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Abstract In this paper, we are interested in texture model-
ing with functional analysis spaces. We focus on the case
of color image processing, and in particular color image
decomposition. The problem of image decomposition con-
sists in splitting an original image f into two components
u and v. u should contain the geometric information of the
original image, while v should be made of the oscillating
patterns of f , such as textures. We propose here a scheme
based on a projected gradient algorithm to compute the so-
lution of various decomposition models for color images
or vector-valued images. We provide a direct convergence
proof of the scheme, and we give some analysis on color
texture modeling.
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1 Introduction

Since the seminal work by Rudin et al. [59], total variation
based image restoration and decomposition has drawn a lot
of attention (see [5, 7, 26, 57] and references therein for in-
stance). We are interested in minimizing energies of the fol-
lowing type where f is the original image:

∫
|Du| + μ‖f − u‖k

T . (1)

∫ |Du| stands for the total variation; in the case when u is
smooth, then

∫ |Du| = ∫ |∇u|dx. ‖.‖T stands for a norm
which captures the noise and/or the textures of the original
image f (in the sense that it is not too large for such features)
and k is a positive exponent.

The most basic choice for ‖.‖T is the L2 norm, and k = 2.
From a Bayesian point of view, this is also the norm which
appears naturally when assuming that the image f has been
corrupted by some additive Gaussian white noise (see e.g.
[26]). However, since the book by Y. Meyer [53], other
spaces have been considered for modeling oscillating pat-
terns such as textures or noise. The problem of image de-
composition has been a very active field of research during
the last past five years. Reference [53], was the inspiration
source of many works, e.g. [6, 9, 10, 13, 16, 25, 34, 44, 45,
49, 51, 58, 64, 65, 69–71]. Image decomposition consists in
splitting an original image f into two components, u and
v = f − u. u is supposed to contain the geometrical com-
ponent of the original image (it can be seen as some kind of
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sketch of the original image), while v is made of the oscil-
latory component (the texture component in the case when
the original image f is noise free).

In this paper, we focus on color image processing.
While some authors deal with color images using a Rie-
mannian framework, like G. Sapiro and D.L. Ringach [60]
or N. Sochen, R. Kimmel and R. Malladi [62], others com-
bine a functional analysis viewpoint with the Chromaticity-
Brightness representation [12]. The model we use is more
basic: it is the same as the one used in [20] (and related
with [19]). Its advantage is to have a rich functional analysis
interpretation. Note that in [66], the authors also propose a
cartoon + texture color decomposition and denoising model
inspired from Y. Meyer, using the vectorial versions of total
variation and approximations of the space G(�) for textures
(to be defined later); unlike the work presented here, they
use Euler-Lagrange equations and gradient descent scheme
for the minimization, which should be slower than by pro-
jection methods.

Here, we give some insight into the definition of a texture
space for color images. In [11], a TV-Hilbert model was pro-
posed for image restoration and/or decomposition:
∫

|Du| + μ‖f − u‖2
H, (2)

where ‖.‖H stands for the norm of some Hilbert space H.
This is a particular case of problem (1). Due to the Hilbert
structure of H, there exist many different methods to mini-
mize (2), such as a projection algorithm [11]. We extend (2)
to the case of color images.

From a numerical point of view, (1) is not straightfor-
ward to minimize. Depending on the choice for ‖.‖T , the
minimization of (1) can be quite challenging. Nevertheless,
even in the simplest case when ‖.‖T is the L2 norm, han-
dling the total variation term

∫ |Du| needs to be done with
care. The most classical approach consists in writing the as-
sociated Euler-Lagrange equation for problem (1). In [59],
a fixed step gradient descent scheme is used to compute the
solution. This method has on the one hand the advantage of
being very easy to implement, and on the other hand the dis-
advantage of being quite slow. To improve the convergence
speed, quasi-Newton methods have been proposed [1, 23,
29, 36, 55, 56, 67]. Iterative methods have proved successful
[16, 18, 35]. A projected-subgradient method can be found
in [30].

