstruction quality. We used twenty 768 x 512 nature images as another
more general test set to assess the overall reconstruction quality.

In theory, there is no perfect way to judge the magnification quality. Because the
image we have got is of fixed resolution, we don’t know what the ‘correct’ image
is if it is magnified. In order to analyse error, we need to know or simulate it.
So we start with an original image, generate a lower resolution version, then use
different methods to magnify it. Then we compare the magnified images with the
original image. This is not perfect but it provides a reasonable way to analyse
the reconstruction quality.

The down-sampled images could be obtained by averaging down or sub-sampling.
However, edge blurring and ringing effects are introduced by averaging, while
sub-sampling breaks down the geometry and introduces artifacts. We chose a
Gaussian filter as the point-spread function with its standard deviation repre­
senting the radius of the point-spread function. Each pixel at the target image
(down-sampled image) is considered as a point-spread function represented by
a Gaussian distribution. It is down-sampled from some part of the source im­
age, represented by another point-spread function. In this case the radius of
the point-spread in the source image is double that of the radius in the target
image. Thus, we calculate the standard deviation of the target Gaussian distri­
bution, then double this to get that of the source image. This is then used to
down-sample, by convolution.

We used pixel replication, bilinear interpolation, bicubic interpolation, NEDI, our
basic method and our extended method to obtain the reconstructed images. All
reconstructed images are magnified by a factor of two. Then we compared the
original images and the reconstructed images in the test set and calculated the
averaged MSE results.

4 .4 .3 Q u ality o f E dges

Our first test was to check the quality of well-defined edges. For the test set
we generated five samples with a single edge of varying angle (30, 45, 60, 0
and 90 degrees). Each edge is black one side and white the other side (Figure

50

Figure 4.11: Image set of five images with different edges. The angles are 0 , 30,
45, 60 and 90 degrees

4.10). Table 4.1 shows the corresponding MSE results. We put 0 ° and 90° in the
same column because they give the same results for all methods. Our basic and
extended methods have the same results in all these situations because our basic
method is able to preserve the geometry well in these simple cases.

The MSE results report that our method gets the best (lowest) score in every
case except at 0° and 90°. In these two cases pixel replication gets the best
score, which it is trivially able to do. (In principle it should achieve zero MSE
but the Gaussian sampling introduces some grey edge pixels.) Bicubic beats us
here because its interpolation more sharply models these high-contrast edges.
Our method is the equal of bilinear interpolation as we expect. Although our
triangulation gives edges of 45°, it also performs well on 30° and 60°. Bicubic
and bilinear interpolation are slightly worse because they suffer from artifacts or
blurring on the edge. Pixel replication does not generally catch the geometry
very well and NEDI suffers from the effects of its weighting algorithm.

0
0 o o 45° 60° 0°, 90°

Our methods 28.8 28.9 28.8 26.0
Bicubic 29.7 31.5 29.3 2 2 . 2

Bilinear 34.0 38.4 34.0 26.0
Replication 41.8 45.4 41.5 9.2
NEDI 43.3 47.6 43.4 27.6

Table 4.1: MSE results of edge images

4.4.4 Q uality o f R eal Im ages

In order to test the method on “smoother” and more typical images, we used
twenty 24-bit 768 x 512 colour nature images as another test set. The values,
averaged over the test set, are reported in Table 4.2.

51

R G B
Bicubic 109.4 119.4 123.8
Extended 117.6 127.8 132.7
Bilinear 118.2 128.4 133.1
Basic 118.6 128.8 133.7
Replication 126.1 134.8 138.7
NEDI 198.6 197.9 187.4

Table 4.2: MSE results of real images

There is a clear consistency of each channel’s performance and there is also a clear
consistency of each method’s performance. Bicubic interpolation gets the best
score (least error). Our methods rank close to the bilinear method. Our basic
method is slightly worse than the bilinear method because it sometimes gives
the wrong edge direction. Our extended method is slighter better than bilinear
interpolation because our approach is better in edge areas and is almost the same
in smooth areas.

Pixel replication gets a low score as we expect. NEDI surprisingly gets the lowest
score although it has good visual reconstruction quality. We presume this is be­
cause the contrast of the image has been changed by NEDI’s weighting algorithm
and thus it produces numerically the wrong image, albeit a pleasing one. This
emphasises the need to moderate any analysis with visual inspection.

We can thus conclude that bicubic interpolation produces the lowest overall mean
squared error. Our extended method is quite close to this. Visual inspection of
our method shows that it produces good results, which we believe is due to its
better edge performance. We will now show that our method is much quicker
than bicubic interpolation and comparable in speed to inferior methods.

4.4 .5 Q u ality o f O ther Im ages

Because our model is a generic one and is applicable to all kinds of images. We
have shown that it is effective for natural images and Figure 4.11, 4.12 show that
our method is also good for medical and satellite images (Used with permission of
the National Geographic Society, Image is by Robert Stacey, WorldSat Interna­
tional Inc.). It is especially good for magnification of those images which have a
lot of small details because our method is also capable of catching small features

52

of the images.

4 .4 .6 P erform an ce A ssessm en t

We implemented bilinear interpolation, bicubic interpolation, our basic method
and our extended method by C + + code and compared their computational per­
formance. We used the real natural colour images test set again. We down-
sampled every image to 384 x 256 pixels (using the method described earlier).
Then we magnified the down-sampled images by a factor of 2 and also by a factor
of 3.5. We used the Keys approach for the bicubic interpolation. Table 3.3 shows
the performance comparison on a machine with an Intel Pentium4 3G proces­
sor and 1G DDR system memory. Our extended method uses the 3 x 3 square
window. All figures are in seconds.

Bilinear Basic Extended Bicubic
magnify 2 0.359 0.406 0.412 3.621
magnify 3.5 1.105 1.162 1.170 10.914

Table 4.3: Performance comparison

We can see from the table that our method is only slightly slower than bilinear
interpolation. Importantly, bicubic is an order of magnitude slower than the other
methods. The averaged times for calculating the triangle mesh are included in
the above figures. For our basic and extended method these are 0.041 and 0.049
seconds respectively. Factoring these out reveals that our methods are linear with
the number of pixels generated.

In conclusion, our extended method is comparable in speed to bilinear interpola­
tion while providing better reconstruction results both visually and statistically.
In comparison to bicubic interpolation, our extended method is much faster and
visually better, especially in edge reconstruction. These two methods are statis­
tically similar. Our method is fast, simple and modest in memory needs.

53

Figure 4.12: The X-ray head image on the top left is magnified by a factor of 4
using: Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom:
our extended method.

54

Figure 4.13: The satellite image on the top left is magnified by a factor of 4
using: Top right: bilinear interpolation. Middle: bicubic interpolation. Bottom:
our extended method.

55

4 .4 .7 H ardw are Im p lem en ta tion

More and more complex graphics operations have moved to the graphics co­
processor or accelerator, including shading, texturing, anti-aliasing and bilinear
interpolation. These features of graphics cards make it possible to create ex­
tremely realistic games and simulations.

However the only interpolation algorithms currently available on graphics cards
are triangular and bilinear interpolation: the others are too complex. High quality
image reconstruction in real-time still remains a difficult and unsolved problem.
Our pixel level data dependent triangulation makes a step in this direction.

A graphics card can handle tens of millions of triangles per second and it can
interpolate within triangles. This suggests that we convert any image to a triangle
mesh and then pass the mesh to the graphics card. The card will deal with the
mesh in real-time.

We have used OpenGL to explore the potential of our method in hardware imple­
mentation. We first generated a triangle mesh using our basic or extended model.
Then we used OpenGL to pass the mesh to the graphics card so tha t it could
manipulate the mesh, such as by scaling and rotating. These manipulations can
be in 3D, at no extra cost. Our experimental results showed that high quality
reconstructed images can be generated in real-time.

We used the OpenGL GL-TRIANGLE-STRIP to build the triangle mesh. This
routine needs all of the triangles to have the same orientation. Thus we started
a new GL-TRIANGLE-STRIP whenever the diagonal direction changes. All of
these strips were saved in a display list which was then used to render the image.

The program flow of the OpenGL process is as follows:

1 . Build a byte array to record the diagonals of the triangles.

2 . Set up all the GL-TRIANGLE-STRIP and save them in a display list.

3. Render the image and call an OpenGL loop, waiting for keyboard response
and doing manipulation corresponding to the key pressed.

56

X-M Triangulat»on Demo - Dan Su 1BBBI

Figure 4.14: Screenshot of the openGL implementation of using our method to
manipulate images. The parrot image is magnified in perspective view.

We have tested several images with size 768 x 512 pixels, in the same machine:
an Intel Pentium 4 3G processor and an NVidia GeForce 4 graphics card with
128M memory. Using our extended method, the time for preparing the mesh for
an image with 768 x 512 pixels was under 0 . 2 seconds. Once the triangle mesh
was loaded, the graphics card did all further manipulation. We used key presses
for scaling or rotation, causing the appropriate updates to the transformation
matrix.

The GeForce 4 graphics card specification claims a rendering speed of 136 million
vertices per second. This equates to about 45M triangles per second. This latter
rate could increase with triangle strips (due to vertex sharing), though of course
the number of triangles which can be rendered at full speed is limited by the card
memory. With our test image meshes having less than 1 M triangles, the graphics
card easily gives real-time zooms, translations and rotations. Figure 4.13 gives an
illustration of using openGL to manipulate the parrot image with size 768 x 512.
The image has been magnified and rotated along x and y axis in perspective view.
The image can be scaled and rotated in real-time.

57

4.5 O ther A pplications

Due to the simplicity of our algorithm, it is easy to apply to many other image
manipulations. For example, we can rotate the image by any angle (Figure 4.14a).
We scan the target image and inverse rotate each pixel back to the sample image
and interpolate the value. We can get a perspective transform of an image. On
any given y scan line, we calculate the pixel at (x,y) by sampling the source
image at (sx, ty) where s, t are scale factors which vary linearly with height (We
are assuming the y axis is the centre of the screen). Figure 4.14b shows the
result. We can also produce a magnifying lens effect (Figure 4.14c). If the lens
has radius R , then its disc is filled with the image from a small disc with radius
r at the same centre. For any pixel inside R , we scale down to r, evaluate the
original value at r and output it in R.

These are variants on the same general technique: to evaluate the target pixel
p , we evaluate pixel F(p) where F is a simple inverse mapping to the original
image. Then we interpolate in the triangle where it falls. This generality is a
strength of our method.

4 .6 C onclud ing R em arks

In this chapter we have presented a new method of image interpolation. We
represent an image as a data-dependent triangulation mesh. Every four-pixel
square is divided into two triangles with the diagonal corresponding to the local
edge of the image. The desired pixel can then be interpolated from the triangle
in which it falls, determined by inverse mapping.

Other variants of the diagonal choice procedure can also be tried. For example,
a pair of suitable digital filters might be better at distinguishing the local edge
direction; or the threshold could be different to the one we chose. Other variants
of the sampling procedure can be used, the interpolation providing some secu­
rity against sampling defects. These two procedures are independent and neatly
corresponding to the image modelling and image rendering phases.

58

c

Figure 4.15: a: Flower image rotated by 27 degrees, b: a perspective view of the
flower image, c: a lens effect of the flower image

59

The new interpolation approach generates images with better visual quality than
traditional interpolation schemes. The statistical assessment also shows that our
scheme produces good overall image accuracy, second only to bicubic interpola­
tion. The complexity of the new method is similar to bilinear interpolation and
much lower than the bicubic method. We avoid the time-consuming optimisations
that others use but still produce good results very quickly.

Bilinear and bicubic interpolation are widely used in commercial software package
due to their simplicity. For example, Photoshop uses three interpolation engines:
pixel replication, bilinear and bicubic interpolation. Our method produces better
results with almost the same computation cost as bilinear interpolation. There
is a potential for our method to be used in gaming and the image processing
industry.

Furthermore, our method has several advantages. It is used without iteration.
It achieves arbitrary factor magnification, rotation, perspective transform and
warp through a single mechanism. Our scheme is very simple to implement
and computationally fast. It requires little data structure overhead to generate
the mesh image. Moreover, our meshes can be rendered on a graphics card
which makes real-time image reconstruction possible. There is a potential for
our method to be used in gaming and image manipulation generally. This simple
data dependent triangulation model can also be used in other applications, such
as demosaicing of colour images. We also studied its use in 4-colour separation
for printing. Above all, we have demonstrated that a simple approach, sensibly
used, can rapidly generate excellent results.

60

Chapter 5

Colour Image D em osaicing

In this chapter we will present a new method for the demosaicing of colour im­
ages generated by current single-chip digital cameras. We will demonstrate that
our model is effective compared to traditional methods, when applied to the
commonly-used Bayer Colour Filter Array pattern. Results show that the pro­
posed method gives superior reconstruction quality, with smaller visual defects
than other methods. Furthermore, the complexity and efficiency of the proposed
method is very close to simple bilinear interpolation, making it easy to implement
and fast to run.

5.1 In trod uction

Colour digital cameras have become widely available consumer products in recent
years. In order to reduce cost, these digital cameras use a single Charge-Coupled
Device (CCD) sensor with an overlayed colour filter array (CFA) to acquire colour
images, thus avoiding the need for three separate arrays (one for each primary
colour) and the associated complex optical system to split the light path.

There are various filter patterns but the Kodak Bayer CFA pattern is the filter
pattern most frequently used and we will concentrate on that pattern. Figure 5.1
shows this filter pattern, where R is red, G is green and B is blue. Each pixel of
the CCD thus sees only one primary colour, determined by which filter overlays

61

G B G B G B
R G R G R G
G B G B G B
R G R G R G
G B G B G B
R G R G R G

Figure 5.1: Bayer Colour Filter Array Pattern (U.S. Patent 3,971,065, issued
1976)

it. This give us a mosaic of samples. More green filters are used because of the
visual importance of this central area of the spectrum: the eye is more sensitive
to green and this area is more significant to the perceived luminance. The pattern
shown thus provides a higher spatial frequency sampling of green, in comparison
with blue or red. There are as many green pixels as red and blue combined.

Since there is only one colour primary at each position, we can reconstruct the
image at the spatial resolution of the CCD only if we interpolate the two missing
primary values at each pixel. That is, at a green pixel we have to generate red
and blue values by interpolating nearby red and blue values. A corresponding
process is required at red (to get green and blue values) and at blue pixels (to
get green and red values). This interpolation process is called CFA interpolation
or demosaicing. The demosaicing process clearly has a significant influence and
is thus the key factor in the production of high quality images. Given the limited
computing resource of a digital camera and its in-built computer, the computation
efficiency should also be considered.

The obvious place to start is with traditional image interpolation methods, such
as nearest neighbour, bilinear interpolation and cubic convolution. Bilinear inter­
polation is often used due to its simplicity and efficiency[73]. However, it induces
relatively large errors in the edge regions and the eye is especially sensitive to
edge quality. To address this, other authors have proposed techniques which are
sensitive to the data. Examples are Adams’ edge oriented method [1] and various
colour correlation methods [43, 2 , 61]. Adams’ method interpolates the missing
colour elements according to the edge orientation of the image but it only detects
the vertical and horizontal edges. Interpolation methods using colour correlation
produce better results because there is a high correlation between the red, green
and blue channels. However they ignore the edge orientation in the images.

62

Some more complicated methods have been proposed and they attempted to
maintain edge details or limit hue transitions. Ramanath [6 8] used an adaptive
interpolation, achieving edge orientation adaptation. Cok [2 0] proposed a method
using a constant hue-based interpolation to make sure there are no sudden jumps
in hue, especially over edges. The median-based interpolation [29] proposed by
Freeman is a two pass process: the first one is a linear interpolation and the second
one is a median filter of the colour differences (red-minus-green and blue-minus-
green channels). Laroche and Prescott [44] proposed a method called gradient
based interpolation and it is used in the Kodak DCS 2 0 0 digital camera system.
This method is a three pass process with the first one being linear interpolation
of the luminance channel (green) and the others being interpolation of colour
difference channels. Hamilton and Adams [32] used an adaptive colour plane
interpolation which is a modification of the method by Laroche and Prescott
[44]. According to Ramanath’s survey [69], Freeman’s median based interpolation
method[29] is the best overall method among these. However, all these methods
are complicated and thus computationally slow.

We have shown that our pixel level data-dependent triangulation model can be
applied to image interpolation which both matches the edge orientation of the
images and correlates the red, green and blue channels. Our scheme generally
produces superior reconstruction quality and is rapid. The model was applied to
full-information images (that is, red, green and blue values for every pixel) with
the aim of magnification or other image manipulations. In this chapter we show
how our model can be adapted to supply the missing primary values of a CFA
image - demosaicing - and the advantages it has in this application. Our method
produces good results while remaining simple and efficient.

We will justify our algorithm by evaluating the results both subjectively and
objectively. Our experiments show that images produced by our method have
better visual quality than classical linear interpolation. Our approach is almost
as simple as bilinear interpolation. Other methods are more complex.

63

5.2 T h e D em osaicin g A lgorithm

We have already considered data-dependent triangulation as a method for cal­
culating super-resolution image values; that is, values “in between” the pixel
positions. This is useful in changing the resolution of an image, distorting it in
various ways, rotating it etc. In all these applications however, the original data
is complete: there is a known (R , G, B) value at every source pixel. For demo­
saicing, we have to adjust the method to generate those primary values which
are missing from the Bayer CFA pattern.

5 .2 .1 P r in c ip le o f th e A lgorith m

The Bayer CFA pattern alternates red and green filters on one row, then green
and blue filters on the next row. This pattern repeats on subsequent pairs of
rows. This means that a blue sample has red samples diagonally adjacent and
green samples orthogonally adjacent (Figure 5.2). A red sample has blue samples
diagonally adjacent and green samples orthogonally adjacent.

Our task is to interpolate the missing primaries in order to get a complete
(i?, G, B) triple at each position. W hat Figure 5.2 illustrates is the equivalence of
blue and red; while Figure 5.3 emphasises that the green samples are differently
disposed. In fact, the green samples can be considered to be arranged on a grid
at 45° relative to the other values. Moreover their spacing differs to tha t of the
other values. The attraction of our DDT method is that it is independent of both
the spacing and the orientation of the source data. It permits us to predict values
at any spacing (regular or irregular) and orientation, wherever we need them.

If we consider just the red values, it can be seen that they form a regular grid of
columns and rows. The same is true of blue values. It is easy to see tha t our DDT
model can be applied here. We can triangulate each of these as already described,
choosing the diagonals in the NW-SE or NE-SW direction, to favour the image
edge directions. The green values can be thought of as forming a regular grid
tilted at 45° (Figure 5.3). Triangulating this will produce diagonals which are in
fact disposed either vertically or horizontally.

64

R1 G 2 R3

G4 B5 G 6

R7 G8 R9

B 1 G 2 B3

G4 R5 G 6

B7 G 8 B9

Figure 5.2: Left: Red square. Right: Blue square

G 1

G2 R3 G4

G5

G 1

G 2 B3 G4

G5

Figure 5.3: Green crosses

Thus, given a sample mosaiced image, we apply our image model and produce
three meshes, one for each primary, with the green mesh being spaced and ori­
ented differently to the other two.

Our input is thus three meshes, configured according to our image model. Because
each pixel of the input image only has one primary colour, the other two primary
colours will be sampled from the corresponding two meshes. These samples are
calculated by triangle interpolation of the three values from the mesh triangle
surrounding the sample point.

5.2 .2 O riginal C olour Space

We will first use our method in original colour space. In an implementation, there
is no need to produce three meshes explicitly. Suppose the sample image is X
and the output image to be generated is Y. We first scan the sample image X
to initialise three lookup tables, one for each primary. Each table has one bit to
record the edge direction at every 2 x 2 ‘square’ of pixels of that primary colour.
To reconstruct an image pixel, we first determine which two primaries need to
be recovered. We then use the corresponding lookup tables to establish in which
triangle the image pixel sits in each mesh. This establishes three values to be
interpolated for each of the two missing primaries.

65

In fact, only two values are needed. Suppose we are interpolating for red values
of blue or green pixels. For demosaicing, the target pixel will always fall on the
boundary of the triangle. Hence the interpolation is always the average of two
vertex values.

Thus we get the following formulae for the Red and Blue squares (Figure 5.2):

R b 5 = (R1 + R9)/2 or R m = (RS + R7)/2
R G4 = (R l + R7)/2
R G8 = (R7 + R9)/2

B r 5 = (B 1 + B 9)/2 or B R5 = {B 3 + B7)/2
B G4 = (R1 + R7)/2
B G8 = (R7 + R9)/2

Similarly the following are the formulae for the Green crosses (Figure 5.3):

Grz = (G1 + G5)/2 or Grz = [G2 -f G4)/2
Gb 3 = {G\ + G5)/2 or Gr^ = (G2 + G4)/2

In all cases therefore, the value is reconstructed as the average of two source
values, those values being chosen by our DDT method. This simplifies the inter­
polation and avoids the need for inverse mapping.

5.2 .3 C olour D ifferen ce Space

Treating i£, G and B planes independently ignores the correlation among the
colour planes and produces colour mis-registration. Recent research [2, 61, 6 8]
has shown that interpolation performance can be significantly improved by ex­
ploiting the correlation among the colour planes. These methods are based on
the assumption that the red and blue values are perfectly correlated to the green
value over the extent of the interpolation neighbourhood. They define the colour
differences K R = G — R and K B = G — B and interpolate in this colour dif­

6 6

ference space. In other words, these methods transform the operation into the
K R or K B domain instead of performing the interpolation in the G channel.
We calculate the K R and K B values and interpolation using these values, then
we reconstruct the original colour values: R = G — K R , B = G — K B and
G = R + K R o x G = B + K B .

