12 research outputs found

    Unsupervised Texture Segmentation Using Active Contour Model and Oscillating Information

    Get PDF
    Textures often occur in real-world images and may cause considerable difficulties in image segmentation. In order to segment texture images, we propose a new segmentation model that combines image decomposition model and active contour model. The former model is capable of decomposing structural and oscillating components separately from texture image, and the latter model can be used to provide smooth segmentation contour. In detail, we just replace the data term of piecewise constant/smooth approximation in CCV (convex Chan-Vese) model with that of image decomposition model-VO (Vese-Osher). Therefore, our proposed model can estimate both structural and oscillating components of texture images as well as segment textures simultaneously. In addition, we design fast Split-Bregman algorithm for our proposed model. Finally, the performance of our method is demonstrated by segmenting some synthetic and real texture images

    Image Restoration Using One-Dimensional Sobolev Norm Profiles of Noise and Texture

    Get PDF
    This work is devoted to image restoration (denoising and deblurring) by variational models. As in our prior work [Inverse Probl. Imaging, 3 (2009), pp. 43-68], the image (f) over tilde to be restored is assumed to be the sum of a cartoon component u (a function of bounded variation) and a texture component v (an oscillatory function in a Sobolev space with negative degree of differentiability). In order to separate noise from texture in a blurred noisy textured image, we need to collect some information that helps distinguish noise, especially Gaussian noise, from texture. We know that homogeneous Sobolev spaces of negative differentiability help capture oscillations in images very well; however, these spaces do not directly provide clear distinction between texture and noise, which is also highly oscillatory, especially when the blurring effect is noticeable. Here, we propose a new method for distinguishing noise from texture by considering a family of Sobolev norms corresponding to noise and texture. It turns out that the two Sobolev norm profiles for texture and noise are different, and this enables us to better separate noise from texture during the deblurring process.open0

    Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm

    Get PDF
    International audienceIn this paper, we are interested in color image processing, and in particular color image decomposition. The problem of image decomposition consists in splitting an original image f into two components u and v. u should contain the geometric information of the original image, while v should be made of the oscillating patterns of f, such as textures. We propose here a scheme based on a projected gradient algorithm to compute the solution of various decomposition models for color images or vector-valued images. We provide a direct convergence proof of the scheme, and we give some analysis on color texture modeling
    corecore