Duality based schemes have also drawn a lot of atten-
tion to solve (1): first by Chan and Golub in [27], later by
A. Chambolle in [21] with a projection algorithm. A mul-
tiscale version of this algorithm has just been introduced in
[24]. This projection algorithm has recently been extended
to the case of color images in [20]. Chambolle’s projection
algorithm [21] has grown very popular, since it is the first
algorithm solving exactly the total variation regularization

problem and not an approximation, with a complete proof
of convergence. In [73], a very interesting combination of
the primal and dual problems has been introduced. Second
order cone programming ideas and interior point methods
have proved interesting approaches [42, 46]. Recently, it has
been shown that graph cuts based algorithms could also be
used [22, 33]. Finally, let us notice that it is shown in [8, 68]
that Nesterov’s scheme [54] provides faster algorithms for
minimizing (1), see also [15] for a similar scheme.

Another variant of Chambolle’s projection algorithm [21]
is to use a projected gradient algorithm [8, 22, 72]. Here we
have decided to use this approach which has both advantages
of being easy to implement and of being quite efficient.

Notice that all the schemes based on duality proposed in
the literature can be seen as particular instance of proximal
algorithms [31, 37, 41, 52, 61].

The plan of the paper is the following. In Sect. 2, we de-
fine and provide some analysis about the spaces we consider
in the paper. In Sect. 3, we extend the TV-Hilbert model
originally introduced in [11] to the case of color images. In
Sect. 4, we present a projected gradient algorithm to com-
pute a minimizer of problem (2). This projected gradient al-
gorithm has first been proposed by A. Chambolle in [22] for
total variation regularization. A proof of convergence was
given in [8] relying on optimization results by Bermudez
and Moreno [17]. A proof based on results for proximal al-
gorithms was proposed in [72]. We derive here a simple and
direct proof of convergence. In Sect. 5, we apply this scheme
to solve various classical denoising and decomposition prob-
lems. We illustrate our approach with many numerical ex-
amples. We discuss qualitative properties of image decom-
position models in Sect. 6.

2 Definitions and Properties of the Considered Color
Spaces

In this section, we introduce several notations and we pro-
vide some analysis of the functional spaces we consider to
model color textures.

2.1 Introduction

Let � be a Lipschitz convex bounded open set in R
2. We

model color images as R
M -valued functions defined on �.

The inner product in L2(�,R
M) is denoted as:

〈u,v〉L2(�,RM) =
∫

�

M∑
i=1

uivi .

For a vector ξ ∈ R
M , we define the norms:

|ξ |1 =
M∑
i=1

|ξi |, |ξ |2 =
√√√√ M∑

i=1

ξ2
i , |ξ |∞ = max

i=1...M
|ξi |. (3)
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We will sometimes refer to the space of zero-mean func-
tions in L2(�,R

M) by V0:

V0 =
{
f ∈ L2(�,R

M),

∫
�

f = 0

}
.

We say that a function f ∈ L1(�,R
M) has bounded vari-

ation if the following quantity is finite:

|f |TV = sup

{∫
�

M∑
i=1

fidiv �ϕi, �ϕ ∈ C1
c (�, B)

}

= sup
�ϕ∈C1

c (�,B)

〈f ,div �ϕ〉L2(�,RM),

where B is a centrally symmetric convex body of R
2×M .

This quantity is called the total variation. For more infor-
mation on its properties, we refer the reader to [4]. The set
of functions with bounded variation is a vector space classi-
cally denoted by BV(�,R

M).
In this paper, we will consider the following set of test-

functions, which is the classical choice [4, 7]:

B = { �w ∈ R
2×M/| �w|2 ≤ 1}.

Then, for f smooth enough, the total variation of f is:

|f |TV =
∫

�

√√√√ M∑
i=1

|∇fi |2dx.

As X. Bresson and T. Chan notice in [20], the choice of
the set B is crucial. If one chooses:

B = { �w ∈ R
2×M/| �w|∞ ≤ 1},

then one has:

|f |TV =
M∑
i=1

∫
�

|∇fi |dx =
M∑
i=1

|fi |TV .

These two choices are mathematically equivalent and de-
fine the same BV space, but in practice the latter induces
no coupling between the channels. As a consequence, if the
data fidelity term does not introduce a coupling either, the
minimization of an energy of type (1) amounts to a series of
independent scalar TV minimization problems, which gives
visual artifacts in image processing (see [19, 28]).

2.2 The Color G(�) Space

The G(R2) space was introduced by Y. Meyer in [53]
to model textures in grayscale images. It was defined as
div (L∞(R2)), but one could show that this space was equal
to W−1,∞(R2) (the dual of W 1,1(R2)). For the generaliza-
tion to color images, we will adopt the framework of [6]

(the color space G(�) is also used in [66], as a generaliza-
tion of [65] to color image decomposition and color image
denoising). Let us insist on the fact that the results of this
section (notably Proposition 2.1) are specific to the case of
2-dimensional images (i.e. � ⊂ R

2).