The formula for interpolation in colour difference space is therefore different to
that for original colour space. First we need the formulae for calculating the
colour difference value in R, B and G pixels. For every Green Cross (Figure 5.3)
there is either a Red or a Blue pixel, thus

K R R3 = (Gl + G2 + G4 + G5)/4 - R3
K R m = (Gl + G2 + G4 + G5)/4 - B 3

and for Green pixels, there are always two Red and two Blue pixels surrounded,
therefore the KR and KB value of G pixels are always G minus the average of
two Red or Blue values, for KR and KB calculation, respectively.

Thus, we get the following formulae for the Red and Blue squares, according to
the triangulations we have generated for each colour channel (choices between
values reflect the choices of diagonals in the triangulations):

K R B5 = (K R j h + K R r g) / 2 or K R Bx> = (K R r 3 + K R r 7) /2

G b 5 = B5 + (K B q 2 + K B q%)/2 or G B 5 = B5 + (K B ga + K B gg)/2

R b5 ~ GB5 ~ K R B5
R g4 = GA — (K R ri + K R ry) /2

Rgs = GS — (K R r j + K R r q) / 2

K B rs = (K B m + K B B9)/2 or K B R5 = (K B m + K B B7)/2
Gr^ = R5 + (K B q 2 + KBg8)/2 or Gr$ = B5 + (K B q 4 + K Bgq)/2
B r5 = Grs — K B R5
B Ga = G A - (K B m + K B B7)/2
B gs = G8 — (K B B7 -f K B bg) / 2

67

and the following formulae for Green crosses:

Grz — R3 + (K Rgi + K R g $) / 2 or G r 3 — R3 + (K R q 2 + K R q a) / 2

G r 3 = B3 + (K B q i -f - KBg*>)/2 or Grz = S3 + (K B q 2 + K B g ±) / 2

In the image boundary areas, there is no enough information for the interpolation
we have described. So we modify the interpolation in image boundaries. In
particular, we get the G value for Red and Blue pixels by averaging the two
Green pixels on the same boundary line. We get the R /B value for Green pixels
by averaging two Red/Blue pixels on the same boundary line and copy the nearest
Blue/Red pixel to get B /R value. Then the R value for Blue pixels and B value
for R pixels can be calculated by averaging the R or B values from the two Green
pixels on the same boundary line.

This method is based on the assumption that colour difference is relatively flat
over small regions. This assumption is valid within smooth areas of the image
but is not valid around the edges in the image. Colour mis-registration would
still exist around the edges if bilinear interpolation was applied. Our method
effectively solves the problem by interpolation along the edges in colour difference
space, as Figure 5.4 shows. It avoids colour mis-registration by not interpolating
across the edges in the colour difference space.

5.3 E xp erim en ta l R esu lts

5.3 .1 Q u ality A ssessm en t

We have performed various tests on two images, one of a boat (Figures 4.4 and
4.5) and one of a macaw (Figures 4.6 and 4.7). In each case, the top left image is
the original 24 bit image of size 768 x 512. From this we prepared a mosaic image
by, at each pixel, discarding the two primaries indicated by the CFA pattern.
This mosaic image was then used to perform the various reconstructions shown,
again at 768 x 512.

We applied several different demosaicing methods to the test images: bilinear

6 8

F ig u re 5.4: P o rtio n s of: a: o rig ina l b o a t im age , b: m ed ian based in te rp o la tio n ,
c: b ilin ea r in te rp o la tio n in th e o rig in a l co lo u r space, d: b ilin ea r in te rp o la tio n in
th e co lou r difference space , e: o u r m e th o d in th e o rig ina l co lo u r space , f: o u r
m e th o d in th e co lou r d ifference space

69

F ig u re 5.5: C lose-up co m p ariso n of: a: o rig in a l b o a t im age, b: m ed ian b ased
in te rp o la tio n , c: b ilin ea r in te rp o la tio n in th e o rig in a l co lo u r space, d : b ilin ea r
in te rp o la tio n in th e co lour difference space , e: o u r m e th o d in th e o rig in a l co lo u r
space, f: o u r m e th o d in th e co lour d ifference space

70

F ig u re 5.6: P o rtio n s of: a: o rig ina l m acaw im age, b: m ed ian b ased in te rp o la tio n ,
c: b ilin e a r in te rp o la tio n in th e o rig in a l co lo u r space, d: b ilin ea r in te rp o la tio n in
th e co lou r difference space, e: o u r m e th o d in th e o rig in a l co lou r space , f: o u r
m e th o d in th e co lou r difference space

71

F ig u re 5.7: C lose-up c o m p ariso n of: a: o rig in a l m acaw im age, b: m ed ian b ased
in te rp o la tio n , c: b ilin e a r in te rp o la tio n in th e o rig in a l co lou r space, d : b ilin ea r
in te rp o la tio n in th e co lo u r d ifference space , e: o u r m e th o d in th e o rig in a l co lo u r
space , f: o u r m e th o d in th e co lour d ifference space

72

interpolation in both original colour space and colour difference space, our data-
dependent triangulation method in both original colour space and colour differ­
ence space and Freeman’s median based method [29].

If we compare bilinear interpolation and our method in original colour space and
in colour difference space, it can be seen that interpolation in the colour difference
domain has better reconstruction quality than interpolation in the original colour
space. When using original colour space, colour mis-registration is clearly visible
near the thin lines in the boat picture and around the top of the macaw where
there is a sharp colour transition. Interpolation in colour difference space reduces
most of these errors, however some colour mis-registration and artifacts are still
clearly visible in bilinear interpolation and median based interpolation. There are
also noticeable dotted artifacts around those edges. Our method has the least
colour mis-registration error in both images. It avoids both of these problems
because it better preserves the geometric regularity and interpolates along the
edge orientations of the image.

Direct visual inspection indicates that our method produces good reconstruction
quality. However, we wanted to explore a more analytical assessment of the visual
quality of the interpolated images, though this is not straightforward to define,
let alone measure. We used the Peak Signal-to-Noise Ratio (PSNR) which is
commonly used as a measure of image quality in digital image compression and
reconstruction as our assessment tool.

The PSNR is based on Mean-Squared Error (MSE). The Mathematical formulae
for the two are:

MSE = r ? E (*« - vaf

P S N R = 20 log10 - = = =
y/MSE

We used twenty 24-bit 768 x 512 colour nature images as our test set. The PSNR
values are calculated for the three colour channels independently and averaged
over the test set. Table 5.1 shows the corresponding PSNR results where B L
means bilinear interpolation in original space, B L D means bilinear interpola-

73

B L B L D D D T D D T D M E D I A N
R 31.47 35.07 31.22 33.96 35.70
G 35.35 39.38 35.10 37.99 40.02
B 31.01 34.21 30.74 32.31 34.97

Table 5.1: PSNR results of different methods

tion in colour difference space, D D T means data-dependent triangulation (our
method), D D T D means our method in colour difference space and M E D I A N
is median-based interpolation. The values are averaged over the test set.

Table 5.2 shows the PSNR results of three colour channels for the different meth­
ods. The results are averaged over the twenty images.

The PSNR results show a clear benefit from the use of colour difference space,
for both bilinear interpolation and our method (Median based interpolation also
uses colour difference space). These results confirm earlier work supporting colour
difference space [43, 2, 61]. When comparing the two methods, the PSNR results
show that bilinear interpolation is only marginally better than ours. As we dis­
cussed, our method is designed for solving the problem of colour mis-registration
in edge areas. So for images which mainly consist of smooth areas, bilinear in­
terpolation will give a better statistical result because it uses more information
for interpolation. Median based interpolation gets the best score which means it
produces the best overall reconstructed image.

However, informal observation confirms that our method gives improved edge
quality. It looks better because human eyes are more sensitive to edges and our
method is better at retaining edges. Our overall result is very close to bilin­
ear interpolation which means our method produces good overall reconstruction
images.

5.3 .2 P erform ance A ssessm en t

Table 5.3 shows the performance comparison on a Pentium 4 machine which 3G
CPU and 1G DDR system memory. We used the 20 images again and timed the
four methods. All the methods are implemented in C + + code and all the figures
in the table are seconds.

74

B L B L D D D T D D T D M E D I A N
0.311 1.086 0.691 0.961 1.555

Table 5.2: Performance comparison of different methods

As we expected, median based interpolation is the slowest because it is a two
pass process which adds extra computation time. Bilinear interpolation and
our method using the colour difference space require more computation than the
method in original colour space. Of the two methods using colour difference space,
our method is faster. This is true even including the overhead of initialising the
triangulations in three colour channels (about 0.23 seconds in this case). Our
method is significantly faster because it only requires two pixels to interpolate
while bilinear interpolation requires four pixels. We have already shown that it
has good overall quality and visually better edges. We suggest that these features
make it a better choice for demosaicing colour images.

5.4 C onclusion

In this chapter we have presented a new method for demoisaicing of colour im­
ages. The new method is based on our data-dependent triangulation model. The
mosaiced image is represented as three primary colour triangulation meshes. The
interpolation is done within these triangulations, which match the edge orienta­
tion of the images. By avoiding interpolation across edges, the new algorithm
successfully solves the problem of colour artifacts around the edges. We also
applied the scheme in colour difference space which helps to reduce the artifacts
caused by colour mis-registration.

We have applied our method to the Bayer CFA pattern and our method offers
simplicity and efficiency. The PSNR results also demonstrate tha t our method
is very close to the best comparator in producing the ‘right’ data, while visual
inspection shows that the data is more effectively deployed to produce sharp
edges. It is also much faster.

Given the limited computing resource of a digital camera and its computer, we be­
lieve our method provides a reasonable solution to the colour image demosaicing
problem because it produces good reconstruction efficiently.

75

Chapter 6

Texture Synthesis

In this chapter, we will present a survey of traditional and contemporary texture
synthesis methods. From this we introduce a texture synthesis method proposed
by Yan Zhang at Jilin University, China [108]. It derives from a patch-based
sampling method [49] and uses particle swarm optimisation to search for the
best match patches, thus accelerating the synthesis process while ensuring image
quality. We will present our extension of this method to texture transfer and
constrained multi-sample texture synthesis.1

We also develop a new method based on patch-based sampling for synthesising
textures on perspective surfaces from an input sample image. The method syn­
thesises the texture directly on the surface, rather than synthesising a texture
image and then mapping it to the surface. The synthesised textures have the
same qualitative visual appearance as the example texture, and cover the surface
without distortion, repetition or aliasing artifacts.

1The tex tu re synthesis using PSO is the work of Yan Zhang a t Jilin University, C hina (The
au thor provided the original im plem entation for patch-based sam pling tex tu re synthesis). The
tex tu re transfer and constrained m ulti-sam ple tex tu re synthesis using PSO were done during
the au th o r’s research visit a t Jilin University working together w ith Yan Zhang in A ugust 2003.

76

Figure 6.1: Left: sample image. Right: the synthesised image with arbitrary size
and similar visual appearance to the sample.

6.1 In tro d u ctio n

Normally, pictures generated by a computer do not appear as realistic as pho­
tographs or video images. This problem of lack of realism arises because the level
of detail in a real picture is greater than the level that could be generated by the
techniques to date. People are looking for higher realism images without much
expense of computation time.

Adding shadows and texture mapping became highly developed methods to en­
hance Phong shaded scenes so that they were more visually interesting and looked
more realistic or esoteric. Texture mapping was first introduced by Blinn [14] as
a technique for adding the appearance of surface detail by projecting or wrapping
a texture image onto an object surface. It can enhance the visual interest of a
scene without adding too much processing cost.

While texture mapping itself is straightforward, acquiring the images to use for
textures is not always easy. One way to generate texture images is texture syn­
thesis. The texture synthesis approach can be stated as follows: Given a texture
sample, synthesise a new texture with arbitrary size that is sufficiently different
from the given sample texture, yet appears to be generated by the same stochastic
process when perceived by a human observer (Figure 6.1).

Potential benefits of texture synthesis include the ability to create large and/or
tiled texture from a small sample. With this ability, texture synthesis can be used
for image repair (for example, filling a hole in a texture), and for textures in games
(i.e. the walls and grounds in “Tomb Raider”). It can be also used to improve

77

the apparent realism of other rendered images (texture maps, environment maps
etc).

Its power comes from its generality: any image can be used as a texture. Hence
real images, hand-drawn images and synthetic images are all possible sources.
Textures can be used one-off (i.e. to add the appearance of a desktop to a
computer screen) or repeated (brickwork, sand, grass etc). They can also be
blended with other information. Hence textures are supported by graphics cards
and are widely used in rendering.

Simple texture mapping, as used on games cards, is a fast but trivial solution.
This reveals some of the problems. It only copes with regularly repeated patterns.
The patterns have to be chosen so they produce a plausible repeat and, where
the tiling is required to be less visible, the values of the boundary pixels have to
be manually set to hide the boundary.

In the general case, texture synthesis attempts to produce texture which is not
identical to the sample but which is statistically similar to it. This is useful
because it makes rendering more realistic by avoiding simple repetition.

In this chapter we will focus on texture strictly in the form of a design or a
pattern whose intention is to deceive the viewer as to the regularity of the surface
[18]. Textures are spatially homogeneous and consist of repeated elements, often
subject to some randomisation in their location, size, colour, orientation, etc [65].
They can describe a wide variety of surface characteristics such as those of wall,
fur and skin. There are two kinds of texture: regular (these can be characterised
by a set of primitives and a placement rule, such as bricks in a wall) and stochastic
(these do not have easily identifiable primitives, such as grass). Many texture
images lie between these two categories. The texture of an image has a very
important character, which is: given a proper size, any part of the texture image
looks similar to any other part.

Texture synthesis has been an active research topic in computer graphics for many
years and there are many ways to generate new textures. In order to evaluate an
algorithm, we have to set the criteria for successful texture synthesis.

• Quality: A good algorithm should generate a new image that looks like the

78

sample image. There should be no obvious blur, repetition, or mismatching
features in the output image. It should appear to show the same stochastic
process as the input image. If we can analyse the sample image and the
synthesised image by a model such as the steerable pyramid [66], the sample
image and result image should be very similar. Additionally if the sample
were taken from scanned photographs, the synthesised texture should be
photo-realistic.

• Speed: The major motivation of texture synthesis is a method which aims
to enhance realism without much computation time. Most older algorithms
are extremely slow, even small images (256 x 256) need several hours on a
mid-level PC. A good approach should synthesise in real-time or reasonably
rapidly.

6.1 .1 T extu re S y n th esis Tasks

Texture synthesis proves difficult because it is always hard to discover the stochas­
tic process from a given texture sample.

The major challenges of texture synthesis are:

• Recognition: how to capture the stochastic process and the texture scale
from the given sample image. A successful recognition model is very im­
portant because the visual quality of the output image is dependent on
the accuracy of the model. It is difficult to characterise texture images,
using either deterministic or statistical models. There are many algorithms
and models to analysis the texture images. They belong to two kinds of
approaches, one is trying to catch texture globally and other is treating
texture as local. None of the existing techniques can produce a completely
satisfactory solution for all kinds of textures.

• Generation: how to develop an efficient sampling procedure to generate
new textures from a given sample texture and the analysed model. This
is essential for successful texture generation because it will determine the
quality and the speed of the synthesis process. The operation of the sam­
pling procedure involved in assigning a value to a pixel depends on the

79

rendering algorithm used and we can only ever calculate the value of an
image function at these points [91].

6.2 P revious W ork

Over the past three decades, texture synthesis has been investigated in computer
graphics and many algorithms have been developed.

6.2 .1 T raditional T extu re S yn th esis M eth o d s

Most traditional texture synthesis approaches are based on procedural texture
synthesis.

Procedural texture synthesis is the use of a function or set of functions applied
to a set of points in order to generate a texture. Procedural methods can be very
fast. It is easy to introduce a time-varying variable to the model thus creating
animation. The method requires little memory because it synthesises on the fly
[85]. These methods can produce textures directly on 3D meshes so the texture
mapping distortion problem is avoided. However existing procedural methods are
only specialised emulators of the generative processes of certain types of texture.
Different textures are usually generated by different models so these methods are
applicable to only limited classes of textures.

Solid T ex tu re : Solid texturing is a powerful way to add detail to the surface
of rendered objects. A solid texture is a three-dimensional procedural texture
field. The surface is textured by ‘placing’ the object in the field, and obtaining
a texture from the intersection of the surface of the object and the field. This
is done by evaluating the procedural texture at the surface points. Solid texture
can increase the aliasing artifacts because a pixel may project into a region of
texture that contains many variations over the projected area. An approach to
anti-aliasing is to filter the three-dimensional field over a small volume of texture
space that contains the surface element, just as we filtered over a small area of
two-dimensional texture space. The advantage of solid texture is th a t objects of
arbitrary shape can be textured [90, 60, 47].

80

H y p er te x tu re : In 1989 Perlin [63] extended the solid texture technique and
developed a method that he called ‘hypertexture’. One of the main distinctions
between solid texture and hypertexture is that hypertexture objects have no well-
defined boundaries. Instead they have a density function that describes how the
object should behave in the area where it transitions between the outside and
inside of the object. Perlin uses this approach to produce such effects as hair, fur,
fire and erosion effects. This method is both a modelling and a texture technique.

Perlin also defined a noise function that takes a three-dimensional position as its
input and returns a single scalar value. It can simulate turbulence and produce a
surprising variety of realistic, natural-looking texture effects [62]. A single piece
of noise can be put to use to simulate a remarkable number of effects. By far the
most versatile of its applications is the use of the so-called turbulence function,
as defined by Perlin [62], which takes a position x and returns a turbulent scalar
value.

C ellu lar T ex tu re : Worley [100] present a new basis function that complements
Perlin noise, based on a partitioning of space into a random array of cells. He
used this new basis function to produce textured surfaces resembling flagstone­
like tiled areas, organic crusty skin, crumpled paper, ice, rock, mountain ranges,
and craters. The new basis function can be computed efficiently without the need
for precalculation or table storage.

Reaction-D ifFusion: Turk [82] used a reaction-diffusion approach to do texture
synthesis. Reaction-diffusion is a process in which two or more chemicals diffuse
over a surface and react with one another to produce stable patterns. Reaction-
diffusion can produce a variety of spot and stripe patterns, much like those found
on many animals. Developmental biologists think that some of the patterns found
in nature may be the result of reaction-diffusion processes. So a computer model
can be textured by simulating a reaction-diffusion process on the surface of the
model.

6 .2 .2 C ontem p orary M eth o d s

Most recent work on texture synthesis can be put into three categories:

81

(i) Feature M atching

These kinds of methods use models such as pyramids and wavelets to catch the
features of the texture and then generate a new image by matching the model.
They try to do the recognition process by defining a statistical model to com­
pute global statistics in feature space and sample images from the texture model
directly.

Heeger and Bergen [36] used a steerable pyramid to analyse an input image and
to catch a set of features in terms of histograms of filter responses. A new image
can be synthesised by matching the histograms of these features. However they
failed to capture relationships across scales and orientations and their method
cannot get good results with more structured images.

De Bonet [16] improved Heeger’s method by using a multi-resolution filter-based
approach. He extended the use of steerable pyramids to consider interactions
between different levels in the pyramids. It works better than [36] but will produce
boundary artifacts if the input texture is not tileable.

Portilla and Simoncelli [65] use a more advanced synthesis procedure by decom­
posing the texture image to complex wavelets and synthesising a new image by
matching the joint statistics of these wavelets. Their method is better than [36]
and can catch global structures very well but fails with local patterns and some
highly structured patterns.

All these approaches are very complex and need extra work on building the
appropriate model and analysing the sample image. They always are good at
some kinds of textures that have been specified in advance. However, it is hard
to find a generic feature set that can describe all textures. These methods try
to compute global statistics, which is difficult, so none of the feature matching
algorithms can provide a completely satisfactory solution.

(ii) Markov Random Field (M RF)

Markov Random Field methods assume that a texture is “local” and “station­
ary” . That means each pixel of a texture image is determined by a small set of
neighbouring pixels and is independent of the rest of the image. This character

82

is the same for all the pixels and thus the image appears similar all over. The
method works by estimating the local conditional probability density function
(PDF) and synthesising pixels incrementally.

There are two approaches to MRF-based synthesis.

a. P ixel-based

The texture of an image can be expressed as interrelationships between pixels
in that image. The synthesis process is to analyse and reproduce interactions
between individual pixels. Pixel-based methods define a function to estimate the
local conditional probability density of each pixel and generate a new image pixel
by pixel. They are based on best-fit searching. Each pixel is selected by searching
the input image for the patch of pixels that is most similar to the nearby pixels
already synthesised in the output image.

Efros and Leung [26] developed a very good method by growing texture using non-
parametric sampling. The neighbourhood of each pixel of the image is modelled
as a square window around that pixel. The size of the window should correspond
to the texture’s stochastic feature. Put another way, the size of the window
has to cover an area big enough to represent the texture’s pattern. The next
best-fit pixel, given its neighbours synthesised so far, is found by searching the
sample image and finding all similar neighbourhoods. The difference between
two windows is calculated by a normalised sum of squared differences. Efros’s
method produces good results for most kinds of texture images (Figure 6.1) but
it is very slow. For some textures, it has a tendency to “slip” into a wrong part
of the search space and start to grow garbage.