Definition 2.1 The space G(�) is defined by:

G(�) = {v ∈ L2(�,R
M)/∃�ξ ∈ L∞(�, (R2)M),

∀i = 1, . . . ,M, vi = div �ξi and

�ξi · �N = 0 on ∂�
}

(where �ξi · �N refers to the normal trace of �ξi over ∂�). One
can endow it with the norm:

‖v‖G = inf
{‖�ξ‖∞, ∀i = 1, . . . ,M,

vi = div ξi, �ξi · �N = 0 on ∂�
}

with ‖�ξ‖∞ = sup ess
√∑M

i=1 | �ξi |2.

The following result, proved in [6] for grayscale images,
can be easily extended working component by component:
it characterizes G(�).

Proposition 2.1

G(�) =
{
v ∈ L2(�,R

M)

/∫
�

v = 0

}
.

Following the framework of [50], we define ‖ · ‖∗ below.
Since the total variation does not change by the addition of
constants, we also have:

Lemma 2.1 For f ∈ L2(�,R
M), let us consider the semi-

norm:

‖f ‖∗ = sup
u∈BV(�,RM),|u|TV �=0

〈f ,u〉L2(�,RM)

|u|TV

= sup
u∈BV(�,RM),|u|TV �=0

∑M
i=1

∫
�

fiui

|u|TV
.

If ‖f ‖∗ < +∞, then
∫
�

f = 0.

Comparing this property to Proposition 2.1, we can de-
duce that any function f such that ‖f ‖∗ < ∞ belongs to
G(�). The converse is also true:

Lemma 2.2 Let f ∈ G(�). Then ‖f ‖∗ < ∞.

Proof Let f ∈ G(�). Since
∫
�

f = 0, the quantity
〈f ,u〉

L2(�,RM)

|u|TV
does not change with the addition of constants
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to u. Thus

sup
u∈BV,|u|TV �=0

〈f ,u〉L2(�,RM)

|u|TV

= sup
u∈BV,

∫
u=0

〈f ,u〉L2(�,RM)

|u|TV

≤ sup
u∈BV,

∫
u=0

‖f ‖L2(�,RM)‖u‖L2(�,RM)

|u|TV

≤ C‖f ‖L2(�) < ∞,

where we used Poincaré inequality: ‖u − u�‖L2(�,RM) ≤
C|u|TV . �

The following theorem completes the above two lemmas:

Theorem 2.2 The following equality holds:

G(�) =
{
f ∈ L2(�)

/

sup
u∈BV(�,RM),|u|BV �=0

〈f ,u〉L2(�,RM)

|u|TV
< +∞

}

and for all function f ∈ L2(�,R
M), ‖f ‖∗ = ‖f ‖G.

Moreover, the infimum in the definition of ‖ · ‖G is
reached.

Proof (i) Let f be a function in the set on the right
hand-side. Thanks to Lemma 2.1, we know that ∀i ∈
{1, . . . ,M}, ∫

�
fi = 0. By Proposition 2.1, f ∈ G(�).

Now let u ∈ BV(�,R
M) such that |u|TV �= 0. By [4,

Th. 3.9], one can find a sequence un ∈ C∞(�,R
M) ∩

W 1,1(�;R
M) such that ‖u − un‖2 → 0 and |un|TV →

|u|TV .
Then, for all �g such that f = div �g and �g · �N = 0 on ∂�:

〈f ,un〉L2(�,RM) =
M∑
i=1

∫
�

div �gun

= −
∫

�

(
M∑
i=1

�gi · ∇ui,n

)

≤
∫

�

|�g||∇un|

≤ ‖�g‖∞|un|TV .

Since f ∈ L2(�), we can pass to the limit in both sides
of the inequality, and by construction of un, we get:

‖f ‖∗ ≤ ‖f ‖G.

(ii) For the converse inequality, the proof is standard (see
e.g. [2, 47]).

Let f ∈ L2(�,R
M) such that supu∈BV(�,RM),|u|TV �=0 ×

〈f ,u〉
L2(�,RM)

|u|TV
< +∞. Let us define:

T :
{

D(�̄,R
M) → L1(�,R

2M)

ϕ �→ (
∂ϕ1

∂x1
,

∂ϕ1

∂x2
, . . . ,

∂ϕM

∂x1
,

∂ϕM

∂x2

)
.

To each vector (
∂ϕ1

∂x1
,

∂ϕ1

∂x2
, . . . ,

∂ϕM

∂x1
,

∂ϕM

∂x2
)∈T (D(�̄,R

M)),

we can associate
∫
�

∑M
i=1 f iϕidx (without ambiguity since

fi has zero-mean, and if two functions have the same gra-
dient over � they only differ by a constant on the con-
vex domain �). We have

∫
�

∑M
i=1 f iϕidx ≤ ‖f ‖∗|ϕ|BV =

‖f ‖∗‖( ∂ϕ1
∂x1

, . . . ,
∂ϕM

∂x2
)‖1 thus we have defined a bounded

linear form on T (D(�̄,R
M)). Using Hahn-Banach’s the-

orem, we can extend it to L1(�̄,R
2M) with the same

norm ‖f ‖∗. Since L∞(�,R
2M) is identifiable with the

dual of L1(�,R
2M), there exists g ∈ L∞(�,R

2M) with
‖g‖L∞(�,RM) = ‖f ‖∗, such that:

∀ϕ ∈ D(�̄,R
M),

∫
�

M∑
i=1

fiϕi = −
∫

�

M∑
i=1

2∑
j=1

∂ϕi

∂xj

gi,j

= −
M∑
i=1

∫
�

�gi · ∇ϕi. (4)

This is true in particular for ϕ ∈ D(�,R
M), thus f = div �g

in the distributional sense, and since the functions are in
L2(�,R

M) there is equality in L2(�,R
M). Since div �g ∈

L2(�,R
M), we can then consider the normal trace of �g.

If ϕ ∈ D(�̄,R
M), we have by (4):

M∑
i=1

∫
�

fiϕi = −
M∑
i=1

∫
�

gi · ∇ϕi.

But on the other hand, using integration by parts:

M∑
i=1

∫
�

div �giϕi = −
M∑
i=1

∫
�

�gi · ∇ϕi +
M∑
i=1

∫
∂�

ϕi �gi · �N.

The equality f = div �g in L2(�,R
M) shows that the

boundary contribution vanishes for ϕ ∈ D(�̄,R
M). Thus

�gi · �N = 0 over ∂�.
Incidentally, we notice that the infimum in the G-norm is

reached. �

Remark 2.3 From the proof of Lemma 2.2, we can deduce
that the topology induced by the G-norm on G(�) is coarser
than the one induced by the L2 norm. More generally, there
exists a constant C > 0 (depending only on �), such that for
all f ∈ G(�), ‖f ‖∗ ≤ C‖f ‖L2(�,RM).
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In fact the G-norm is strictly coarser than the L2 norm.
Here is an example for M = 2 color channels. Let us con-
sider the family of functions (f (m1,m2))m1,m2∈N∗ defined on
(−π,π)2 by

f
(m1,m2)
1 (x, y) = cosm1x + cosm1y

and

f
(m1,m2)
2 (x, y) = cosm2x + cosm2y.

The vector field �ξ (m1,m2) defined by

�ξ (m1,m2)
k =

(
1

mk

sin(mkx),
1

mk

sin(mky)

)

for k ∈ {1,2} satisfies the boundary condition, and its diver-
gence is equal to f (m1,m2). As a consequence

‖f (m1,m2)‖G ≤
√

2

(
1

m2
1

+ 1

m2
2

)

and

lim
m1,m2→+∞‖f (m1,m2)‖G = 0.

Yet,

‖f (m1,m2)‖2
L2(�,RM)

=
∫ π

−π

∫ π

−π

(cosm1x + cosm1y)2

+ (cosm2x + cosm2y)2 dx dy

= 8π2.

The sequence f m converges to 0 for the topology in-
duced by the G-norm, but not for the one induced by the
L2 norm.

The following result proposed by Y. Meyer in [53] spec-
ifies this idea.

Proposition 2.2 Let f n, n ≥ 1 be a sequence of functions
of Lq(�,R

M) ∩ G(�) with the following properties:

(1) There exists q > 2 and C > 0 such that ‖f n‖Lq(�,RM) ≤
C.

(2) The sequence fn converges to 0 in the distributional
sense.

Then ‖f n‖G converges to 0 when n goes to infinity.