Wei and Levoy [93] improved Efros’s method by using a multiresolution image
pyramid based on a hierarchical statistical method. To generate each pixel in the
output pyramid, a patch in the input pyramid similar to surrounding pixels in the
current layer and the layers above is searched for. They also accelerated Efros’s
method by using tree-structured vector quantisation (TSVQ). Wei’s approach
also produces good result (as good as Efros’s) and is much faster than Efros’s.
It has the same problem with growing garbage, even worse in some textures.
(Figure 6.1).

83

Some related work has been done by Harrison [34] and Zhu et al. [109]. They
are also based on MRF and generate pixels one by one.

b. Patch-based

More recent papers based on Efros and Leung [27] have much better performance.
They all define a patch with size depending on the features of the texture. They
try to find the best match of the whole patch, rather than of one pixel. The
algorithms search for the best patch by comparing the overlap between patches
synthesised so far and the new one. The new image is then generated patch-by-
patch.

Xu et al. [102] proposed a texture synthesis algorithm based on random patch
pasting. Their technique is a combination of traditional procedural methods and
statistical sampling methods. The results of their algorithm are not as good as
Efros’s because their method does no statistical modelling or analysis and pastes
blocks by randomly choosing from input images. It also has a problem with
mismatching features across patch boundaries. However their method provides a
new idea by generating texture patch-by-patch, and is thus much faster.

This idea is developed and modified by other researchers to get better results.
Liang et al. [49] developed Xu’s method and produced a real-time synthesis pro­
cess by patch-based sampling. It searches all patches from the sample texture
and picks a best match patch to generate new texture. It avoids mismatching fea­
tures across patch boundaries by sampling texture patches according to the local
conditional MRF density. Liang’s method can re-synthesise high-quality texture
images in real-time. It remains effective when pixel-based sampling algorithms
fail to produce good results. It uses feathering blending in the boundary zones,
thus providing a smooth transition between adjacent texture patches.

Efros and Freeman [27] improved their paper [26] and got a similar method to
Liang’s approach [49]. Efros’s algorithm searches for the best-match patch like
Liang’s method but it reduces the mismatching feature across patch boundaries
by making the minimum error boundary cut between two overlapping blocks.

Figure 6.2 shows some samples of different methods. They were implemented
in C + + code on a Linux workstation with a Pentium 400 processor. The first

84

F ig u re 6 .2 : Som e exam p les o f te x tu re sy n th es is , C o lu m n 1 : sam p le te x tu re ,
C o lu m n 2 : E fro s’s n o n -p a ra m e tr ic sam p lin g . C o lu m n 3: W ei’s p y ram id . C o lu m n
4: L ia n g ’s p a tch -b ased . C o lu m n 5: E fro s’s im age q u iltin g .

85

column contains sample images. The second column are results synthesised by
Efros’s non-parametric sampling with weight window 23: computing times range
from 33,195 secs to 35,196 secs. The third column are results synthesised by
Wei’s method using a 4-level pyramid with the biggest weight window 11: com­
puting times range from 9,541 secs to 11,756 secs. The fourth column are results
synthesised by Liang’s method with block size 40, computing times are about 2
secs. The fifth column are results synthesised by Efros’s image quilting algorithm
with patch size 40: computing times are about 6 secs.

(iii) Texture Synthesis on Surfaces

Some papers appeared recently showed successful approaches to texture synthesis
on 3-D surfaces. Wei [94] presented a method to synthesise general textures over
arbitrary manifold surfaces. He extended his texture synthesis algorithm [93] by
generalising the definition of searching neighbourhoods. For each mesh vertex,
the method establishes a local parameterisation surrounding the vertex, uses this
parameterisation to create a small rectangular neighbourhood with the vertex
at its centre, and searches a sample texture for similar neighbourhoods. The
solution is robust and is applicable to a wide range of textures.

Turk [83] independently developed an algorithm for texture synthesis on surfaces.
A hierarchy of points from low to high density over a given surface is created and
these points are connected to form a hierarchy of meshes. Then the user specifies
a vector field over the surface that indicates the orientation of the texture. The
mesh vertexes on the surface are then sorted such that visiting the points in order
will follow the vector field and will sweep across the surface from one end to the
other. Each point is then visited in turn to determine its colour. The colour
of a particular point is found by examining the colour of neighbouring points
and finding the best match to a similar pixel neighbourhood in the given texture
sample. The colour assignment is done in a coarse-to-fine manner using the mesh
hierarchy. His method fits the surface naturally and seamlessly.

Ying [104] described two synthesis methods, based on the work of Wei [94] and
Ashikhmin [8]; the results are similar to these two, but directly on surface. The
synthesised textures have the same qualitative visual appearance as the example
texture, and cover the surfaces without the distortion or seams of conventional
texture mapping.

8 6

6.3 T exture S yn thesis and T exture Transfer u s­

ing P artic le Swarm O p tim isation

We will now introduce a texture synthesis method proposed by Yan Zhang at Jilin
University, China [108]. This method is based on patch-based sampling texture
synthesis [49]. It uses particle swarm optimisation to search for the best match
patches thus accelerating the synthesis process. It keeps the synthesis quality and
is easy to extend to other applications such as texture transfer and constrained
texture synthesis.

6.3 .1 T extu re S y n th esis by P a tch -B a sed S am p lin g

As we stated in section 6.2, the patch-based sampling method is a Markov Ran­
dom Field based method and it synthesises new texture one patch at a time.
Define the unit of synthesis Bk to be one of the square patches from the set S b
of all such patches in the input texture image I. The patch size W b x W b of
the Bk will be decided by the user. It must be big enough to capture the rele­
vant structure in the texture but small enough so that the interaction between
these structures is left to the algorithm. To synthesise a new texture image, first
randomly take a patch B 0 from Sb and paste it onto the left bottom of output
image O. We now wish to find another patch to paste adjacent to it. Search S b
for patches that by some measure agree with their neighbours along the region
of overlap in O. Figure 6.3 shows how to match a new patch and an already
synthesised area. The dark area is already synthesised, the blue patch is the new
patch to be synthesised and the area in dotted lines is the boundary zone. The
boundary areas of the already synthesised area and the new patch should overlap
and should be similar within some error tolerance.

The searching process is important to texture synthesis because it determines
the new patch to be pasted onto the output image. In order to keep stochastic
features, the algorithm forms a set P of patches so that the error in the overlap
is within some error tolerance. Then we randomly pick one patch from set P
and paste it onto the output image and repeat this process until all the image
has been filled. After each patch has been chosen, we blend its boundary area to

87

new patchalready synthesised area

overlapped boundary

F ig u re 6 .3: P a tc h -b a s e d t e x tu r e s y n th e s is

im p ro v e th e s y n th e s is q u a lity .

T h e w h o le p ro c e s s is a s fo llow s,

1. R a n d o m ly p ick a Wb x Wb p a tc h B0 f ro m in p u t t e x tu r e I a n d p a s te B0 o n

th e low er le f t c o rn e r o f o u tp u t t e x tu r e O.

2. S e a rc h I to g e t a s e t P o f p a tc h e s su c h t h a t e a c h p a t c h ’s b o u n d a r y m a tc h e s

th e a lr e a d y s y n th e s is e d a r e a w ith in so m e e r ro r to le ra n c e .

3. R a n d o m ly ch o o se o n e p a tc h fro m P , p a s te i t o n to th e O a n d b le n d i ts

b o u n d a r y a re a .

4. R e p e a t u n t i l O is filled .

T h e f e a th e r in g b le n d in g [80] is u se d to p ro v id e a s m o o th t r a n s i t io n b e tw e e n a d ­

ja c e n t t e x tu r e p a tc h e s .

I t is c le a r t h a t fo rm in g th e s e t P is th e m a in c o m p u ta t io n lo a d o f th i s m e th o d .

W e n e e d to s e a rc h th e s e t Sb o f a ll WB x Wb p a tc h e s f ro m I fo r p a tc h e s w h o se

b o u n d a r y m a tc h e s th e a lr e a d y sy n th e s is e d a re a . A s L ia n g [49] m e n tio n e d , th is

se a rc h is e s se n tia lly a k n e a re s t s e a rc h p ro b le m in th e h ig h d im e n s io n a l sp a c e ,

w h ic h is c o m p u ta t io n a l ly d e m a n d in g . I t is h a r d to fin d a n a lg o r i th m b e t t e r th a n

b ru te - fo rc e s e a rc h if w e in s is t o n g e t t in g th e e x a c t n e a re s t n e ig h b o u rs . H o w ev er,

d u e to th e s p e c ia l f e a tu re s o f t e x tu r e s y n th e s is , i t is a c c e p ta b le t h a t w e c a n u se

the approximate nearest neighbours which leads to many optimisation algorithms.
Liang optimised his method with an optimised KD-tree, a quadtree pyramid and
principal components analysis. This accelerated the method substantially but is
very complex to implement.

6.3 .2 T extu re S yn th esis u sin g P a rtic le Sw arm O p tim isa ­

tio n

(i) P a r tic le Sw arm O p tim isa tio n

The original idea of PSO was proposed by J.Kennedy and R.C.Eberhart [42].
It was discovered through simulation of a simplified social model. Numerous
variations of the basic algorithm has been developed and are applied to many
applications.

The basic algorithm of PSO involved forming a set of particles over the search
space, each with an individual, initially random, location and velocity vector.
The particles travel over the search space, remembering the best fit location
experienced. During each iteration, each particle adjusts its velocity vector based
on its momentum and the influence of its best location and the best location of
its neighbours. Then it computes a new point to examine. Each particle tends
to a local, non-optimal extrema. However, by each particle considering both its
own memory and that of its neighbours, the entire swarm tends to converge on
the global extrema.

The particle uses the following formulae to update its velocity and location:

V (t + 1) = V(t) + randQ x cl x (pBest(t) — present(t))+
randQ x c2 x (gBest(t) — present(t)))

present(t + 1) = present(t) + V(t + 1)

Here, t stands for time t, V(t) is the velocity vector, present(t) is the location
factor. pBest(t) is the location vector for the best fitness the individual particle
has yet encountered. gBest(t) is the global best fitness already encountered, which
is the minimum of the pBest(t) of all particles. randQ is the random function

89

and cl, c2 are the cognitive and social learning rates, respectively. These two
rates control the relative influence of the memory of the neighbourhood to the
memory of the individual. Normally they are set to 2 [42].

(ii)Texture Synthesis using PSO

As mentioned we are not aiming at always finding the best match due to texture
synthesis’s special feature: synthesised texture should look like the sample texture
and keep the randomness of textures. The PSO algorithm will either give us the
best location or an approximate best location. Thus it is suitable for the texture
synthesis search process as the approximate best location is good enough. Now
we apply the PSO algorithm to texture synthesis.

Randomly set a number of positions in input image I and treat these points as
virtual particles. These particles can be thought as virtual points of the image
and each particle determines a patch by setting the left upper corner of the patch
as the position of this particle. When the particles travel through the image
we compare the patches they determine with the synthesised area and find the
best-match patch (the best fit position of the particles). We will now explain in
detail how to apply PSO searching in texture synthesis.

• Fitness Function Each particle will travel through / according to its location
and velocity function. At each location we need to calculate the fitness of
the current location. The fitness is then the distance between the patch
A determined by particle and patch B which is the patch just synthesised
(Figure 6.4). The formula for calculating fitness between two patches A
and B is as follows:

d(A, B) = s q r t i j : E [(f i (P^ ')-il(p*i))2+ (G (p«)-G (p«))2+ (B (p «)-B (P«))2]}
i= l j = 1

where R(), G(), B() are the RGB value of the pixel, p^ means the pixel at
location i j in patch A and k , I means the width and height of the boundary
area of the patch.

• Attributes of the Particles Texture synthesis is performed in 2D space, so we

90

Patch determined by
the particles

A ■
*

Q -
Particles

Input Sample Texture Qutput Texture

F ig u re 6 .4 : P S O b a s e d te x tu r e s y n th e s is

u p d a te th e p o s i t io n a n d v e lo c ity o f t h e p a r t ic le s u s in g th e fo rm u la d e s c r ib e d

in 6 .3 .2 (i) . In p a r t ic u la r , w e d e fin e n p a r t ic le s o n th e s a m p le t e x tu r e a n d

r e c o rd th e b e s t f itn e ss lo c a t io n o f e a c h p a r t ic le to g e th e r w i th th e g lo b a l

f i tn e s s w h ic h is th e b e s t f itn e s s a m o n g a ll p a r t ic le s .

E a c h p a r t ic le w ill b e g iv en a n in i t ia l v e lo c ity v e c to r Vi = (ViX,Viy). W e

d e fin e a n o th e r tw o v e c to rs Li = (L iX, Liy) a n d Gi = (GiX,Giy)

LiX = LBestXi — PresentXi Liy = LBestYi — PresentYi

GiX = GBestXi — PresentXi Giy = GBestYi — PresentYi

N ow w e u p d a te th e p a r t ic le s u s in g th e fo rm u la e d e s c r ib e d in th e la s t s e c tio n .

T h e P S O a lg o r i th m is a n i t e r a t io n p ro c e ss . W e w ill t e r m in a te th e i t e r a t io n

w h e n i t ex ceed s th e m a x im u m i t e r a t io n n u m b e r d e f in e d b y th e u s e r o r th e

p ro g ra m fin d s th e b e s t lo c a t io n . In th e fo rm e r c a se i t g ives a n a p p r o p r ia te

lo c a tio n . A fu n c tio n drain is u se d to d e te rm in e th e b e s t lo c a tio n . I f th e

d iffe ren ce b e tw e e n a p a tc h a n d th e s y n th e s is e d a r e a is less t h a n dmin t h e n

w e g e t th e b e s t lo c a tio n a n d s to p th e i te r a t io n .

dmin = X sqrt(^2(R(pk)2 + G{pk)2 4- B(pk)2))
k= 1

w h e re A is th e n u m b e r o f p ix e ls in th e b o u n d a r y a r e a a n d pk r e p re s e n ts th e

The patch ju st synthesised

91

value of the kth pixel in the boundary zone of the just synthesised patch.

Once we terminate the iteration we will then use the patch decided by the
best global fitness location and paste the patch onto the output texture. A
is the error tolerance and it is set to 0 . 2 in our algorithm because, as Liang
mentions, this error threshold is most suitable for keeping the randomness
while ensuring synthesis quality and avoiding repetition. [49]

The algorithm can be stated as follows:

1 . Randomly pick a Wb x Wb texture B 0 from input texture I and paste Bq
on the lower left corner of output texture O.

2 . If the PSO algorithm found a best location then we paste the best location
patch to O. Otherwise we terminate the iteration when it exceeds the
maximum iteration number and we have found the best solution so far.
Blend the corresponding patch and paste it to O.

3. Repeat until O is filled.

6 .3 .3 S y n th esis R esu lts and A lg o rith m A n a ly sis

(i) Synthesis R esults

Figure 6.5 gives some examples of the synthesis results using the PSO algorithm
and Liang’s patch-based sampling method [49]. These results are all generated
by using 20 particles and an upper limit of 100 iterations. From visual inspection,
our method is effective for both structure and stochastic textures. It is as good
as the original patch-based sampling synthesis method.

(ii) A nalysis o f the Num ber of Particles and the N um ber o f Iterations

It is understood that the number of particles in the input texture will affect
the synthesis quality. If we have more particles on the searching space, it is

92

U) ft)

F ig u re 6.5: P S O b ased te x tu re sy n th esis . C o lu m n (a) are in p u t sam p les w ith
size 100 x 100, co lu m n (b) a re sy n th esised by p a tc h -b a se d sam p lin g m e th o d an d
co lum n (c) a re o u r re su lts u sing 20 p a rtic le s an d th e 100 ite ra tio n s . T h e y b o th
have size 200 x 200. 93

more likely the algorithm can find the best location. However, more particles
also means longer computing time. It is a trade off between quality and time.
We are aiming to find the number of particles which provides high quality while
remaining efficient. We have tried different numbers of particles: 10, 20 and 30
particles on a 100 x 100 sample texture. Figure 6 . 6 shows the results.

The stochastic features of the synthesised texture are increased when the number
of the particles increases. However the computing time is also increased. It
takes 3, 8 and 13 seconds for using 10, 20 and 40 particles, respectively. There
is no numerial or objective measurement tool to assess the texture quality yet.
However from our subjective visual experiments from Figure 6 . 6 that using 2 0

particles is good enough for these sample textures with size 100 x 100. Obviously
we have to use more particles if the input texture is big, and decrease the number
of particles if input texture is small. And the particles are highly depend on the
features of the texture, i.e. we have to use different number of particles for a
structured texture such as wall and a stochastic texture such as grass.

When we are doing the synthesis, we either find the best solution or stop the
iteration when it reaches the iteration limit. The number of iterations clearly
affects the synthesis quality and the computing time. We tried 500, 350 and 100
iterations for 100 x 100 sample textures. Figure 6.7 shows different synthesis
results with different iterations. They all use 2 0 particles. The computing time
for 500, 350 and 100 iterations are 10, 7 and 3 seconds, respectively.

The number of iterations marginally changes the synthesis quality. However it
significantly affects the synthesis speed. As we can see from Figure 6.5 and 6.7
with 2 0 particles for 1 0 0 x 1 0 0 sample textures, 1 0 0 iterations can generate good
results. The number of iterations is also linear with the size of sample textures.

(iii) Perform ance Analysis

The PSO based texture synthesis is simple and fairly easy to implement. It
doesn’t require any analysis time in contrast to the optimised kd-tree (KD Tree),
quadtree pyramid (QTP) and principal components analysis (PCA) in Liang’s
method. We use sample textures with size 100 x 100 and synthesise new textures
with size 200 x 200. We have assessed the computing time and table 6.1 shows

94

<*) <d) w

F ig u re 6.6: P S O b ased te x tu re sy n th esis w ith d iffe ren t p a rtic le s , (a) a re th e
sam p le te x tu re s , (b) a re th e re su lts g e n e ra te d by [49]. (c) uses 10 p a rtic le s , (d)
uses 20 p a rtic le s an d (e) u ses 40 p a rtic le s

W

(c)

F ig u re 6.7: P S O b ased te x tu re sy n th esis w ith d iffe ren t ite ra tio n s , (a) a re th e
sam p le te x tu re s , (b) a re th e re su lts g e n e ra te d by [49]. (c) uses 500 ite ra tio n s ,
(d) uses 230 ite ra tio n s a n d (e) uses 100 i te ra tio n s

95

Method Analysis Time Synthesis Time
Original Patch-based 0 . 0 0 13.1
Patch-based+KDTree+QTP+PCA 5.24 0.16
PSO based method 0 . 0 0 3.26

Table 6.1: Performance comparison

the performance comparison on a Dell 4100 Pentium 3 machine with 1 G CPU.
All the methods are implemented in C + + code and all the figures in the table
are seconds. The PSO based method uses 20 particles and 100 iterations.

It is clear that our method using 100 iterations and 20 particles is simpler and
faster than the patch-based method using QTP, KDTree and PCA.

6.4 PSO B ased T exture Transfer

Texture transfer takes a sample texture and a picture as input and transfers the
features of the texture to the picture so that the picture shows texture features.
It can also be thought of as transferring the features of the picture to texture. In
his paper [103], Xiaogang Xu did texture transfer based on Ashikhmin’s method
[8]. However his method synthesises textures one pixel at a time and thus is very
computationally expensive. We now extend our PSO based synthesis method to
do texture transfer.

We use a YIQ system [38]. The Y channel of the YIQ system represents the
brightness information of the image and the IQ channel keeps the colour infor­
mation. Our basic idea is blending the Y channels of texture and picture, then
use the IQ information from the input picture (if we want to transfer texture to
picture); or use IQ information from the input texture (if we want to transfer
picture to texture). Once we get the new YIQ values, we can convert back to
RGB and write to the output picture.

The YIQ and RGB system can be calculated from the following formula.

96

C«>

F ig u re 6.8: P S O b ased te x tu re tra n sfe r: tra n s fe r r in g te x tu re to p ic tu re , (a) is
sam p le te x tu re , (b) is in p u t p ic tu re (c) is o u r re su lt an d (d) is th e re su lt from
[103]

Y ' ’ 0.299 0 .587 0.114 ’ R '

I = 0.596 - 0 .2 7 4 - 0 .3 2 2 G
Q 0.211 - 0 .5 2 3 0.312 B

F irs tly we sy n thesise a te m p o ra ry te x tu re T from th e sam p le te x tu re I. T h e

te m p o ra ry te x tu re h as th e sam e size as th e in p u t p ic tu re . T h e n we co n v ert th e

in p u t p ic tu re P a n d te m p o ra ry te x tu re T to Y IQ fo rm a t. W e can now m ix th e

Y v alue of T a n d P , a d ju s tin g th e Y value o f T so t h a t th e p ic tu re is ‘tra n s fe re d ’

to th e te x tu re . W e use th e follow ing fo rm u la to g e t th e new Y value.

OutY = A x Yt + (1 - A) x YP

w here A is a f lo a tin g value b etw een 0 a n d 1. Yt m ean s th e Y value of th e

97

F ig u re 6.9: P S O b ased te x tu re tra n sfe r: tra n s fe rr in g p ic tu re to te x tu re , (a) is
sam p le te x tu re , (b) is in p u t p ic tu re (c) is o u r re su lt a n d (d) is th e re su lt from
[103]

te m p o ra ry te x tu re T an d Yp m ean s th e Y value o f th e in p u t p ic tu re P.

W e c an a d ju s t th e A value to co n tro l th e o u tp u t te x tu re , m ak in g i t look m ore

like te x tu re o r p ic tu re . O nce we g e t th e m ix ed Y value, we can use th e IQ value

from e ith e r in p u t p ic tu re P o r te m p o ra ry te x tu re T , d ep en d in g on w h e th e r we

w an t to tra n s fe r te x tu re to p ic tu re o r tra n s fe r p ic tu re to te x tu re .