It means that oscillating patterns with zero mean have a
small G-norm. Incidentally, notice that in the above exam-
ple, the frequencies of all color channels had to go to infinity
in order to have convergence to zero for the G-norm. Other-
wise, assumption (2) in the above proposition fails.

3 Color TV-Hilbert Model: Presentation
and Mathematical Analysis

The G-norm detailed in Sect. 2 is the main tool to study the
TV-Hilbert problem on which all the algorithms described
in this paper rely.

3.1 Presentation

The TV-Hilbert framework was introduced for grayscale im-
ages by J.-F. Aujol and G. Gilboa in [11] as a way to ap-
proximate the BV-G model. They prove that one can ex-
tend Chambolle’s algorithm to this model. In this section we
show that this is still true for color images. We are interested
in solving the following problem:

inf
u

|u|TV + 1

2λ
‖f − u‖2

H (5)

where H = V0 (the space of zero-mean functions of L2(�,

R
M)) is a Hilbert space endowed with the following norm:

‖v‖2
H = 〈v,Kv〉L2(�,RM)

and where K : H → L2(�,R
M)

• is a bounded linear operator (for the topology induced by
the L2(�,R

M) norm on H)
• is symmetric positive definite

and K−1 is bounded on Im(K).

Example (The Rudin-Osher Fatemi model) It was proposed
in [59] by L. Rudin, S. Osher, and E. Fatemi for grayscale
images. It was then extended to color images using differ-
ent methods, for instance by G. Sapiro and D.L. Ringach
[60], or Blomgren and T. Chan [19]. In [20], X. Bresson and
T. Chan use another kind of color total variation, which is
the one we use in this paper. The idea is to minimize the
functional:

|u|TV + 1

2λ
‖f − u‖2

L2(�,RM)
. (6)

It is clear that the problem commutes with the addition
of constants. If the (unique) solution associated to f is u,
then the solution associated to f + C is (u + C). As a
consequence we can always assume that f has zero mean.
Then this model becomes a particular case of the TV-Hilbert
model with K = Id.

Example (The OSV model) In [58], S. Osher, A. Solé and
L. Vese propose to model textures by the H−1 space. In or-
der to generalize this model, we must be cautious about the
meaning of our notations but it is natural to introduce the
following functional:

inf
u

|u|TV + 1

2λ

∫
�

|∇�−1(f − u)|2 (7)
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where

�−1v =
⎛
⎜⎝

�−1v1
...

�−1vM

⎞
⎟⎠ ,

∇ρ =
⎛
⎝

∇ρ1
...

∇ρM

⎞
⎠ ,

|∇ρ|2 = |∇ρ1|2 + |∇ρ2|2 + · · · + |∇ρM |2

and∫
�

|∇�−1(f − u)|2

=
∫

�

M∑
i=1

|∇�−1(f i − ui)|2

= −
∫

�

M∑
i=1

(f i − ui)�−1(f i − ui)

= 〈f − u,−�−1(f − u)〉L2(�,RM).

The inversion of the Laplacian is defined component by
component. For one component, it is defined by the follow-
ing consequence of the Lax-Milgram theorem:

Proposition 3.1 Let X0 = {P ∈ H 1(�,R) : ∫
�

P = 0}. If
v ∈ L2(�), with

∫
�

v = 0, then the problem:

−�P = v,
∂P

∂n
|∂� = 0

admits a unique solution in X0.

For K = −�−1, the Osher-Solé-Vese problem is a par-
ticular case of the TV-Hilbert framework.

3.2 Mathematical Study

In this subsection, we study the existence and uniqueness
of minimizers of Problem (5). A characterization of these
minimizers is then given in Theorem 3.1. Notice that this
theorem and its reformulation could be easily obtained using
convex analysis results [40], but for a pedagogical purpose,
we give an elementary proof inspired from [53].

Proposition 3.2 (Existence and Uniqueness) Let f ∈
L2(�,R

M). The minimization problem:

inf

{
|u|TV + 1

2λ
〈f − u,K(f − u)〉L2(�,RM),

u ∈ BV(�,R
M), (f − u) ∈ V0

}

has a unique solution u ∈ BV(�,R
M).

Proof Let E(u) denote the functional defined on L2(�,R
M)

(with E(u) = +∞ if u /∈ BV(�,R
M) or (f − u) /∈ V0).

Let us notice that E �= +∞ since f � = 1
|�|
∫
�

f belongs

to BV(�,R
M) and (f − f �) ∈ V0.