T h e te x tu re tra n s fe r p rocess can be s ta te d as follows:

1. S y n thesise a te m p o ra ry te x tu re T from sam ple te x tu re . T is th e sam e size

as th e in p u t p ic tu re P.

2. C o n v e rt P an d T to Y IQ fo rm a t.

3. For each p o in t o f T , c a lc u la te th e m ix ed Y v alue u sin g th e Y values from

P an d T .

4. G e t th e IQ value from e ith e r T o r P to g e th e r w ith th e m ixed Y value,

c a lc u la te th e R G B value a n d o u tp u t to th e o u tp u t p ic tu re O.

98

Figure 6 . 8 and 6.9 shows two results. Figure 6 . 8 is transferring texture to picture
which uses the IQ value of input picture and A = 0.4. Figure 6.9 is transferring
picture to texture which uses the IQ value of the temporary texture and A = 0.5
Figure 6 . 8 and 6.9 (c) are our results and (d) are the results from [103]. It is
clear that our results generate better transfer results due to our higher texture
synthesis quality compared to their pixel based synthesis method.

6.5 C onstrained T exture S ynthesis

A normal texture synthesis technique synthesises textures in an image or a sur­
face. The constrained texture synthesises textures on a specific area which can be
used in many ways, e.g. photo repair, designing and image filling. Ashikhmin [8]
proposed a constrained texture synthesis method using a single texture sample.
However sometimes we need two or more textures or pictures as input. We have
extended the PSO based texture synthesis method to be used in single and multi
sample constrained texture synthesis.

We take n -1 - 1 images as input: an input picture P and several texture samples
Then we synthesise texture on different areas from different sample

textures.

This is easy to do by using texture transfer. Basically we first synthesise n
temporary textures of suitable size from the sample textures Then we
transfer one of the temporary textures to a specific area according to the user’s
need.

We will first examine two-sample constrained texture synthesis. We take three
images as input: one is an input picture P and the others are two texture samples
t l and t2. P has a clearly defined background and foreground so that they are
filled by textures synthesised from t l and t2. We first generate two temporary
texture T l and T 2 from the two sample textures. They both have the same size
as P . Then we take any point from P and set it as background. Call the Y value
of this point y. For each pixel of P , we check whether the Y value of this pixel
is within some tolerance of y. If it is, then we transfer texture T l to this pixel,
otherwise we transfer T 2 to this pixel. We keep doing this until all the image

99

Ifc)

F ig u re 6 .10 : C o n s t r a in e d te x tu r e s y n th e s is . (a) ,(b) a re tw o s a m p le te x tu r e s , (c)
is th e t a r g e t p ic tu r e a n d (d) is th e sy n th e s is e d re s u l t .

h a s b e e n filled . F ig u re 6 .1 0 , 6 .11 a n d 6 .1 2 sh o w s th r e e e x a m p le s o f c o n s tr a in e d

t e x tu r e s y n th e s is .

F o r m u lt i s a m p le im a g e s , th e u se r sh a ll d e fin e w h ic h a re a s n e e d to b e te x tu r e d

a n d w h ic h s a m p le s n e e d to b e u se d . W h ile in tw o s a m p le c a se w e c a n d e fin e a

b a c k g ro u n d a n d fo re g ro u n d , m u lt i s a m p le ca se s re q u ire so m e te c h n iq u e to d is t in ­

g u is h e a c h sp e c ia l a r e a sp e c if ie d b y th e u se r .

6 .6 P e r sp e c tiv e T ex tu re S y n th esis

A ll th e m e th o d s p re s e n te d g e n e ra te r e s u l ts o n p la n a r s u rfa c e s o r d i r e c t ly o n to 3 -D

s u rfa c e s . S o m e tim e s w e n e e d to sy n th e s is e t e x tu r e o n a p la n a r su r fa c e t h a t h a s

b e e n r o t a t e d fo r so m e a n g le f ro m a p e r s p e c tiv e v iew . T e x tu re s y n th e s is o n a 2D

s u r fa c e c a n n o t ach ie v e th i s w h ile te x tu r e s y n th e s is a p p ro a c h e s o n 3D s u rfa c e s a re

to o c o m p le x fo r th i s ta s k . W e w ill p re s e n t a m e th o d fo r s y n th e s is in g p e r s p e c tiv e

t e x tu r e - a p la n a r s u rfa c e r o ta te d a n d v iew ed in 3 D sp a c e .

1 0 0

k! W)

F ig u re 6.11: C o n s tra in e d te x tu re sy n th esis . (a) ,(b) a re tw o sam p le te x tu re s , (c)
is th e ta rg e t p ic tu re an d (d) is th e sy n th esised resu lt.

F ig u re 6.12: C o n s tra in e d te x tu re syn th esis . (a) ,(b) a re tw o sam p le te x tu re s , (c)
is th e ta rg e t p ic tu re an d (d) is th e sy n th es ised re su lt.

101

The 2D surface in perspective is of particular interest because it is commonly
found in film and game applications. For example, when you play the game
“Tomb Raider” , the walls and the ground are all 2 D planes viewed in perspec­
tive. Traditional texture mapping is less realistic and introduces texture repeti­
tion. Normal texture synthesis in 2D cannot handle this situation. One possible
solution is to synthesise a 2D plane texture and map it onto the rotated surface.
However this is highly expensive in computing time and memory. Texture syn­
thesis on a 3D surface is not suitable because this is a special case of a 3D surface
which should offer a simpler solution. Our texture synthesis method is designed
for this case. It avoids the complexity of synthesis method on 3D surface, it is
effective and relatively fast. This method is also derived from the patch-based
sampling method.

6 .6 .1 E x ten sio n to P ersp ectiv e T ex tu re

The patch-based sampling approach synthesises new texture only on 2 D surfaces.
Now if we consider there is a 2 D plane in perspective view - a 2D surface viewed
in 3D, the patch-based method cannot synthesise textures directly on this sur­
face. Those methods [94, 83, 104] which synthesise texture on 3D surfaces are
too complex for this situation because they involve 3D mesh generation and cal­
culation.

We adjust Liang’s patch-based method to be used in perspective projection. In
principle, our method take a small sample texture as input and directly synthe­
sises texture onto a 2 D plane rotated in some angle in 3D space. The 2D plane
can be of arbitrary size, rotated with arbitrary angle and viewed in perspective
in 3D.

The user defines the rotation angles of the 2D plane in 3D space: a , /?, 7 ; and the
patch size w. We define the input texture image to be / , the output image O.
The output image O shows the 2D plane rotated by the above angles in 3D space.
We will also need to refer to the unrotated plane in 2 D space: call this virtual
plane V. Finally we need a temporary image T. T is without any rotation and
only contains two rows of patches: one row of patches are already synthesised
and the other row has the patches to be synthesised. When the latter is full, we
swap the roles of these two rows.

102

The screen is defined at integer coordinate points but mapping each new patch
onto the plane O produces image points that are not at integer coordinates. If the
nearest displayable point is chosen, and this is repeated for all pixels in an area
which the patch covers, the resulting image may have unset pixels in it. Moreover,
if we generate perspective texture images, there is a many-to-one mapping, which
leads to further loss of information.

Resampling [33] can solve this problem. Each patch after rotation will fall in
a specific area on the output image. We call this area the target frame. Each
pixel in the target frame is calculated by first checking whether it is rotated
by the source patch and, if so, determining the source point from which it was
rotated. Here inverse rotation working back from the target to source is used.
The source point will not always have integer coordinates and therefore will fall
in an area delimited by four pixels. A practical way to do resampling is to note
the maximum and minimum x and y source coordinates of the patch. These
four points are then rotated to give four target points, of which the maximum
and minimum x and y coordinates determine a target rectangle. This rectangle
encloses the rotated patch. The reverse rotation and interpolation process is
repeated for each target pixel in the rectangle. The intensity of each target
pixel is calculated by local interpolation. Bilinear interpolation is used here. It
proceeds by forming a weighted average of the intensities of the four nearest
neighbour pixels.

The complete algorithm is as follows:

1. We start by randomly picking one patch from I and pasting it onto T.

2 . Go through the temporary image T in raster scan order in steps of one
patch. As before, search the sample texture I for a set of patches that
match, in their overlap with the patch in T (above and left) within some
error tolerance (Figure 6.3). Randomly pick one such patch, blend the
boundary area and paste it onto T.

3. Resampling. Find the axis-aligned bounding rectangle in O of the new
patch. For all pixels within the bounding rectangle we perform an inverse
mappping to V. If the pixel being inverse rotated is within the current
virtual patch area of V , then we do a bilinear interpolation to get a value

103

from T and use this value to colour O. If it is outside, then this O pixel is
not within the new patch, so we ignore it.

4. After one patch has been pasted, go to 2 , repeat until the output image has
been filled.

6.6 .2 E xp erim en ta l R esu lts

The results of the synthesis process are shown in Figure 6.13 and 6.14. The top
left is the original texture sample, top right is the synthesised image rotated along
the Z axis by 30 degrees, the middle is the synthesised image rotated along the
x axis by 45 degrees and the bottom is the synthesised image rotated along both
the x axis and y axis by 30 degrees. The performance is effective for structured
texture, and it is quite good for statistical textures as well. Figure 6.14 shows
a highly statistical texture with the synthesised perspective textures. Consider
the criteria we have set for successful texture synthesis progress. The qualities of
the textures are determined by Liang’s patch-based algorithm, which has been
proved very good at a wide range of the textures. The new image looks similar
to the sample image but with no excessive repetition. There are a few slightly
mismatched or distorted boundaries, but the results are acceptable. From our
observation, the quality of the texture is as good as most existing 2 D algorithms,
or even better.

The algorithm is also very fast. Unoptimised C + + code is used to generate these
results on a Linux workstation with Pentium 3G processor. The top right image
in figure 6.13 (192 x 192 for unrotated image) took 2.3 seconds and other images
in figure 6.13 (320 x 320 for unrotated image) took 6.0 seconds each.

6.7 C onclusion

In this chapter we have made a survey of texture synthesis. We introduced some
traditional and contemporary texture synthesis techniques and we implemented
some of them for comparison. Most of these methods can be categorised into
procedural texture or statistical sampling. Statistical methods are better than

104

F ig u re 6 .13 : T o p le ft: o r ig in a l s t r u c tu r e d te x tu r e . T o p r ig h t: s y n th e s is e d im a g e
r o t a t e d a lo n g Z a x is b y 30 d e g re e s . M id d le : s y n th e s is e d im a g e r o t a t e d a lo n g X
a x is b y 45 d e g re e s . B o t to m : s y n th e s is e d im a g e r o t a t e d a lo n g b o th X a n d Y a x is
b y 30 d e g re e s

105

F ig u re 6 .14 : T o p le ft: o r ig in a l s t a t i s t i c a l t e x tu r e . T o p r ig h t: s y n th e s is e d im a g e
r o ta te d a lo n g Z a x is b y 30 d e g re e s . M id d le : sy n th e s is e d im a g e r o t a t e d a lo n g X
a x is b y 45 d e g re e s . B o tto m : s y n th e s is e d im a g e r o ta te d a lo n g b o th X a n d Y a x is
b y 30 d e g re e s

106

procedural methods because the former produce higher quality results for gen­
eral textures while the latter are only applicable to limited classes of texture.
Statistical methods can be further categorised into feature matching or Markov
Random Field. Methods based on the Markov Random Field (MRF) have been
demonstrated to be effective for a broad range of textures. They use pixels di­
rectly from input images and paste pixels onto the new image under relationships
among pixels. MRF directly makes use of two of the most important aspects of
texture, pixels and their interrelationships.

We presented an efficient texture synthesis method. It is based on the patch-
based sampling texture synthesis method. However we use a particle swarm
optimisation for the searching process thus accelerating searching. It is simple,
easy to implement, more efficient compared to other acceleration schemes and it
is faster. Visual inspection shows that it generates results as good as the original
method.

Moreover we have extended the algorithm to texture transfer. It transfers texture
features to pictures or inserts a picture into a texture. We have used the PSO
based texture synthesis and the YIQ system and they produced better results
than previous methods.

We have implemented multi-sample constrained texture synthesis. We take sev­
eral sample textures and one picture as input and then synthesise textures from
different sample textures into different areas of the picture. The algorithm is very
effective.

Additionally, we have presented an efficient method for synthesising a perspective
texture from a 2 D example texture. The method produces textures with similar
quality and speed to their 2D counterpart (Liang’s patch-based sampling). This
means that those textures that work well with Liang’s algorithm also work well
with our algorithm. The algorithm produces high quality synthesised images very
rapidly.

The sample images we used here are all square images. For some samples from
scanned photographs, it is very hard to get square samples. The samples would
be rotated by an angle and we can only see the perspective pictures. For future
work, we are interested in extending the methods presented here for perspective

107

texture synthesis from rotated perspective samples.

The user has to specify the number of particles and the maximum iteration num­
ber according to the size of the input texture sample in the PSO based texture
synthesis method. More research needs to be done to expose the relationship
between the sample size and the particle number and the maximum iteration
number.

Our future work focuses on extending the algorithm into 3D texture synthesis and
dynamic texture synthesis which we see great as a potential of this algorithm.

108

Chapter 7

Conclusions and Future Work

This thesis addresses a fundamental problem of digital image processing: to find
an appropriate representation of digital images which provides a link between
continuous images and digital ones. It is the foundation of all other image-
related applications. However it still remains a challenging problem to researchers
and this is the motivation of our image model. The intuition behind our image
representation model is the importance of the roles edges play in images. The
contribution of this thesis is that it provides an appropriate tool to exploit fun­
damental properties of edges and to represent digital images well so that efficient
and effective practical applications can be drawn from this model. We also study
the texture synthesis problem. We present a survey of texture synthesis and
introduce a novel texture synthesis method using particle swarm optimisation
for patch-based texture synthesis. We extend this method to texture transfer,
constrained multi-sample texture synthesis and perspective texture synthesis.

7.1 C ontribution

We propose a pixel level data-dependent triangulation image model. The image
is triangulated by a triangulation mesh and the edges are represented by the
diagonals of the triangles. The main strength of this model is it represents the
orientations of edges and thus keeps the most visual important feature of images.
The main advantages of this model are its simplicity and efficiency. It is a generic

109

model and is effective for all images.

This model allows various applications to use this representation and to recover
continuous intensities from discrete image data samples. We have examined sev­
eral important applications such as arbitrary resolution enhancement, arbitrary
rotation, demosaicing of digital colour images and other applications of still im­
ages in continuous space. The simplicity of the underlying model leads to simple,
effective and efficient applications in those different areas.

Conventional approaches to represent image edges try to detect edge orientations
using various techniques. The drawbacks of these approaches are they are often
complex and are not robust for all images. Moreover, it is difficult to employ
their models in different applications. This thesis provides another direction to
image representation and image analysis. Our model does not try to detect a
long-range edge or attem pt to find a statistical rule for the local geometry. It
simply triangulates each four-pixel square according to the intensity of the four
pixels or a bigger neighbour window. By doing this in every local square, the
global edges of the images are well presented.

We have presented a basic model and an extended model by considering the local
neighbouring information to represent local edges. Algorithm analysis shows both
have O(n) time complexities which are linear with the image size and similar to
bilinear interpolation.

At heart, out model recognises that simple interpolation suffices, provided it
covers a sufficiently small area. Any errors in the interpolation is strictly limited
by the tiny triangles and the choice of diagonal.

We have used this model in the following applications.

7 .1 .1 Im age In terp o la tion

The model is applied to image interpolation and in particular: arbitrary magni­
fication, arbitrary rotation and other manipulations on still images. The images
are first triangulated by our basic or extended model, then we interpolate from the
triangulation mesh. The triangulation mesh generated corresponds to the edges

110

of the image so that the algorithm will always interpolate along the edge but not
across it. Thus the interpolated image will keep the edge sharp while retaining
smoothness along the edge. Visual inspection suggests that it generates better
results than the traditional methods, e.g. bilinear and bicubic interpolation. It
is as simple and efficient as bilinear interpolation.

We also examined the interpolated image quality by using mean square error
(MSE). MSE is a fidelity measure between the interpolated image and the original
image. The objective MSE results confirm this model is effective.

This model can be implemented in hardware. Thanks to the rapidly-improving
technology, a graphics card can now handle tens of millions of triangles per second
and interpolate within the triangles. This means our triangulation mesh can be
stored and manipulated by graphics card in real-time. We have demonstrated
a hardware implementation by using OpenGL and we are pleased to see high-
quality real-time image interpolations. This leads to great industrial potential of
this model.

7.1 .2 D em osa ic in g o f C olour Im ages

Mosaic images have only one primary colour (R, G or B) in each pixel. Digital
cameras use such a moscaic and so the “demosaicing” process is essential to get
full colour photographs.

We modified our basic model to use a colour-difference space because it explains
the correlation between different colour channels. Because our model can tune
the interpolator along the edges, it avoids the colour mis-registration in edge
areas which traditional linear interpolation suffers. Visual and MSE inspection
show our model gives superior reconstruction quality. It is also very fast.

7 .1 .3 T extu re S yn th esis

This research started by studying texture and texture representation and later
widened to image representation. The texture work represented here is therefore

111

in the discrete domain. Even here however, we use interpolation in small areas,
in keeping with our general approach. Texture has an excessive number of edges
and it has some special applications such as mapping and synthesis rather than
interpolation.

We have made a detailed survey of texture synthesis and compared different
methods. The patch-based Markov Random Field methods are so far the best
ones. We extended the patch-based sampling method into perspective which
means texture synthesis can be done in two and a half dimensional space.

Another experiment done together with Yan Zhang at Jilin University, China is
extending their PSO based texture synthesis method into texture transfer and
constrained texture synthesis. The PSO based texture synthesis is derived from
the patch-based sampling method and it accelerates the searching process which
reduces the computing time. We have used the PSO based texture synthesis
for texture transfer (which transfer a picture to a texture) and multi-sample
constrained texture synthesis (which synthesises texture on different constrained
areas from different samples).

7.2 Future W ork

There are a number of directions in which the work of this thesis can be continued.

• In te rp o la tio n in o th e r co lour spaces Our method performs very well
in full RGB colour space, however it would have been interesting to do
some of the interpolation in colour difference space, as we introduced in the
demosaicing problem in chapter 5. Colour difference space considers the
correlation between colour channels which might improve the interpolation
quality.

We are also considering performing interpolation in the YIQ colour space
which we introduced in chapter 6 . In principle our method triangulates
the image according to the luminance of the image. The Y channel of the
YIQ colour space represents the brightness and IQ channel keeps colour
information.

112

• C M Y K C olour P r in tin g The CMYK (cyan, magenta, yellow, black)
colour space is commonly used in colour printers. Cyan, magenta, and yel­
low are the complements of red, green, and blue, respectively. Mixing cyan,
yellow, and magenta produces black. To maintain black colour purity, a
separate black ink is used rather than printing three colour inks to gener­
ate it. However, the density of CMYK inks cannot be varied continuously
across an image, so a range is produced by halftones. In halftones, translu­
cent CMYK ink dots of variable size are printed in overlapping grids. Each
grid is placed at a different angle for each ink colour. Smaller halftone dots
mean more reflected light from the white paper and thus lighter appear­
ance in that colour. By printing different sizes of halftone dots of different
colours and mixing them together, a full colour image can be produced by
printers.

Our image model can be applied to a more accurate CMYK colour printing.
The size of the halftone dots depends on how much colour it needs in that
particular location. Because halftone grids are placed with different angles,
each halftone dot will be in floating point coordinates in the sample image.
Therefore it is possible to use our model to interpolate the value of the
halftone dots and get the colour amounts. As our model avoids interpolating
across edges, the interpolated halftone dots might reducing colour blurring
across the edge thus improving printing quality compared to the traditional
bilinear interpolation.

• P ix e l O rd erin g Many image related algorithms work on a linearised ver­
sion of the digital images, assuming a strong coherence among nearby pixels.
The scan-line order, where the pixels are traversed horizontally line by line,
is the most common one. However, the spatial coherence among the nearby
pixels is typically anisotropic rather than directional along the horizontal
lines. Other scan methods such as the Peano-Hilbert space filling curve
have been proposed to take advantage of the local similarities inherent in
images. The sequence of pixels visited along the scan order is called pixel
ordering. A good choice increases the autocorrelation of the resulting pixel
sequence and thus increases the lossless image compression rates.

Our image model might be applied to the pixel ordering problem. As we
mentioned, our extended model considers the local geometry information
and triangulates the four-pixel square. Careful study of the triangulation
mesh reveals that the triangles tend to cluster together representing areas

113

along the edge in the image. Thus it is possible to find the underlying local
similarities by following some rules defined by our image model. It is clear
that pixels along edges have more similarities than pixels across edges. If
a scan order along the edge can be applied according to the triangulation
mesh, it might increase the lossless image compression rates.

7.3 C onclusion

The author intended to tackle the fundamental problem of digital image process­
ing and tried to find a good representation of digital images which is generic for
all kinds of images and is effective for other digital image applications. This leads
to the research in this thesis which presents an effective image model to exploit
fundamental properties of edges in the images using pixel level data-dependent
triangulation. It is not only a better representation than other approaches but
also much more efficient and is generic for different kinds of images.

114

A ppendix A

P roof

Consider a four pixel square abed. We will first prove that, if pair ac has smaller
difference than bd, then b or d is the outlier pixel and we should connect ac. That
is to say, if \a — c\ < \b — d\ then b or d is either the biggest or the smallest pixel.

Suppose |a — c| < \b — d\, and suppose a > c, then a — c < \b — d\.

1. Suppose b > d. Then a — c < b — d (b > d, a > c), hence a — b < c — d
(b > d ,a > c).

We suppose a > b and c < d, then a — b > 0 and c — d < 0, so we get
a — b > c — d. However, we have the formula a — b < c — d before which
means our assumption that a > b and c < d is wrong.

Because a > b and c < d is wrong, either a < b or c > d or a < b, c > d
with the condition (6 > d, a > c). In these cases, either b is the biggest
pixel (6 > a, b > c, b > d) or d is the smallest pixel (d < c,d < a, d < b).

2 . Suppose b < d, then a — c < d — b (b < d,a > c), hence a — d < c — b
(b < d, a > c).

115

We suppose a > d and c < b. Then a — d > 0 and c — b < 0, so we get
a — d > c — b. However, we have the formula a — d < c — b before which
means our assumption that a > d and c < b is wrong.

Because a > d and c < b is wrong, either a < d o v c > b o v a < d , c > b
with the condition (b < d, a > c). In these cases, either b is the smallest
pixel (b < c, b < a, b < d) or d is the biggest pixel (d > b,d > a,d > c).

We have proved that if pair ac has the smaller difference (\a — c\ < \b — d|), there
are two situations. One is that either b is the biggest pixel or d is the smallest
pixel. The second is that either b is the smallest pixel or d is the biggest pixel. In
either case the outlier is either b or d and ac should be the edge. Using the same
method we can prove that if pair bd has the smaller difference (\b — d\ < \a — c|),
the outlier is either a or c and bd should be the edge.

So we can conclude that drawing the edge between the least-different diagonal
pair gives the same result as drawing the edge which isolates the outlier.

116

References

[1] J.E.Adams, Jr., “Interactions between color plane interpolation and other
image processing functions in electronic photography” Proc. of SPIE , Vol.
2416, pp. 144-151, 1995

[2] J.E.Adams, Jr. “Design of practical colour filter array interpolation algo­
rithms for digitacameras” Proc. of SPIE, Vol. 3028, pp. 117-125, 1997

[3] A.Aldroubi and M.Unser, “Sampling procedures in function spaces and
asymptotic equivalence with Shannon’s sampling theorem” , Numerical Func­
tion Analysis and Optimization, Vol. 15, pp. 1-21, 1994

[4] J.P.D’Ales and A.Cohen, “Non-linear approximation of random functions” ,
SIAM Journal of Applied Math., pp. 518-540, 1997

[5] V.R.Algazi, G.E.Ford and R.Potharlanka, “Directional interpolation of im­
ages based on visual properties and rank order filtering” , Proceeding of In­
ternational Conference on Acoust, Speech Signal Processing, pp. 3005-3008,
1991

[6] J.Allebach and P.W.Wong, “Edge-directed interpolation” , IC IP ’ 96, Vol. 3,
pp. 707-710, 1996

[7] L.Alvarez, P.L.Lions and J.M.Morel, “Image selective smoothing and edge
detection by nonlinear diffusion. II” , SIAM J. Numerial analysis, Vol. 29, No.
3, pp. 845-866, 1992.

[8] M.Ashikhmin, “Synthesizing natural textures” , 2001 ACM Symposium on
Interactive 3D Graphics, pp. 217-226, 2001

[9] B.Ayazifar and J.S.Lim, “Pel-adaptive model-based interpolation of spatially
sub-sampled images” , Proceeding of Intl. Conf. on Acoust. Speech and Signal
Processing, Vol. 3653, pp. 181-184, 1992

117

[10] M.Barnsley, “Fractals everywhere” , Academic Press, New York, 1998

[11] S.Battiato, G.Gallo, F.Stanco, “A locally-adaptive zooming algorithm for
digital images” , Image and vision Computing, Vol. 20, No. 11, pp. 805-812,
September 2002

[12] S.D.Bayrakeri and R.M.Mersereau, “A new method for directional image
interpolation” , proc. Int. Conf. Acoustics, Speech, Sig. Process, Vol. 4, pp.
2383-2386, 1995

[13] M.Bern and D.Eppstein, “Mesh generation and optimal triangulation”,
Computing in Euclidean Geometry, Lecture Notes Series on Computing, Vol
1, pp. 23-90, World Scientific, Singapore, 1992

[14] J.Blinn, and M.Newell, “Texture and reflection in computer generated im­
ages” , Communications of the ACM 19, (1976), pp. 542-547, 1976

[15] R.M.Bolle and D.B.Cooper, “Bayesian recognition by approximating image
intensity functions with quadratic polynomials” , IEEE Trans. Patt. Anal.
Mach. In te l! , Vol. 6, pp. 418-429, 1984

[16] J.S.D Bonet, “Multiresolution sampling procedure for analysis and synthesis
of texture images” Computer Graphics (1997) ACM SIGGRAPH , pp. 361-
368, 1997

[17] J.Brown, “Vertex based data dependent triangulations” , Computer Aided
Geometric Design, Vol. 8, No. 3, pp. 239-251, 1991

[18] RBurger and D.Gillies, “Interactive Computer Graphics - Functional Pro­
cedural and Device-level Methods” , Addison-Wesley, pp. 411, 1989

[19] S.Carrato, G.Ramponi and S.Marsi, “A simple edge-sensitive image inter­
polation filter” , Proceeding of International Conference on Image Processing,
pp. 711-714, 1996

[20] D.R.Cok, “Signal processing method and apparatus for producing interpo­
lated chrominance values in a sampled colour image signal” , U.S. Patent No.
4, 642, 678 (1987)

[21] A.Cohen et al., “On the importance of combining wavelet based nonlinear
approximation with coding strategies” , Preprint 2000.

118

[2 2] F.Crow, “Summed-area tables for texture mapping” , Computer Graphics
(1984) ACM. SIGGRAPH, Vol. 18, pp. 207-212., 1984

[23] S.Daly, “The visible differences predictor: An algorithm for the assessment of
image fidelity.” Digital Images and Human Vision, A.Watson, Ed. Cambridge,
MA:MIT Press, 1993

[24] H.Derin and H.Elliot, “Modelling and segmentation of noisy and textured
images using Gibbs random field” , IEEE TRans. Pattern Anal. Mach. Intel!,
Vol. 9, pp. 39-55, 1987

[25] N.Dyn, D.Levin, and S.Rippa, “Data dependent triangulations for piecewise
linear tnterpolation” , IMAJ. Numerical Analysis, Vol. 1 0 , pp. 127-154, 1990.

[26] A.Efros and T.Leung., “Texture synthesis by non-parametric sampling” , In­
ternational Conference on Computer Vision, volume 2 , pp. 1033-8, 1999.

[27] A.A.Efros, William T. Freeman, “Image quilting for texture synthesis and
transfer” , Computer Graphics (2001) ACM SIGGRAPH, pp. 341-346, 2001

[28] A.Fournier, D.Fussel, and L.Carpenter, “Computer rendering of stochastic
models” , Communications of the ACM 25, pp. 25-39, 1982

[29] W.T.Freeman, “Median filter for reconstructing missing colour samples” ,
U.S. Patent No. 4, 724, 395 (1988)

[30] A.F.Gamasutra “Run time mip-map filtering” Game Developer Magazine,
vol. 2 , Issue 48, CMP Media LLC, 1998

[31] S.Geman and D.Geman, “Stochastic relaxation, Gibbs distributions and
Bayesian restoration of images” , IEEE Trans. Patt. Anal. Mach. Intel!, Vol.
6 , pp. 721-741, 1984

[32] J.F.Hamilton and J.E.Adams, “Adaptive color plane interpolation in single
sensor colour electronic camera” , U.S. Patent No. 5, 629, 734, (1997)

[33] J.B.Hanson and P.J.Willis, “ A method of rotating areas on a raster scan
graphic display” , Displays, Butterworth &; Co (Publishers) Ltd, 1982

[34] P.Harrison., “A non-hierarchical procedure for re-synthesis of complex tex­
tures” , WSCG 2001 Conference proceedings, pp. 190-197, 2 0 0 1 .

119

[35] J.P.Havlicek et al. “Skewed 3D Hilbert transformations and computed AM-
FM models” , Proceeding of International Conference on Image Processing,
Chicago, Oct. 1998

[36] D.J.Heeger and J.R.Bergen, “Pyramid-based texture analysis/synthesis” ,
Computer Graphics (1995), ACM SIGGRAPH, pp. 229-238, 1995

[37] K.Jensen and D.Anastassiou, “Subpixel edge localisation and the interpola­
tion of still images” , IEEE Trans. Image Process, Vol. 4, No. 3, pp. 285-295,
1995

[38] Y.D.Jia, “Machine vision (in Chinese)” , Technology Press, pp. 154-155,
China, 2000

[39] R.L.Joshi, et. al. “Comparison of different methods of classification in sub­
band coding of images” , IEEE Trans. Image Processing, Vol. 6 , pp. 1473-1486,
Nov. 1997

[40] B.Julesz, “Visual pattern discrimination” , IRE Trans Info Theory, IT-8(2):
84-92, 1962.

[41] N.B.Karayiannis and A.N.Venetsanopoulos, “Image interpolation based on
variational principles” , Signal Process, Vol. 25, pp. 259-288, 1991

[42] J.Kennedy and R.C.Eberhart, “Particle swarm optimization” , Proc. IEEE
in t’l conf. on neural networks, Vol. IV, pp. 1942-1948, IEEE, 1995

[43] R.Kimmel, “Demosaicing: Image reconstruction from colour CCD samples” ,
IEEE Trans. Image Processing, Vol. 8 , pp. 1221-1228, Sept. 1999

[44] C.A.Laroche and M.A.Prescott, “Apparatus and method for adaptively in­
terpolating a full colour image utilising chrominance gradients” , U.S. Patent
No. 5, 373, 322 (1994)

[45] S.W.Lee and J.K.Paik, “Image interpolation using adaptive fast B-spline
filtering” , Proceeding of Interpolation Conference on Acoust. Speech Signal
Processing, pp. 177-180, 1993

[46] T.M.Lehmann, C.Gonner, K.Spitzer, “Survey: Interpolation methods in
medical image processing” , IEEE Transactions on Medical Imaging, Vol. 18,
No. 1 1 , pp. 1049-1075, November 1999

120

[47] J.Lewis, “Algorithms for solid noise synthesis” , Computer Graphics (1989),
ACM SIGGRAPH, vol 23, pp. 263-270, 1989

[48] X.Li, “Edge directed statistical inference with applications to image process­
ing” , Ph.D Thesis, Princeton University, May 2000

[49] L.Liang, C.Liu, Y.Xu, B.Guo and H-Y.Shum, “Real-time texture synthesi
by patch-based sampling” , Technical Report MSR-TR-2001-40, Microsoft Re­
search, 2 0 0 1

[50] M.S.Longuet-Higgins, “Statistical properties of an isotropic random sur­
face” , Phil Trans. Royal Soc., London, A, 250, pp. 151-171, 1957

[51] S.LoPresto, K.Ramchandran and M.Orchard, “Image coding based on mix­
ture modelling of wavelet coefficients and a fast Estimation-Quantisation
framework” , Proceeding of Data Compression Conference, pp. 221-230, March
1997

[52] R.Malladi and J.A.Sethian, “A unified approach to noise removal, image
enhancement and shape recovery” , IEEE Trans, on Image Processing, Vol. 5,
No. 11, pp. 1554-1568, Nov. 1996

[53] S.Mallat, “A wavelet tour of signal processing” , Academic Press, 1998

[54] B.Mandelbrot, “The fractal geometry of nature” , W.H.Freeman, SanFran-
cisco, 1982

[55] P.A.Maragos, R.W.Shafer and R.M.Mersereau, “Two dimensional linear pre­
diction and its applications to adaptive predictive coding of images” , IEEE
Trans. Acoust. Speech and Signal Processing, Vol. 32, pp. 1213-1229, 1984

[56] S.A.Martucci, “Image resizing in the discrete Cosine transform domain” ,
Proc. Int. Conf. Image Processing, Vol. 2 , pp. 244-247, 1995

[57] B.S.Morse and D.Schwartzwald, “Isophote-based interpolation” , Proc. IEEE
Int. Conf. Image Processing, Vol. 3, pp. 227-231, 1998

[58] B.S.Morse and D.Schwartzwald, “Level-Set image reconstruction” , Proc.
Computer Vision and Pattern Recognition 2001 (C V P R ’01), pp. 333-340,
IEEE 2 0 0 1

[59] A.N.Netravali and B.G.Hasskell, “Digital pictures: representation, compres­
sion and standards” , 2nd Ed., New York:Plenum Press, 1995

121

[60] D.R. Peachey. “Solid texturing of complex surfaces” , Computer Graphics
(1985) ACM of SIGGRAPH, vol 19, pp. 279-86,, 1985

[61] S.C.Pei and I.K.Tam, “Effective colour interpolation in CCD colour filter
array using signal correlation” Proc. IEEE Int. Conf. Image Processing, Vol.
3, 2000, pp. 488-491

[62] K.Perlin, “An image synthesizer” , Computer Graphics(1985) ACM SIG­
GRAPH, vol 19, pp. 287-296, 1985

[63] K.Perlin, “Hypertexture” , Computer Graphics (1989) ACM SIGGRAPH,
vol23, pp. 253-62, 1989

[64] P.Perona and J.Malik, “Scale-space and edge detection using anisotropic
diffusion” , IT T T TRans. on Patt. Anal, and Mach. In te l!, Vol. 1 2 , No. 7, pp.
629-639, July 1990

[65] J.Portilla and E.P.Simoncelli, “Texture representation and synthesis using
correlation of complex wavelet coefficient magnitudes” , TR 54, CSIC, vol 40,
pp. 49-71, Madrid, 1999

[6 6] J.Portilla and E.Simoncelli, “A parametric texture model based joint statis­
tics of complex wavelet coeficients” , International Journal of Computer Vi­
sion, vol 40, issue 1, pp. 49-71, 2000

[67] E.Quak and L.Schumaker, “Cubic spline fitting using data dependent trian­
gulations” , Computer Aided Geometric Design, Vol. 7, pp. 293-302, 1990

[6 8] R.Ramanath, “Interpolation methods for the bayer colour array” , MS thesis,
North Carolina State University, Raleigh, NC (2000)

[69] R.Ramanath, et. al. “Demosaicking methods for Bayer color arrays” , Journal
of Electronic Imaging, Vol. 1 1 , No. 3, pp. 306-315, July 2002.

[70] K.Ratakonda and N.Ahuja, “POCS based adaptive image magnification” ,
Proceeding of Intl. Conf. on Image Processing, Vol. 3, pp. 203-207, 1998

[71] L.Rila and A.G.Constantinides, “Image coding using data dependent trian­
gulation” , Proc. 1997 13th In t’l Conf. Digital Signal Processing, Part2, pp.
531-534, IEEE Press, Piscataway, N.J., 1997

[72] S.Rippa, “Long and thin triangles can be good for linear interpolation” ,
SIAM Journal on Numerical Analysis, 29(l):257-270, February 1992.

122

[73] T.Sakamoto, C.Nakanishi and T.Hase, “Software pixel interpolation for dig­
ital still cameras suitable for a 32-Bit MCU” IEEE Trans. Comsumer Elec­
tronics, Vol. 44, No. 4, pp. 1342-1352, Nov. 1998

[74] L.L.Scarlatos, “A refined triangulation hierarchy for multiple levels of terrain
detail” , In IMAGE V Conference, pp. 114-122. Image Society Inc, June 1990.

[75] R.R.Schultz and R.L.Stevenson, “A Bayesian approach to image expansion
for improved definition” , IEEE Trans. Image Process, Vol. 3, No.3, pp. 233-
242, 1994

[76] L.Schumaker, “Computing optimal triangulations using simulated anneal­
ing” , Computer Aided Geometric Design, Vol. 1 0 , pp. 329-245, 1993

[77] E.Shinbori and M.Takagi, “High quality image magnification applying the
gerchberg-Papoulis iterative algorithm with DCT” , Systems and Computers
in Japan, Vol. 25, No. 6 , pp. 80-90, 1994

[78] RSu, L.Robert and S.Drysdale, “A comparison of sequential Delaunay tri­
angulation algorithms” , Proceedings of the Eleventh Annual Symposium on
Computational Geometry, Association for Computing Machinery, pp. 61-70,
June 1995

[79] H.Sun and W.Kwok, “Concealment of damaged block transform coded im­
ages using projection onto convex set” , IEEE Trans, on Image Processing,
Vol. 4, pp. 470-477, April 1995

[80] R.Szeliski and H.-Y. Shum., “ Creating full view panoramic mosaics and
environment maps” , Computer Graphics (1997) ACM SIGGRAPH, pp. 251-
258, 2001

[81] P.Thevenaz, T.Blu and M.Unser, “Image interpolation and resampling” ,
Handbook of Medical Imaging, Processing and Analysis, I.N. Bankman, Ed.,
Academic Press, San Diego CA, USA, pp. 393-420, 2 0 0 0

[82] G.Turk, “Generating textures on arbitrary surfaces using Reaction-
Diffusion” , Computer Graphics(1991), ACM SIGGRAPH, vol 25, pp. 289-
298, 1991

[83] G.Turk, “Texture synthesis on surfaces” , Computer Graphics (2001) ACM
SIGGRAPH, p p . 3 4 7 -3 5 4 , 2001

123

[84] M.Unser, A.Aldroubi and M.Eden, “Fast B-Spline transforms for continuous
image representation and interpolation” , IEEE TRans. Pattern Anal. Mach.
Int., Vol. 13, No. 3, pp. 277-285, 1991

[85] S.Upstill. “The RenderMan Companion” , Addison Wesley, 1989

[8 6] D.C.Van Essen et al, “Information processing in the primate visual system:
An integrated system perspective” , Science, Vol. 255, No. 5043, 1992, pp.
419-423

[87] N.Damera-Venkata, T.D.Kite, W.S.Geisler, B.L.Evans and A.C.Bovik, “Im­
age quality assessment based on a degradation model.” IEEE Transactions
on Image Processing, Vol. 9, pp. 636-650, April 2 0 0 0

[8 8] M.Vetterli and J.Kovacevic, “Wavelets and subband coding” , Prentice-Hall,
1995

[89] A.Watt, F.Policarpo. “The Computer Image” , Addison-Wesley, 1998

[90] A.Watt, M.Watt, “Advanced Animation and Rendering Techniques” ,
Addison-Wesley, 1992

[91] A.Watt, “3D Computer Graphics” , Third Edition, Addison-Wesley, 2000

[92] A.Watt and F.Policarpo “3D Games Real-time Rendering and Software
Technology” Addis on-Weis ey, 2 0 0 1

[93] L.Y.Wei and M.Levoy, “Fast texture synthesis using tree-structured vector
quantization” Computer Graphics (2000) ACM SIGGRAPH , pp. 479-488,
2000

[94] L.Y.Wei, M.Levoy, “Texture synthesis over arbitrary manifold surfaces” ,
Computer Graphics (2001) ACM SIGGRAPH , pp 355-360, 2001

[95] M.Weinberger, G.Seroussi and G.Sapiro, “The LOCO-I lossless image com­
pression algorithm: principles and standardisation into J P E G lS ” , Technical
report HPL-98-193, Nov. 1998

[96] P.J.Willis, “GigaLib, A pixel-based graphics library” , University of Bath,
July, 2000

[97] J.W.Woods, “Two-dimensional discrete Markovian fields” , IEEE Trans, on
Information Theory, Vol. 18, pp. 232-240, 1972

124

[98] J.W.Woods, “Two-dimensional Kalman filters” , Two-dimensional Digital
Signal Processing, 42, Topics in Applied Physics, Springer-Verlag, NewYork,
pp. 155-205, 1981

[99] J.W.Woods, “Image estimation using doubly stochastic Gaussian random
field models” , IEEE Trans. Patt. Anal. Mach. Intell., Vol. 9, pp. 245-253,
1987

[1 0 0] S.Worley, “A cellular texture basis function” , Compute Graphics (1996),
ACM SIGGRAPH, pp. 291-294, 1996

[1 0 1] X.Wu, “An algorithmic study on lossless image compression” , Proceeding
of Data Compression Conference, pp. 150-159, Snowbird, Mar. 1996

[1 0 2] Y.Xu, B.Guo, and H.Y.Shum. “Chaos mosaic: Fast and memory efficient
texture synthesis” , Technical Report MSR-TR-2000-32, Microsoft Research,
2 0 0 0 .

[103] X.Xu and L.Ma, “Texture mixing and texture transfer” , Computer Aided
Design and Computer Graphics (in Chinese), China, Jan 2003

[104] L.Ying, A.Hertzmann, H.Biermann, D.Zorin, “ Texture and shape synthesis
on surfaces” , Proc. 12th Eurographics Workshop on Rendering, pp. 301-312.,
2001

[105] Y.Yoo, A.Ortega and Bin Y, “Image subband coding using context-based
classification and adaptive quantisation” , IEEE Trans. On Image Processing,
Vol. 8 , pp. 1702-1715, Dec. 1999

[106] X.Yu, B.Morse and T.W.Sederberg, “Image reconstruction using data-
dependent triangulation” , IEEE Trans, on Computer Graphics and Appli­
cations, Vol. 2 1 No. 3, pp 62-68, M ay/June 2 0 0 1

[107] W.Zeng and B.Liu, “Geometric-structure-based directional filtering for er­
ror concealment in image/video transmission”, Proceeding of SPIE Wireless
Data Transmission, Vol. 2601, Photonics East, Philadelphia, Oct. 1995.

[108] Y.Zhang, “Texture synthesis using Particle Swarm Optimization” , M.Sc
thesis, Jilin University, 2003

[109] S.C.Zhu, Y.N.Wu, and D.Mumford., “ Filters, random fields and maximum
entropy (frame)” , International Journal of Computer Vision, 27(2): 1-20,
1998.

125

Publications by the Author

The following is a list of publications made by the author:

• Dan Su and Philip Willis, “Image Interpolation by Pixel Level Data-
Dependent Triangulation” , submitted to Computer Graphics Forum,
October 2002

• Dan Su and Philip Willis, “Demosaicing of Colour Images Using Pixel
Level Data-Dependent Triangulation” , Proc. Theory and Practice of
Computer Graphics (TPCG 2003), pp. 16-23, 2003, IEEE

1

Volume xx (200y), Number z, pp. 1-13

Image Interpolation by Pixel Level
Data-Dependent Triangulation

Dan Su, Philip Willis

Department of Computer Science, University of Bath, Bath, BA2 7AY, U.K.
mapds, P.J.Willis@bath.ac.uk

Abstract
We present a novel image interpolation algorithm. The algorithm can be used in arbitrary resolution enhance­
ment, arbitrary rotation and other applications of still images in continuous space. High resolution images are
interpolated from the pixel level data-dependent triangulation of lower resolution images. It is simpler than other
methods and is adaptable to a variety of image manipulations. Experimental results show that the new "mesh
image" algorithm is as fast as the bilinear interpolation method. We assess the interpolated images’ quality vi­
sually and also by the MSE measure which shows our method generates results comparable in quality to slower
established methods. We also implement our method in graphics card hardware using OpenGL which leads to
real-time high-quality image reconstruction. These features give it the potential to be used in gaming and image
processing applications.

1. Introduction

Digital image interpolation is the recovery of a continuous
intensity surface from discrete image data samples. It is a
link between the discrete world and the continuous one. In
general, almost every geometric transformation requires in­
terpolation to be performed on an image, e.g. translating, ro­
tating, scaling, warping or other applications. Such opera­
tions are basic to any commercial digital image processing
software.

There are several issues which affect the perceived qual­
ity of the interpolated images: sharpness of edges, freedom
from artifacts and reconstruction of high frequency details.
We also seek computational efficiency, both in time and in
memory. Classical techniques, such as pixel replication, bi­
linear or bicubic interpolation have the problem of blurred
edges or artifacts around edges. Although these methods pre­
serve the low frequency content of the sample image, they
are not able to recover the high frequencies which provide a
picture with visual sharpness.

Standard interpolation methods are often based on at­
tempts to generate continuous data from a set of discrete data
samples through an interpolation function. These methods
attempt to improve the ultimate appearance of re-sampled

images and minimise the visual defects arising from the in­
evitable resampling error.

Traditionally, interpolation is accomplished through con­
volution of the image samples with a single kernel - typ­
ically a bilinear, bicubic1, or cubic B-spline2. A number of
algorithms have been proposed to improve the magnification
results. PDE-based approaches3 apply a nonlinear diffusion
process controlled by the local gradient. POCS (Projection-
Onto-Convex-Set) schemes4 formulate the interpolation as
an ill-posed inverse problem and solve it by regularised iter­
ative projection. Orthogonal transform methods focus on the
use of the discrete cosine transform (DCT)5-6. Directional
methods7’8 examine an image’s local structure around edge
areas to direct the interpolation. Variational methods formu­
late the interpolation as the constrained minimisation of a
functional9’10.

It has been recognised that taking edge information
into account will improve the interpolated image’s qual­
ity u’12’,3’14 and it is known that the human visual system
makes significant use of edges18. Instead of approaching in­
terpolation as simply fitting the interpolation function, these
methods consider also the geometry of the image. Li11 as­
serts that the quality of an interpolated image mainly de­

submitted to COMPUTER GRAPHICS Forum (12/2003).

mailto:P.J.Willis@bath.ac.uk

2 D. Su and P.J. Willis /Im age Interpolation

pends on the sharpness across the edge and the smoothness
along the edge.

Li et al.11 attempted to estimate local covariance charac­
teristics at low resolution and used them to direct interpo­
lation at high resolution (NEDI - New Edge Directed Inter­
polation) while Allebach et al.12 generated a high resolution
edge map and used it to direct high-resolution interpolation
(EDI - Edge Directed Interpolation). Battiato et al.13 pro­
posed a method by taking into account information about
discontinuities or sharp luminance variations while doing
the interpolation. Morse et al.14’15 presented a scheme that
uses existing interpolation techniques as an initial approxi­
mation and then iteratively reconstructs the isophotes using
constrained smoothing. They emphasise the importance of
the “smoothness” quality, if the isophotes are not to be vi­
sually intrusive. As will shortly become clear, we too accept
this need to fit the visual geometry.

The above schemes demonstrate improved visual quality
(in terms of sharpening edges or suppressing artifacts) by us­
ing a model to preserve the edges of the image and to tune
the interpolation to fit the source model. However they are
complex compared to traditional methods and thus compu­
tationally expensive.

Another approach is triangulation modelling. Triangula­
tion has been an active research topic during the past decade.
It is popular in geometric modelling. However, image re­
construction using triangles isn’t widely used, probably be­
cause of the large number of triangles needed. Yu et al.16
modelled images as data dependent triangulation meshes
and reconstructed images from the triangulation mesh. Their
approach adapted traditional data-dependent triangulation17
(DDT) with their new cost functions and optimisations. The
data dependent triangulation thus matches the edges in the
image and improves the reconstructed image. Their method
is relatively complex and computationally expensive.

We develop a new edge-directed method for image inter­
polation. We call this an image mesh DDT. We do not assume
knowledge of the low-pass filtering kernel or attempt to find
a statistical rule about the local geometry. Our approach is
related to that of Yu but is simpler and faster because it does
not involve any cost function or repeating optimisation pro­
cess. Our mesh is very simple and completely regular. We
avoid the complexity of a full DDT method while keeping
the feature of DDT that improves the reconstruction quality.
We will demonstrate our algorithm used in arbitrary magni­
fication of still images and other applications.

2. Image Mesh Data-Dependent Triangulation

2.1. Principle of the Algorithm

We first consider the case that there is an edge passing be­
tween a square of four pixels. If this edge cuts off one comer,
one pixel will have a value substantially different to the other

b c

Figure 1: Triangulation in a four-pixel square

three. We call this pixel the outlier. Imagine that we repre­
sent the brightness of the pixel as the height of a terrain. In
effect, the three similar pixels define a plateau, relatively flat,
while the outlier value is at the bottom of the cliff (if smaller)
or the top of a peak (if higher) (Figure 1). This gives us a hint
that if we want to interpolate a high resolution pixel within
the relatively flat region we should not use the outlier. Clas­
sical interpolation methods like bilinear interpolation suffer
from edge blurring because they use all four pixels to do in­
terpolation. We only use three.

The strength of employing triangles in this way is that we
model edges in the image. In effect we tune the interpolator
to match edges. In Figure 1, when interpolating the high-
resolution pixel falling in triangle abc, the interpolator won’t
use the value of d which is very different to this plateau.
For two pixels falling in different triangles, the height of the
vertices will be quite different and thus the sharpness of the
edge is kept. It is easy to see that in very smooth regions, the
interpolator keeps smoothness as well, even across triangle
boundaries.

This simple geometry suggest a way to guide the interpo­
lation so that smoothness within the regions and sharpness
between the flat region and cliff region can both be kept.
If the diagonal is to correspond to the edge in the image,
the diagonal should be the one which does not connect to
the outlying pixel value, the one most different to the other
three.

Suppose pixels a, b and c are the same height while d is
higher than these three. Obviously a, b and c define a flat
region while d is the most different pixel to the other three.
Thus we connect diagonal ac and get the triangles abc and
adc. In general, if b or d is the most different pixel, the edge
should be ac, otherwise bd will be the edge. There are other
situations if a and d are very different to b and c; or a and
b are very different to c and d. In these cases it makes little
difference which diagonal is chosen. The edge is roughly
either horizontal (ad are different to be) or vertical (ab are

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and P.J. Willis / Image Interpolation 3

different to cd) and the triangle will always cross the edge.
It is similar to bilinear interpolation in these cases.

Obviously, using the diagonal to triangulate the four-pixel
square cannot correspond to edges of arbitrary angle. The
diagonal can only roughly represent the orientation of the
edge. We could use sub-pixel triangulation to represent arbi­
trary angles, but that would add more complexity to the algo­
rithm. Our aim is to keep the algorithm as simple as possible.
We will demonstrate in this paper that triangulation by diag­
onal is enough in most situations and can provide excellent
results. It is the direction-seiection method that is the key.

Our method thus fits the finest triangular mesh to the
source pixels. This “image mesh” is completely regular ex­
cept that the diagonals are locally selected to run in the same
general direction as any visible edge. To generate a new im­
age, possibly at higher resolution, the target pixels are lo­
cated in the source mesh. We then evaluate each target pixel
from the triangle in which it sits. It is interpolated using only
the information from the three triangle vertices. In edge ar­
eas, the interpolator won’t interpolate any two pixels that fall
in different triangles. In other words, the new high-resolution
image has the edges sharp and the smooth areas smooth.

2.2. Implementation and Optimisation

Suppose the low-resolution image is X and the high-
resolution image to be generated is Y. Our algorithm can
be expressed as two steps. We first scan the sample image
X to initialise a 2D array which records the edge direction
of all four-pixel squares. In the second step we scan Y. For
each yij we inverse map to the sample image X and use the
array to identify the triangle in which the point falls. Then
we interpolate within that triangle to get the value of y,y.

In the first step, the algorithm has to determine the outlier
pixel. This has to be done repeatedly, so speed is important.
Instead of finding the outlier directly, we compare the dif­
ference |a — c\ with the difference |b — d\ and connect the
pair with smaller difference. The proof that this is equiva­
lent to finding the outlier pixel is in Appendix A. This saves
computing time, needing only two subtractions and a com­
parison. Doing it directly would require sorting four pixels
and then comparing the highest and lowest pixels with the
average value.

We use inverse mapping in the interpolation step because
it has a number of benefits. First it can be used at arbitrary
resolution. We are not constrained in any way by the reso­
lution of the source data. Second, there is no requirement to
align the target grid parallel to the source grid, so arbitrary
rotation is possible at no additional cost. Third, sampling
can be irregular to provide warps, although the sampling rate
must not be too low because this would cause break-up. Fi­
nally it is a single-step method.

We use linear interpolation within the triangles. How­
ever there is some confusion of terminology in the literature,

which we need to clarify before proceeding. “Bilinear inter­
polation” strictly refers to interpolating between four values
and we will use the term only in that sense. In the graphics
community, three-value interpolation, as used in Gouraud
shading, is also called bilinear interpolation, although it is
only a degenerate case. We will distinguish this by calling it
“triangle interpolation”.

Figure 2 shows a flower image with the magnified view of
the tip of the lowest stamen and the pixel level data depen­
dent triangulation mesh of that stamen. (We only show the
diagonals of the triangles for a clearer view.) We represent
the triangulation in two diagrams, each one only containing a
specific direction. The stamen and a black edge near the sta­
men both roughly have NW-SE orientation. It is clear to see
that the corresponding triangles also cluster in the NW-SE
direction, which matches the edges of the image. In particu­
lar, note the absence of NE-SW diagonals near these linear
features.

2.3. Extended Method

Some problems still remain in our basic model. For exam­
ple, close study of the triangulation of the stamen (Figure 2)
reveals a problem. The actual local edge goes in the NW-SE
direction while a few diagonals in the lowest stamen areas
give the NE-SW direction. This leads to some small deteri­
oration of edge quality. These diagonals contradict the local
edge orientation because our basic method only considers
the four-pixel square, ignoring the surrounding values. This
only catches the micro-geometry (pixel level), not the local
geometry due to edges passing through several pixels. To
correct this we have developed an extended model where we
consider this extra information.

We assume the image is locally stationary. That is to say,
the intensity of a pixel is dependent on its spatial neighbour­
hood while independent of the rest of the image. The neigh­
bourhood of a pixel can be modelled as a window around this
pixel. Instead of a normal least-square adaptive edge pre­
diction scheme, we simply consider the neighbourhood win­
dow’s edge direction. Our basic method considers four pix­
els arranged in a square. Our extended method considers 16
pixels arranged as 3 x 3 squares. To predict the edge direc­
tion in the central square, we consider all of them (Figure 3).
If most of these squares have their diagonals in one partic­
ular direction, then we impose that direction on the central
square. In our case we do this if at least 6 of the 9 squares
have the same direction. All decisions are made on the orig­
inal data so that changes do not influence nearby decisions
taken later.

Obviously our extended model increases complexity, but
very marginally. It is worth noting that this additional com­
plexity is only in preparing the diagonals, not in using the
mesh to interpolate an image.

Figure 4 shows the diagonals resulting from our extended

submitted to COMPUTER GRAPHICS Forum (12/2003).

4 D. Su and P.J. Willis / Image Interpolation

\ w w X\ w w \ \ W w \
W \ \ \ \ \ \ \ \ \ WWW

\ w w w s w \ w \ w \

\ NXN̂ XN\ w w \ XNw w w w N
w w \ w w \ w \ w w \ \ w

\ w \ w w \ w \ w w \
\ w w w w \ w w \ w

W \ \ \ WW WWW \
WW \W W W \ WWW
\ \W W WW W \ WWW
w w \ \ \ w \ w w \ w
\ w w \ w \ \ \ w \

\ \ w \ \ \ w w w
\ w w \ w \ \ w \ \
w w w w \ w w \

\ w \ w w \ \
\ w \ w w \ w w w w
W W \ W W W w w \ w \
/ / / / / / / / / / / / /
/ / / / / / / /
/ / / / / / / /

/ / /
/ / / / / / / /

/ / / / / / /
/ / / / / / / /

/ / / / / /
/ / /

/ / / / / / / / / /
/ / / /

/ / / / / / / /
/ / / / / / / / /

/ / / / / / / /
/ / / / / / / / /

/ / / / / / /
/ / / / / /

/ / / / / / / /
/ / / / / / / / / / /

/ / / / / / / / / / / /
/ / / / / / / / / / /

/ / / / / / / / / / /
/ / / / / / / / / / / / / / /

/ / / / / / / /
/ / / / / /

Figure 3: Neighbourhood o f 3 x 3 squares

w \ \
w w w \

w
w
w \ w w w \ w

\ w w
w \

w w

\ \ w
w \ \

W W W \
W W W

w w w
\ w w \

\ \ N W
w \ w w
w w w

w w
\

w
w w w w

\ w \ w w
\ w w

\ w w w
w w \ \
w w w \

w w w
/ / / / / / /
/ / / /

/ / / / / /
/

/ / /
/ / / / / /
/ / / / / / / / /

/ / / / /
/ / /
/ / / / / / / / /

/ / / /
/ / / / / /

/ / / / / / /
/ / / / / / /
/ / / / / / / / /
/ / / / / /

/ /
/ / / / / /

/ / / / / / / / / / /
/ / / / / / / / / / / /

/ / / / / / / / / / / / /
/ / / / / / / / / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / /

/ / / / / / /

Figure 4: The triangulation mesh o f the extended method.
Top: NW-SE direction. Bottom: NE-SW direction

Figure 2: Top: a part o f a flow er image. Second: a magnified
view o f the bottom stamen. Third: the pixel level data depen­
dent triangulation o f the stamen (NW-SE direction) Bottom:
NE-SW direction

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and P.J. Willis /Im age Interpolation 5

method. The stamen of Figure 2 has 625 diagonals. Our ba­
sic method generates 418 diagonals in the NW-SE direction
and 207 diagonals in the NE-SW direction while our ex­
tended method produces 438 and 187 diagonals respectively.
They differ only in 20 diagonals, mainly along the stamen
and the black edge: the extended method better preserves
the local geometry.

2.4. Algorithm Analysis

We analyse the complexity of the basic method and the ex­
tended method in this section. Suppose the image I has width
and height m, so the number of pixels is n = m2. The number
of triangles in the triangulation is then (m — 1) x (m — 1) x 2.
In our implementation, we use a table to record the orienta­
tion of the diagonal in each square. As there are only two
diagonal directions we use one bit to store this information.
Thus, the total memory requirement for the triangulation
mesh is 2(m — l) 2 « 2n bits. For a normal image with size
1024 x 1024 the memory requirement is 256KB. Compared
to the standard 256MB memory in current PCs, this is very
small. Moreover, the memory requirement 2n is linear with
the number of pixels n.

In our basic method, each triangle needs two subtractions
and one comparison, so the total computation is (m — 1) x
(m - l) x 2 x 3 « 6 n .

Our extended method has two steps in preparing the mesh.
In the first step, we calculate just like the basic method and
set each triangle’s diagonal direction. In the second step,
each triangle needs a sum of eight surrounding squares and
a comparison to decide if there is an overriding edge orien­
tation in local area. Thus, the computation for each triangle
needs two extra computations, and the whole image needs
10/z computation which is still linear with image size n.

Then follows the interpolation step. It is easy to see that
the triangle interpolation has the same complexity as bilin­
ear interpolation which is linear with n. Thus, both the basic
method and the extended method have a time complexity of
0(n).

Our method is thus efficient in both memory and time,
and is suitable for handling large images with a linear de­
pendency on the image size.

2.5. Algorithm Comparison

Yu et al.16 propose an image reconstruction method using
data dependent triangulation. They use a new cost function
and an improved optimisation algorithm to generate an opti­
mised triangulation mesh. Their method is able to model an
image effectively. It is complex to implement and is compu­
tationally slow. It takes several iterations to get an optimised
triangulation and each iteration takes “between 0.5 and 5
seconds” even for a small image (80 x 80) on a consumer-
grade PC. Another limitation of the method is it cannot catch
single-pixel and small features.

Our method can be thought of as a simplified data de­
pendent triangulation (DDT). It generates the triangulation
mesh simply by inserting diagonals. This leads to some
degradation in quality since a normal DDT can model the
edge at arbitrary angles. However our method provides a
notable trade-off between quality and speed. Although the
DDT method can in principle give higher quality, ours is
very easy to implement and much faster. Also our method
needs only a small byte array to store the triangulation mesh
while a full DDT requires a more complicated structure and
more storage space. An advantage of our extended method
is it is able to catch small and local features.

Other researchers19 also use DDT for data interpola­
tion, aiming at a better optimisation of DDT according to
their cost functions and optimisation processes. Our method
avoids this. We will now demonstrate that the method is ef­
fective and that it does provide high-quality reconstructed
images compared to conventional methods.

3. Experimental Assessment

3.1. Implementations

We implemented several interpolation methods. The im­
ages from bilinear interpolation and bicubic interpolation
were produced from Matlab 5 built-in functions. The NEDI
method was tested from a Matlab program kindly provided
by its originator. We used a C++ program and our own
graphics library to implement our methods.

Greyscale images were processed exactly as already de­
scribed. When selecting edge directions in colour images,
we converted the RGB components of each pixel into lu­
minance using the following formula16 where L stands for
luminance:

L = 0.21267R + 0.71516G + 0.07217B

The edge direction was determined by these luminance
values. Interpolation was performed in the R,G,B planes in­
dependently.

3.2. Visual Assessment

We performed preliminary tests both to check the implemen­
tations and to permit a visual assessment of the methods. We
wanted to use an image in both in greyscale and in colour.
The flower image we have used has well-defined edges (to
test edge sharpness), thin linear features and small details
(to ensure they are retained) and smoothly varying areas (to
reveal any discontinuity).

Figures 5 and 6 show the comparison results. All the im­
ages in Figures 5 and 6 are magnified from the flower image
of Figure 2 by a factor of 4.

Figure 7 shows a close-up view of the stamen using our
basic and extended method. This illustrates that the basic

submitted to COMPUTER GRAPHICS Forum (12/2003).

6 D. Su and P.J. Willis / Image Interpolation

Figure 6: Detail o f image magnified by 4. Top: our basic
method. Bottom: our extended method

Figure 7: Magnified view o f the stamen. Left: our basic
method. Right: our extended m ethod

Figure 5: Detail o f image magnified by 4. Top: bilinear in­
terpolation. Middle: bicubic interpolation. Bottom: NEDI

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and P.J. Willis / Image Interpolation 7

method has some artifacts along the stamen which are re­
duced in the extended method.

Figure 8 shows the various methods used to magnify the
colour flower image by a factor of 3.5.

From visual inspection our method produces better im­
ages than bilinear and bicubic interpolation, while the NEDI
method is better still (Figures 5 and 6). However, it seems
NEDI’s weighting algorithm changes the contrast of the im­
age. The bilinear interpolation suffers from blurring of the
edges. The bicubic method introduces sharper edges but
more artifacts.

We next performed analytical testing.

3.3. Quality Assessment

To perform analytical assessment of the the interpolated im­
ages, we need a quality measure. The degradation based
method20 is not able to report the “jagged” artifacts re­
lated to the orientation of edges. Daly’s visible differences
predictor21 produces an error image which characterises the
regions in the test image that are visually different from the
original image. It is however difficult to use error images for
reconstructed image quality ranking as Daly mentioned in
his paper. Therefore we used mean-square error (MSE) as
our assessment tool. The MSE is the cumulative squared er­
ror between the reconstructed and the original image. It is
widely used in image processing to evaluate reconstructed
image fidelity.

Our method aims at improving edge quality on magnified
images and retaining a good overall quality as well. Thus we
produced one sample image set of five “edge” images with
size 200 x 200 (Figure 9) and used twenty 768 x 512 real
nature images as a more general test set.

In theory, there is no perfect way to judge the magnifica­
tion quality. Because the image we have is of fixed resolu­
tion, we don’t know what the ‘correct’ magnified image is.
In order to analyse error, we need to know or simulate this
image. So we start with an original image, generate a lower
resolution version, then use different methods to magnify it.
Then we compare the magnified image with the original im­
age. This is not perfect but it provides a reasonable reference
against which to measure the reconstruction quality.

The down-sampled images could be obtained by averag­
ing or sub-sampling. However, edge blurring and ringing are
introduced by averaging, while sub-sampling breaks down
the geometry and introduces artifacts. We chose a Gaussian
filter as the point-spread function with its standard deviation
representing the radius of the point-spread function. Each
pixel at the target image (the down-sampled image) is con­
sidered as a point-spread function represented by a Gaus­
sian distribution. It is down-sampled from some part of the
source image, represented by another point-spread function.

Figure 8: A flower image magnified by a factor of 3.5 using:
Top: bilinear interpolation. Middle: bicubic interpolation.
Bottom: our extended method.

submitted to COMPUTER GRAPHICS Forum (12/2003).

8 D. Su and P.J. Willis / Image Interpolation

30° 45° 60° 0°,90°

Our methods 28.8 28.9 28.8 26.0

Bicubic 29.7 31.5 29.3 22.2

Bilinear 34.0 38.4 34.0 26.0

Figure 9: Set o f five edge images. The angles are 30, 45, 60,
0 and 90 degrees

In this case the radius of the point-spread in the source im­
age is double that of the radius in the target image. Thus, we
calculate the standard deviation of the target Gaussian distri­
bution, then double this to get that of the source image. This
is then used to down-sample, by convolution.

We used pixel replication, bilinear interpolation, bicubic
interpolation, NEDI, our basic method and our extended
method to obtain the reconstructed images. All reconstructed
images are magnified by a factor of two and then compared
to the original image.

3.3.1. Quality of edges

Our first test was to check the quality of well-defined edges.
For the test set we generated five samples with a single edge
of varying angle (30, 45, 60, 0 and 90 degrees). Each edge
is black one side and white the other side (Figure 9). The
down-sampled edge images are magnified by a factor of two
and compared to the original edge images to get the MSE
results which is reported in Table 1. The MSE is performed
on 0 255 range for the grey-scale edge images. We put 0° and
90° in the same column because they give the same results
for all methods. Our basic and extended methods have the
same results in all these situations because our basic method
is able to preserve the geometry well in these simple cases.

The MSE results report that our method gets the best (low­
est) score in every case except at 0° and 90°. In these two
cases pixel replication gets the best score, which it is triv­
ially able to do. (In principle it should achieve zero MSE but
the Gaussian sampling introduces some grey edge pixels.)
Bicubic beats us here because its interpolation more sharply
models these high-contrast edges. Our method is the equal
of bilinear interpolation as we expect. Although our triangu­
lation gives edges of 45°, it also performs well on 30° and
60°. Bicubic and bilinear interpolation are slightly worse be­
cause they suffer from artifacts or blurring on the edge. Pixel
replication does not generally catch the geometry very well
and NEDI suffers from the effects of its weighting algorithm.

Replication 41.8 45.4 41.5 9.2

NEDI 43.3 47.6 43.4 27.6

Table 1: MSE results o f edge images

3.3.2. Quality of real images

In order to test the method on “smoother” and more typi­
cal images, we used twenty 24-bit 768 x 512 colour nature
images as another test set. These images are down-sampled,
magnified by different methods by a factor of two and com­
pared to the original images. We perform the MSE compar­
ison on R,G,B channels independently and Table 2 reported
the averaged MSE values / stdandard deviations over 20 im­
ages from the test set. BC is the bicubic interpolation, EXT
is our extended method, BL is bilinear interpolation, DDT is
our basic method and PR is pixel replication.

R G B

BC 109.4/85.1 119.4/ 106.7 123.8/121.2

EXT 117.6/92.8 127.8/ 115.2 132.7/131.3

BL 118.2/92.9 128.4/ 115.2 133.1 / 130.9

DDT 118.6/93.6 128.8/ 116.1 133.7/ 132.3

PR 126.1 /99.7 134.8/ 120.8 138.7/ 137.2

NEDI 198.6/ 180.1 197.9/ 159.9 187.4/ 154.5

Table 2: MSE results o f real images

There is a clear consistency of each channel’s perfor­
mance and there is also a clear consistency of each method’s
performance. Bicubic interpolation gets the best score (least
error). Our methods rank close to the bilinear method. Our
basic method is slightly worse than the bilinear method be­
cause it sometimes gives the wrong edge direction. Our ex­
tended method is slighter better than bilinear interpolation
because our approach is better in edge areas and is almost
the same in smooth areas.

Pixel replication gets a low score as we expect. NEDI sur­
prisingly gets the lowest score although it has good visual
reconstruction quality. We presume this is because the con­
trast of the image has been changed by NEDI’s weighting al­
gorithm and thus it produces numerically the wrong image,

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and P.J. Willis /Im age Interpolation 9

albeit a pleasing one. This emphasises the need to moderate
any analysis with visual inspection.

We also did a statistical t-test over the MSE results of the
different methods and the results shows no significant differ­
ence between our method and the bilinear and bicubic inter­
polation. The NEDI method performs the weakest here but
the results do not show that is worse than ours at the 95%
confidence level.

We can conclude that bicubic interpolation produces the
lowest overall mean squared error. Our extended method is
quite close to this and is statistically indistinguishable from
other methods (except significantly better than NEDI). Vi­
sual inspection of our method shows that it produces good
results, which we believe are due to its better edge perfor­
mance. We will now show that our method is much quicker
than bicubic interpolation and comparable in speed to infe­
rior methods.

3.4. Performance Assessment

We implemented bilinear interpolation, bicubic interpola­
tion, our basic method and our extended method by C++
code and compared their computational performance. We
used the real natural colour images test set again. We down-
sampled every image to 384 x 256 pixels (using the method
described earlier). Then we magnified the down-sampled im­
ages by a factor of 2 and also by a factor of 3.5. We used the
bicubic interpolation proposed by Keys22. Table 3 shows the
performance comparison on a machine with an Intel Pen-
tium4 3G processor and 1G DDR system memory. Our ex­
tended method uses the 3 x 3 square window. All figures are
in seconds.

Bilinear Basic Extended Bicubic

magnify 2 0.359 0.406 0.412 3.621

magnify 3.5 1.105 1.162 1.170 10.914

Table 3: Performance comparison

We can see from the table that our method is only slightly
slower than bilinear interpolation. Importantly, bicubic is an
order of magnitude slower than the other methods. The aver­
aged times for calculating the triangle mesh are included in
the above figures. For our basic and extended method these
are 0.041 and 0.049 seconds respectively. Factoring these out
reveals that our methods are linear with the number of pixels
generated.

In conclusion, our extended method is comparable in
speed to bilinear interpolation while providing better recon­
struction results visually. In comparison to bicubic interpola­
tion, our extended method is much faster and visually better,
especially in edge reconstruction. These two methods have

almost identical MSE values. Our method is fast, simple and
modest in memory needs.

3.5. Hardware Implementation

More and more complex graphics operations have moved to
the graphics co-processor or accelerator, including shading,
texturing, anti-aliasing and bilinear interpolation. These fea­
tures of graphics cards make it possible to create extremely
realistic games and simulations.

However the only interpolation algorithms currently avail­
able on graphics cards are triangular and bilinear interpola­
tion: the others are too complex. High quality image recon­
struction in real-time still remains a difficult and unsolved
problem. Our pixel level data dependent triangulation makes
a step in this direction.

A graphics card can handle tens of millions of triangles
per second and it can interpolate within triangles. This sug­
gests that we convert any image to a triangle mesh and then
pass the mesh to the graphics card. The card will deal with
the mesh in real-time.

We have used OpenGL to explore the potential of our
method in hardware implementation. We first generated a
triangle mesh using our basic or extended model. Then we
used OpenGL to pass the mesh to the graphics card so that
it could manipulate the mesh, such as by scaling and rotat­
ing. These manipulations can be in 3D, at no extra cost. Our
experimental results showed that high quality reconstructed
images can be generated in real-time.

We used the OpenGL GL-TRIANGLE-STRIP to build
the triangle mesh. This routine needs all of the trian­
gles to have the same orientation. Thus we started a new
GL-TRIANGLE-STRIP whenever the diagonal direction
changes. All of these strips were saved in a display list which
was then used to render the image.

The program flow of the OpenGL process is as follows:

1. Build a byte array to record the diagonals of the triangles.
2. Set up all the GL-TRIANGLE-STRIP and save them in a

display list.
3. Render the image and call an OpenGL loop, waiting for

keyboard response and doing manipulation correspond­
ing to the key pressed.

We have tested several images with size 768 x 512 pix­
els, in the same machine: an Intel Pentium 4 3G processor
and an NVidia GeForce 4 graphics card with 128M memory.
Using our extended method, the time for preparing the mesh
for an image with 768 x 512 pixels was under 0.2 seconds.
Once the triangle mesh was loaded, the graphics card did all
further manipulation. We used key presses for scaling or ro­
tation, causing the appropriate updates to the transformation
matrix.

The GeForce 4 graphics card specification claims a ren­
dering speed of 136 million vertices per second. This equates

submitted to COMPUTER GRAPHICS Forum (12/2003).

10 D. Su and P.J. Willis / Image Interpolation

to about 45M independent triangles per second. This latter
rate could increase with triangle strips (due to vertex shar­
ing), though of course the number of triangles which can be
rendered at full speed is limited by the card memory. With
our test image meshes having less than 1M triangles, the
graphics card easily gives real-time zooms, translations and
rotations.

4. Other Applications

Figure 10 shows our extended method applied to three colour
images chosen to include edge, texture and smooth features,
magnified by a factor of 2.

Due to the simplicity of our algorithm, it is easy to apply
in other ways. For example, we can rotate the image by any
angle (Figure 11 - top). We inverse rotate each target pixel
back to the sample image and interpolate the value. We can
also generate a perspective transform of an image. On any
given y scan line, we calculate the pixel at (x,y) by sampling
the source image at (sx,ty) where s,t are scale factors which
vary linearly with height (We are assuming the y axis is the
centre of the screen). Figure 11 (middle) shows the result.
We can produce a magnifying lens effect (Figure 11 - bot­
tom). If the lens has radius R, then its disc is filled with the
image from a smaller disc with radius r at the same centre.
For any pixel inside R, we scale down to r, evaluate the orig­
inal value at r and apply it at radius R.

In general, these are variants on the same technique: to
evaluate the target pixel p, we evaluate pixel F(p) where F
is a simple inverse mapping to the original image. Then we
interpolate in the triangle where it falls.

5. Discussion

In this paper we have presented a new method of image in­
terpolation. We represent an image as a data-dependent tri­
angulation mesh. Every four-pixel square is divided into two
triangles with the diagonal corresponding to the local edge
of the image. The desired pixel can then be interpolated from
the triangle in which it falls, determined by inverse mapping.

Other variants of the diagonal choice procedure can also
be tried. For example, a pair of suitable digital filters might
be better at distinguishing the local edge direction; or the
threshold could be different to the one we chose. Other vari­
ants of the sampling procedure can be used, the interpolation
providing some security against sampling defects. These two
procedures are independent and neatly correspond to the im­
age modelling and image rendering phases.

The new interpolation approach generates images with
better visual quality than traditional interpolation schemes.
The error assessment also shows that our scheme produces
good overall image accuracy. The complexity of the new
method is similar to bilinear interpolation and much lower

Figure 11: Top:Flower image rotated by 27 degrees. Mid­
dle: a perspective view o f the flower image. Bottom: a lens
effect of the flower image

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and PJ. Willis / Image Interpolation 11

Figure 10: Three sample images o f 192 x 192 shown upper left. The corresponding larger images are magnified o f a factor o f
2, using our extended method.

than the bicubic method. We avoid the time-consuming opti­
misations that others use but still produce good results very
quickly.

Our method has several advantages. It requires no itera­
tion. It achieves arbitrary factor magnification, rotation, per­
spective transform and warp through a single mechanism.
Our scheme is very simple to implement and computation­
ally fast. It requires little data structure overhead to generate
the mesh image. Moreover, our meshes can be rendered on
a graphics card which makes real-time image reconstruction
possible. There is a potential for our method to be used in
gaming and image manipulation generally. We have also ex­

tended our model to an important commercial application:
demosaicing of colour images (the reconstruction of a full-
resolution colour image from the mosaiced sample gener­
ated by current single-chip digital cameras)23. We are inves­
tigating its use in 4-colour separation for printing. Above all,
we have demonstrated that a simple approach, sensibly used,
can rapidly generate excellent results.

Acknowledgements

The authors would like to thank Dr. Xin Li at Sharp Labs of
America at Camas, WA, USA for kindly providing his code

submitted to COMPUTER GRAPHICS Forum (12/2003).

12 D. Su and P.J. Willis /Im age Interpolation

for comparison tests and Dr. P.W. Wong at IDzap, USA for
providing the flower image shown in this paper. We would
also like to thank our colleagues Dr Peter Hall and Dr Man
Qi for their suggestions and discussion. The anonymous ref­
erees gave excellent advice which has greatly improved the
paper. We are grateful to Professor Ken Brodlie, at the Uni­
versity of Leeds UK, for long ago pointing out to one of
us the distinction between true bilinear interpolation and
what we here call triangular interpolation. We also thank Dr.
Steven Ruzinsky for discussions and suggestions about inter­
polation. The work is funded under EPSRC project Quasi-
3D Compositing and Rendering and a UK-funded Overseas
Research Scholarship funded by Universities UK.

References

1. A.N. Netravali and B.G. Hasskell, “Digital Pictures:
Representation, Compression and Standards”, 2nd Ed.,
New York:Plenum Press, 1995 1

2. M. Unser, A. Aldroubi and M. Eden, “Fast B-Spline
Transforms for Continuous Image Representationa and
Interpolation”, IEEE TRans. Pattern Anal. Mach. Int.,
Vol. 13, No. 3, pp. 277-285, 1991 1

3. B. Ayazifar and J.S. Lim, “Pel-adaptive model-based
interpolation of spatially subsampled images”, Proc. of
Intl. Conf. on Acoust. Speech and Signal Processing,
Vol. 3653, pp. 181-184, 1992 1

4. K. Ratakonda and N. Ahuja, “POCS based adaptive im­
age magnification”, Proc. of Intl. Conf. on Image Pro­
cessing, Vol.3, pp. 203-207, 1998 1

5. S.A. Martucci, “Image Resizing in the Discrete Cosine
Transform Domain”, Proc. Int. Conf. Image Process­
ing, Vol.2, pp. 244-247, 1995 1

6. E. Shinbori and M. Takagi, “High Quality Image Mag­
nification Applying the Gerchberg-Papoulis Iterative
Algorithm with DCT”, Systems and Computers in
Japan, Vol. 25, No. 6, pp. 80-90, 1994 1

7. S.D. Bayrakeri and R.M. Mersereau, “A New Method
for directional Image Interpolation”, Proc. Int. Conf.
Acoustics, Speech, Sig. Process, Vol.4, pp. 2383-2386,
1995 1

8. K. Jensen and D. Anastassiou, “Subpixel Edge Local­
ization and the Interpolation of Still Images”, IEEE
Trans. Image Process, Vol. 4, No. 3, pp. 285-295,1995
1

9. N.B. Karayiannis and A.N. Venetsanopoulos, “Image
Interpolation Based on Variational Principles”, Signal
Process, Vol. 25, pp. 259-288, 1991 1

10. R.R. Schultz and R.L. Stevenson, “A Bayesian Ap­
proach to Image Expansion for Improved Definition”,
IEEE Trans. Image Process, Vol.3, No.3, pp. 233-242,
1994 1

11. X. Li and M. Orchard, “New Edge Directed Interpola­
tion”, Proc. IEEE Int. Conf. Image Processing, Vol. 2,
pp. 311-314,2000 1,2

12. J. Allebach and P.W. Wong, “Edge-directed interpola­
tion”, Proc. IEEE Int. Conf. Image Processing, Vol. 3,
pp. 707-710, 1996 1, 2

13. S. Battiato, G. Gallo, F. Stanco, “A locally-adaptive
zooming algorithm for digital images”, Image and Vi­
sion Computing, Vol. 20, No. 11, pp. 805-812, Septem­
ber 2002 1,2

14. B.S. Morse and D. Schwartzwald, “Isophote-based in­
terpolation”, Proc. IEEE Int. Conf. Image Processing,
Vol. 3, pp. 227-231, 1998 1,2

15. B.S. Morse and D. Schwartzwald, “Level-Set Image
Reconstruction”, Proc. Computer Vision and Pattern
Recognition 2001 (CVPR’01), pp. 333-340, IEEE 2001
2

16. X. Yu, B. Morse, T.W. Sederberg, “Image Reconstruc­
tion Using Data-Dependent Triangulation”, IEEE Com­
puter Graphics and Applications, Vol. 21 No. 3, pp.
62-68, May/June 2001 2 ,5

17. N. Dyn, D. Levin, S. Rippa, “Data Dependent Triangu­
lations for Piecewise Linear Interpolation”, IMA Jour­
nal of Numerical Analysis, Vol. 10, pp. 127-154, Insti­
tute of Mathematics and its Applications, 1990 2

18. Van Essen DC, Anderson CH, and Felleman DJ, “In­
formation Processing in the Primate Visual System: An
Integrated System perspective”, Science, Vol. 255, No.
5043, pp. 419-423, 1992 1

19. E. Quak and L.L. Schumaker, “Cubic spline interpo­
lation using data dependent triangulations”, Comput.
Aided Geom. Design, Vol. 7, pp. 293-301, 1990 5

20. N. Damera-Venkata, T.D. Kite, W.S. Geisler, B.L.
Evans and A.C. Bovik, “Image Quality assessment
based on a degradation model.” IEEE Transactions on
Image Processing, Vol. 9, pp. 636-650, 2000 7

21. S. Daly, “The visible differences predictor: An algo­
rithm for the assessment of image fidelity.” Digital Im­
ages and Human Vision, A.Watson, Ed. Cambridge,
MA:MIT Press, 1993 7

22. Robert Keys, “Cubic Convolution Interpolation for
Digital Image Processing”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 29, No.
6, pp.1153-1160, 1981 9

23. D. Su and P.J. Willis “Demosaicing of Colour Im­
ages Using Pixel Level Data-Dependent Triangula­
tion” Proc. Theory and Practice of Computer Graphics
(TPCG2003), pp. 16-23, 2003, IEEE. 11

submitted to COMPUTER GRAPHICS Forum (12/2003).

D. Su and P.J. Willis /Im age Interpolation

Appendix A: Proof

Consider a four pixel square abed. We will first prove that,
if pair ac has smaller difference than bd, then b or d is the
outlier pixel and we should connect ac. That is to say, if |a —
c\ < \b — d\ then b or d is either the biggest or the smallest
pixel.

b c

Suppose \a — c\ < \b — d\, and suppose a > c , then a — c <
\b - d \ .

1. Suppose b > d. Then a — c < b — d (b > d ,a > c), hence
a — b < c — d (b > d , a > c) .
We suppose a > b and c < d , then a — b > 0 and c —d < 0,
so we get a — b > c — d. However, we have the formula
a — b < c — d before which means our assumption that
a > b and c < d is wrong.
Because a > b and c < d is wrong, either a < b o r c > d
or a < b , c > d with the condition (b > d,a > c). In these
cases, either b is the biggest pixel (b > a, b > c , b > d) or
d is the smallest pixel (d < c,d < a,d < b).

2. Suppose b < d , then a — c < d — b (b < d , a > c) , hence
a — d < c — b (b < d , a > c) .
We suppose a > d and c < b. Then a — d > 0 and c — b <
0, so we get a — d > c — b. However, we have the formula
a — d < c — b before which means our assumption that
a > d and c < b is wrong.
Because a > d and c < b is wrong, either a < d o x c > b
or a < d, c > b with the condition (b < d, a > c). In these
cases, either b is the smallest pixel (b < c,b < a,b < d)
or d is the biggest pixel (d > b , d > a , d > c).

We have proved that if pair ac has the smaller difference
(|a — c\ < \b — d\), there are two situations. One is that either
b is the biggest pixel or d is the smallest pixel. The second
is that either b is the smallest pixel or d is the biggest pixel.
In either case the outlier is either b or d and ac should be the
edge. Using the same method we can prove that if pair bd
has the smaller difference (|b — d\ < \a — c|), the outlier is
either a or c and bd should be the edge.

So we can conclude that drawing the edge between the
least-different diagonal pair gives the same result as drawing
the edge which isolates the outlier.

submitted to COMPUTER GRAPHICS Forum (12/2003).

Demosaicing of Colour Images Using Pixel Level Data-Dependent Triangulation

Dan Su, Philip Willis
Department of Computer Science

University of Bath
Bath, BA2 7 AY, U.K.

mapds, P.J.Wiilis@bath.ac.uk

Abstract

Single-chip dig ita l cameras use an array o f broad-
spectrum Charge-Coupled Devices (CCD) overlayed with
a colour filter array. The filter layer consists o f transpar­
ent patches o f red, green and blue, such that each CCD
pixel captures one o f these prim ary colours. To reconstruct
a colour image a t the fu ll CCD resolution, the ‘m issing’
prim ary values have to be interpolated from nearby sam ­
ples. We present an effective colour interpolation using a
sim ple pixel level data-dependent triangulation. This inter­
polation technique is applied to the commonly-used Bayer
Colour Filter Array pattern. Results show that the proposed
method gives superior reconstruction quality, with sm aller
visual defects than other methods. Furthermore, the com­
plexity and efficiency o f the proposed method is very close to
sim ple bilinear interpolation, making it easy to implement
and fa s t to run.

1 Introduction

Colour digital cameras have become widely available
consumer products in recent years. In order to reduce cost,
these digital cameras use a single Charge-Coupled Device
(CCD) sensor with an overlayed colour filter array (CFA)
to acquire colour images, thus avoiding the need for three
separate arrays (one for each primary colour) and the asso­
ciated complex optical system to split the light path.

The Kodak Bayer CFA pattern is the filter pattern most
frequently used. Figure 1 shows this filter pattern, where R
is red, G is green and B is blue. Each pixel of the CCD thus
sees only one primary colour, determined by which filter
overlays it. More green filters are used because of the visual
importance of this central area of the spectrum: the eye is
more sensitive to green and this area is more significant to
the perceived luminance. The pattern shown thus provides
a higher spatial frequency sampling of green, in comparison
with blue or red. There are as many green pixels as red and

G B G B G B

R G R G R G

G B G B G B

R G R G R G
G B G B G B

R G R G R G

Figure 1. Bayer Colour Filter Array Pattern
(U.S. Patent 3,971065, issued 1976)

and blue combined.
Since there is only one colour primary at each position,

we can reconstruct the image at the spatial resolution of the
CCD only if we interpolate the two missing primary values
at each pixel. That is, at a green pixel we have to gener­
ate red and blue values by interpolating nearby red and blue
values. A corresponding process is required at red (to get
green and blue values) and at blue pixels (to get green and
red values). This interpolation process is called CFA inter­
polation or dem osaicing. The demosaicing process clearly
has a significant influence and is thus the key factor in the
production of high quality images.

The obvious place to start is with traditional image in­
terpolation methods, such as nearest neighbour, bilinear in­
terpolation and cubic convolution. Bilinear interpolation is
often used due to its simplicity and efficiency[l]. However,
it induces relatively large errors in the edge regions and the
eye is especially sensitive to edge quality. To address this,
other authors have proposed techniques which are sensitive
to the data. Examples are Adams’ edge oriented method [2]
and various colour correlation methods [3, 4, 6]. Adams’
method interpolates the missing colour elements according
to the edge orientation of the image but it only detects the
vertical and horizontal edges. Interpolation methods using
colour correlation produce better results because there is a

mailto:P.J.Wiilis@bath.ac.uk

high correlation between the red, green and blue channels.
However they ignore the edge orientation in the images.

We have earlier proposed an effective interpolation
algorithm using a simple pixel level data-dependent
triangulation[5] which both matches the edge orientation
of the images and correlates the red, green and blue chan­
nels. Our scheme generally produces superior reconstruc­
tion quality and is rapid. The method was applied to full-
information images (that is, red, green and blue values for
every pixel) with the aim of magnifying or rotating them.
In this paper we show how our method can be adapted to
supply the missing primary values of a CFA image - demo­
saicing - and the advantages it has in this application. First
we need to summarize the principles of our earlier-reported
method.

2 Our Data-Dependent Method

We consider an image to be an array of triangles, with
an apex on each pixel value. In other words, we produce
the finest mesh that the data directly supports. Our motiva­
tion is that processing images in this form is simpler than in
pixel form. Significantly, the mesh permits us to think of the
image as a continuous object rather than a discrete one: we
can readily calculate the colour value at any position within
the image, using interpolation across the triangle containing
the point being sought.

There is some confusion of terminology in the literature,
which we need to clarify before proceeding. “Bilinear in­
terpolation” strictly refers to interpolating four points and
we will use the term only in that sense. In the graphics
community, three-value interpolation, as used in Gouraud
shading, is also called bilinear interpolation, although it is
only a degenerate case. We will distinguish this by calling it
“triangle interpolation”. (We are grateful to Professor Ken
Brodlie, at the University of Leeds UK, for drawing our at­
tention to this.)

Our scheme is based on the technique of data-dependent
triangulation (DDT)[7] but we use it at pixel level. The
algorithm attempts to minimize the visibility of the recon­
struction errors, thus producing visually pleasing results.

Each four pixel square is divided into two triangles by
a diagonal. The diagonal either goes in the NE-SW or the
NW-SE direction, so we are free to choose which direction
to use at each square. We choose the direction which more
closely approximates the edge in that small area of the im­
age. It is this which allows our method to be sensitive to
edge direction.

We first consider the case that there is an edge passing
between a square o f four pixels. If this edge cuts off one
comer, that corner’s pixel will have a value substantially
different (it could be bigger or smaller) to the other three.
We call this pixel the outlier. If the luminance of the pixel

b c

Figure 2. Triangulation in a four-pixel square

is the height of a terrain, then the three similar pixels are a
plateau, relatively flat, while the outlier value is at the bot­
tom of the cliff (if smaller) or the top of a peak (if higher)
(Figure 2). So, if we want to interpolate a value within the
relatively flat region we do not use the outlier. Choosing a
diagonal the ends of which are not the outlier, we ensure that
it runs in much the same direction as the actual edge. We
then use triangle interpolation, avoiding the blurring pro­
duced by four-pixel bilinear interpolation.

Our mesh is thus regular in that there is a triangle apex
at every pixel: it is a complete, regular grid and an m x n
picture will always have 2 x m x n triangles. However, close
examination will reveal that the diagonals are locally chosen
to match the image edges. This completes our consideration
of edge direction.

We now consider the choice of colour space. Recent
demosaicing methods[3, 4, 6] have shown that taking the
strong dependency among the colour planes into account
can significantly improve the interpolation performance. In
particular, Adams [4] and Pei[6] proposed interpolation in
colour difference space instead o f in the original colour
space. (We will explain colour difference space later, in
section 3.1.2) However, their methods do not directly take
into account the edges of the image and so generate some
colour misregistration. Our new method combined their use
of colour difference space with our edge-sensitive mesh.

We use inverse mapping to do the interpolations^]. In
general, to evaluate the target pixel p, we evaluate pixel
F(p) where F is a simple inverse mapping to the original
image. Then we interpolate in the triangle where it falls.

Experiments showed that images reconstructed by our
scheme have better visual quality than those produced by
bilinear interpolation. They lack the artifacts of colour mis­
registration of the edges thus improved subjective quality
because human visual system are more sensitive to edges.
We used two statistical tools to evaluate the reconstruction
quality and the results showed that our method gets very
close scores to bilinear interpolation in colour difference

B1 G2 B3
G4 R5 G6
B7 G8 B9

R1 G2 R3
G4 B5 G6

R7 G8 R9

Figure 3. Left: Red square. Right: Blue
square

G1 G1
G2 R3 G4 G2 B3 G4

G5 G5

Figure 4. Green crosses

space which means good overall reconstruction quality.
The rest of the paper is organized as follows. In the next

section we describe the new demosaicing method, justify it
and describe the implementation. Then we briefly suggest
some other applications. Next we show some experimental
results. Finally we make some concluding remarks.

3 The Demosaicing Algorithm

So far we have considered data-dependent triangulation
as a method for calculating super-resolution image values;
that is, values “in between” the pixel positions. This is
useful in changing the resolution of an image, distorting it
in various ways, rotating it etc. In all these applications
however, the original data is complete: there is a known
(R, G y B) value at every source pixel. For demosaicing, we
have to adjust it to generate those primary values which are
missing from the Bayer CFA pattern.

3.1 Implementation

3.1.1 O riginal C olour Space

The Bayer CFA pattern alternates red and green filters on
one row, then green and blue filters on the next row. This
pattern repeats on subsequent pairs of rows. This means
that a blue sample has red samples diagonally adjacent and
green samples orthogonally adjacent (Figure 3). A red sam­
ple has blue samples diagonally adjacent and green samples
orthogonally adjacent.

Our task is to interpolate the missing primaries in order
to get a complete (R , G, B) triple at each position. What
Figure 3 illustrates is the equivalence of blue and red; while
Figure 4 emphasizes that the green samples are differently
disposed. In fact, the green samples can be considered to

be arranged on a grid at 45° relative to the other values.
Moreover their spacing differs to that of the other values.
The attraction of our DDT method is that it is independent
of both the spacing and the orientation of the source data.
It permits us to predict values at any spacing (regular or
irregular) and orientation, wherever we need them.

If we consider just the red values, it can be seen that they
form a regular grid of columns and rows. The same is true
of blue values. We can triangulate each of these as already
described, choosing the diagonals in the NW-SE or NE-SW
direction, to favour the image edge directions. The green
values can be thought of as forming a regular grid tilted at
45° (Figure 4). Triangulating this will produce diagonals
which are in fact disposed either vertically or horizontally.

We therefore need to produce three meshes, one for each
primary, with the green mesh being spaced and oriented dif­
ferently to the other two. However, there is no need to pro­
duce these meshes explicitly. Suppose the sample image is
X and the output image to be generated is Y . We first scan
the sample image X to initialize three lookup tables, one
for each primary. Each table has one bit to record the edge
direction at every 2 x 2 ‘square’ of pixels o f that primary
colour. To reconstruct an image pixel, we first determine
which two primaries need to be recovered. We then use the
corresponding lookup tables to establish in which triangle
the image pixel sits in each mesh. This establishes three
values to be interpolated for each of the two missing pri­
maries.

In fact, only two values are needed. Suppose we are in­
terpolating for red values of blue or green pixels. For de­
mosaicing, the target pixel will alway fall on the boundary
of the triangle. Hence the interpolation is always the aver­
age of two vertex values. For example, in Figure 3 left, the
red value in B 5 is actually the average of R1 and R9 or the
average of R3 and R 7 depending on the direction of the di­
agonal. The red value in G4 is the average of R1 and R7
and in G8 it is the average of R7 and R9.

The interpolation of blue values for red or green pixels
can be done in exactly the same way as for red values. To
interpolate green values of red or blue pixels, we simply lo­
cate the surrounding green cross and then interpolate either
vertically or horizontally. For example, in Figure 4 left, the
green value for R3 is either the average of G1 and G5 or
the average o f G2 and G4. In all cases therefore, the value
is reconstructed as the average of two source values, those
values being chosen by our DDT method. This improves
on our earlier method, both in simplifying the interpolation
and in avoiding the need for inverse mapping.

3.1.2 C olour D ifference Space

Treating R , G and B planes independently ignores the cor­
relation among the colour planes and produces colour mis­

registration. Recent research [4, 6] has shown that inter­
polation performance can be significantly improved by ex­
ploiting the correlation among the colour planes. Those
methods are based on the assumption that the red and blue
values are perfectly correlated to the green value over the
extent of the interpolation neighborhood. They define the
colour differences K r = G — R and K b — G — B and
interpolate in this colour difference space.

In other words, these methods transform the operation
into the K r ox K b domain instead of performing the inter­
polation in the G channel. For example, using our method
to interpolate the missing green element at a red pixel, say
R3 in Figure 4 left, would use either G 1 and G 5 or G2
and G4. In fact we use the colour difference approach, so
instead interpolate K r from K r I and K r 5\ or K r 2 and
K r 4. The green value of this red pixel is thus recovered by
G = R — K r . The missing green element of blue pixels
can be interpolated in the same way and the interpolation of
red and blue elements uses the same approach.

This method is based on the assumption that colour dif­
ference are relatively flat over small regions. This assump­
tion is valid within smooth areas of the image but is not
valid around the edges in the image. Colour misregistration
would still exist around the edges if bilinear interpolation
was applied. Our method effectively solves the problem by
interpolation along the edges in colour difference space, as
Figure 5 shows. It avoids colour misregistration by not in­
terpolating across the edges in the colour difference space.

3.2 Other Applications

As already mentioned, pixel level data-dependent trian­
gulation can be used in arbitrary resolution enhancement,
arbitrary rotation and other applications of still images in
continuous space. This remains true for demosaicing: we
are not obliged to reconstruct at the CCD resolution or ori­
entation. However, there is less information available than
in a full colour image, so we cannot expect the quality to be
as high. What we do claim is that there is less introduced
visible error; what there is, is visually acceptable.

4 Experimental Results

4.1 Quality Assessment

We have performed various tests on two images, one of
a boat (Figures 5 and 6) and one of a macaw (Figures 7 and
8). In each case, the top image is the original 24 bit image of
size 768 x 512. From this we prepared a mosaic image by,
at each pixel, discarding the two primaries indicated by the
CFA pattern. This mosaic image was then used to perform
the various reconstructions shown, again at 768 x 512.

We applied three different demosaicing methods for the
test images: bilinear interpolation in the original colour
space, bilinear interpolation in colour difference space and
our data-dependent triangulation method in colour differ­
ence space.

If we compare Figure 6(b) and Figure 6(c), it can be
seen that interpolation in the colour difference domain has
better reconstruction quality than interpolation in the orig­
inal colour space. Colour misregistration is clearly visible
near the thin lines in the boat picture and around the top of
the macaw where there is a sharp colour transition. There
are also noticeable dotted artifacts around those edges. Our
method avoids both of these problems because it better pre­
serves the geometric regularity and interpolates along the
edge orientations of the image.

Direct visual inspection indicates that our method pro­
duces good reconstruction quality. However, we wanted
to explore a more analytical assessment of the visual qual­
ity of the interpolated images, though this is not straight­
forward to define, let alone measure. Degradation-based
quality measures[8] and the visible differences predictor
(VDP)[9] have been proposed. These two vision models
are quite complicated and it is difficult to compare differ­
ent reconstruction methods. Instead we chose two methods
to assess the reconstruction. One is cross-correlation pro­
posed by Battiao et a /.[10] and Lehmann et al.[11]. They
use cross-correlation between the original picture and the
reconstructed picture to assess the quality of reconstruction.
The other is Peak Signal-to-Noise Ratio (PSNR) which is
commonly used as a measure of image quality in digital im­
age compression and reconstruction.

The cross-correlation coefficient C between two images
X ,Y is:

g x ijVij ~ I Jab)_________

VdZij 4 - iW Z i j y% - IJb2))

where a and b denote respectively the average value of
image X and Y \ and I and J are the image’s width and
height. The cross-correlation coefficient is between 0 and
1, where a higher score means better reconstruction quality.

The PSNR is based on Mean-Squared Error (MSE). The
MSE is the cumulative squared error between the recon­
structed and the original image. The Mathematical formu­
lae for the two are:

M S E = j j ' £ (x i j - y i j) 2

i,3

PSNR = 20lo*'°7M s
where S is the maximum pixel value. Logically, a higher

value of PSNR is better because it means that the ratio of

Figure 5. Portions of: a: original boat image,
b: bilinear interpolation in the original colour
space , c: bilinear interpolation in the colour
difference space , d: our method in the colour
difference sp ace

Figure 6. Close-up comparision of: a: orig­
inal boat image, b: bilinear interpolation in
the original colour space , c: bilinear interpo­
lation in the colour difference space , d: our
m ethod in the colour difference space

Figure 7. Portions of: a: original macaw im­
age. b: bilinear interpolation in the original
colour space, c: bilinear interpolation in the
colour difference space, d: our method in the
colour difference space

Figure 8. Close-up com parision of: a: origi­
nal macaw image, b: bilinear interpolation in
the original colour space , c: bilinear interpo­
lation in the colour difference space , d: our
method in the colour difference space

Signal to Noise is higher. Here, the ’signal’ means the orig­
inal image and the ’noise’ is the error in reconstruction.

We used twenty 24-bit 768 x 512 colour nature images
as our test set. Because we use colour images, we compute
the cross-correlation coefficients of the R, G, B planes in­
dependently and average these three. The PSNR values are
calculated for the three colour channels independently.

The table below shows the corresponding cross­
correlation results where B L means bilinear interpolation
in original space, B L D means bilinear interpolation in
colour difference space, D D T means data-dependent
triangulation (our method) and D D T D means our method
in colour difference space. The values are averaged over
the test set.

B L B L D D D T D D T D
0.989957 0.995719 0.988859 0.993706

Cross-correlation results show that bilinear interpolation
is marginally better than our method, when both use the
same colour space. Colour difference space is better than
original colour space but only by a very small amount,
approximately 0.5%. The table below shows the PSNR
results of three colour channels for the different methods.
The results are averaged over the twenty images.

B L B L D D D T D D T D
R 31.4685 35.0733 31.2224 33.9629
G 35.3369 39.3796 35.0995 37.9909
B 31.0098 34.2068 30.7429 32.3131

The PSNR results show a clear benefit from the use of
colour difference space, for both bilinear interpolation and
our method. These results confirm earlier work supporting
colour difference space. When comparing the two methods,
the PSNR results show that bilinear interpolation is only
marginally better than ours. As we discussed, our method
is designed for solving the problem of colour misregistra­
tion in edge areas. So for images which mainly consist of
smooth areas, bilinear interpolation will give a better statis­
tical result because it uses more information for interpola­
tion. Informally observation confirms that our method gives
improved edge quality. It looks better because human eyes
are more sensitive to edges and our method is better at re­
taining edges. Our overall result is very close to bilinear in­
terpolation which means our method produces good overall
reconstruction images. It is however simpler to implement.

4.2 Performance Assessment

The following table shows the performance comparison
on a Pentium I I400 machine with 256M memory. We used
the 20 images again and timed the four methods. All the
methods are implemented by C++ code and all the figures
in the table are seconds.

B L B L D D D T D D T D
1.82 5.71 2.32 3.66

As we expected, both methods using the colour differ­
ence space require more computation than the method in
original colour space. Of the two methods using colour dif­
ference space, our method is faster. This is true even includ­
ing the overhead of initializing the triangulations in three
colour channels (About 1.05 seconds in this case). Our
method is significant faster because it only requires two pix­
els to interpolate while bilinear interpolation requires four
pixels. We have already shown that it has good overall qual­
ity and visually better edges. We suggest that these features
make it a better choice for demosaicing colour images.

5 Conclusion

In this paper we have presented a new method for demoi-
saicing of colour images. The new method is based on data-
dependent triangulation but we use it at pixel level. The in­
terpolation is done within the triangulation, which matches
the edge orientation of the images. By avoiding interpola­
tion across edges, the new algorithm successfully solves the
problem of colour artifacts around the edges. We also ap­
plied the scheme in colour difference space which helps to
reduce the artifacts caused by colour misregistration.

We have applied our method to the Bayer CFA pat­
tern and our method offers simplicity and efficiency. The
cross-correlation and PSNR results also demonstrate that
our method is very close the best comparator in producing
the ‘right’ data, while visual inspection shows that the data
is more effectively deployed to produce sharp edges. It is
also much faster.

Our method can also be used for general image manipu­
lations such as arbitrary scaling, rotation, perspective trans­
form, warp and so on. Thus it can be used for digital zoom
and simple effects.

Acknowledgments

The authors would like to thank Dr J E Adams at East­
man Kodak Company in Rochester, NY, USA for provid­
ing the macaw image and the Eastman Kodak Company for
the boat image. The work is funded under the UK EPSRC
project Quasi-3D Compositing and Rendering and by an
Overseas Research Scholarship.

References

[1] T.Sakamoto, C.Nakanishi and T.Hase “Software Pixel
Interpolation for Digital Still Cameras Suitable for a 32-
Bit MCU” IEEE Trans. Comsumer Electronics Vol. 44,
No. 4, pp. 1342-1352, Nov. 1998

[2] J.E.Adams, Jr. “Interactions between Color Plane In­
terpolation and Other Image Processing Functions in
Electronic Photography” Proc. o f SPIE Vol. 2416, pp.
144-151,1995

[3] R.Kimmel, “Demosaicing:Image reconstruction from
colour CCD samples, “ IEEE Trans. Image Processing
Vol. 8, pp. 1221-1228, Sept. 1999

[4] J.E.Adams, Jr. “Design of Practical Colour Filter Array
Interpolation Algorithms for Digital Cameras” Proc. o f
SPIE Vol. 3028, pp. 117-125,1997

[5] D.Su and P.J.Willis, “Image Interpolation by Pixel
Level Data-Dependent Triangulation”, submitted to
Computer Graphis Forum, O ctober 2002

[6] S.C.Pei and I.K.Tam, “Effective colour interpolation in
CCD colour filter array using signal correlation” Proc.
IEEE Int. Conf. Image Processing Vol. 3, 2000, pp.
488-491

[7] N.Dyn, D.Levin, and S.Rippa, “Data Dependent Tri­
angulations for Piecewise Linear Interpolation”, IMAJ.
Numerical Analysis, Vol. 10, pp. 127-154,1990.

[8] N.Damera-Venkata, T.D.Kite, W.S.Geisler, B.L.Evans
and A.C.Bovik, “Image Quality assessment based on a
degradation model.” IEEE Transactions on Image Pro­
cessing , Vol. 9, pp. 636-650, April 2000

[9] S.Daly “The visible differences predictor: An algo­
rithm for the assessment of image fidelity.” Digital Im­
ages and Human Vision A.Watson, Ed. Cambridge,
MA:MIT Press, 1993

[10] S.Battiato, G.Gallo, F.Stanco, “A locally-adaptive
zooming algorithm for digital images” Image and Vi­
sion Computing Vol. 20, no. 11, pp. 805-812, Septem­
ber 2002

[11] T.M.Lehmann, C.Gonner, K.Spitzer, “Survey: Inter­
polation Methods in Medical Image Processing”, IEEE
Transactions on M edical Imaging, Vol. 18, no. 11,
November 1999