The functional E is convex. Since K is bounded, we de-
duce that E is lower semi-continuous for the weak L2(�)

topology. E is coercive: by Poincaré inequality,

∃C > 0, ‖u − u�‖2 ≤ C|u|TV

with u� = 1
|�|
∫
�

u = 1
|�|
∫
�

f for E(u) < +∞. Thus E has
a minimizer. Since the functional is strictly convex, this min-
imizer is unique. �

We introduce the notation v = f − u, when u is the
unique minimizer of the TV-Hilbert problem.

Theorem 3.1 (Characterization of minimizers) Let f ∈
L2(�,R

M).

(i) If ‖Kf ‖∗ ≤ λ then the solution of the TV-Hilbert prob-
lem is given by (u,v) = (0,f ).

(ii) If ‖Kf ‖∗ > λ then the solution (u,v) is characterized
by:

‖Kv‖∗ = λ and 〈u,Kv〉L2(�,RM) = λ|u|TV .

Proof (i) (0,f ) is a minimizer iff

∀h ∈ BV(�,R
M),∀ε ∈ R,

|εh|TV + 1

2λ
‖f − εh‖2

H ≥ 1

2λ
‖f ‖2

H,

which is equivalent to

|ε||h|TV + 1

2λ
ε2‖h‖2

H − 1

λ
ε〈f ,h〉H ≥ 0.

We can divide by |ε| → 0, and depending on the sign of
ε we get:

±〈f ,h〉H ≤ λ|h|TV .

If (0,f ) is a minimizer, we can take the supremum for
h ∈ BV(�,R

M). By definition of the ∗-norm, we have:
‖Kf ‖∗ ≤ λ.

Conversely, if f ∈ L2(�,R
M) is such that ‖Kf ‖∗ ≤ λ,

the second inequality is true, thus (0,f ) is a minimizer.
(ii) As before, let us characterize the extremum: (u,v) is

a minimizer iff

∀h ∈ BV(�,R
M),∀ε ∈ R,

|u + εh|TV + 1

2λ
‖v − εh‖2

H ≥ |u|TV + 1

2λ
‖v‖2

H,

or

|u + εh|TV + 1

2λ
ε2‖h‖2

H − 1

λ
ε〈v,h〉H ≥ |u|TV .
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By triangle inequality, we have:

|u|TV + |ε||h|TV + 1

2λ
ε2‖h‖2

H − 1

λ
ε〈v,h〉H ≥ |u|TV ,

|h|TV ≥ 1

λ
〈v,h〉H.

Taking the supremum, we obtain ‖Kv‖∗ ≤ λ.
Moreover, choosing h = u, ε ∈] − 1,1[:

(1 + ε)|u|T V ≥ 1

λ
ε〈v,u〉H + |u|TV

For ε > 0 : |u|TV ≥ 1

λ
〈v,u〉H

For ε < 0 : |u|TV ≤ 1

λ
〈v,u〉H.

We deduce that ‖Kv‖∗|u|TV ≥ 〈v,u〉H = λ|u|TV , and by the
first upper-bound inequality, we have ‖Kv‖∗ = λ.

Conversely, let us assume these equalities hold. Then:

|u + εh|TV + 1

2λ
‖v − εh‖2

H

≥ 1

λ
〈(u + εh),Kv〉L2(�,RM) + 1

2λ
‖v‖2

H

+ 1

2λ
‖h‖2

Hε2 − 1

λ
ε〈h,v〉H

≥ |u|TV + 1

2λ
‖v‖2

H. �

The mapping v �→ sup|u|TV �=0
〈u,Kv〉2

L(�,RM)

|u|TV
is convex,

lower semi-continuous for the H strong topology as a supre-
mum of convex lower semi-continuous functions. As a con-
sequence, for λ > 0 the set

Gλ = {v ∈ L2(�,R
M),‖v‖∗ ≤ λ}

is a closed convex set, as well as K−1Gλ. The orthogonal
projection of this set is well-defined and we can notice that
Theorem 3.1 reformulates:
{

v = P H
K−1Gλ

(f )

u = f − v.

Indeed, if (u,v) is a minimizer of the TV-Hilbert prob-
lem, with f = u + v, we have v ∈ K−1Gλ and for any
ṽ ∈ K−1Gλ,

〈f − v, ṽ − v〉H

= 〈u,K ṽ〉L2(�,RM) − 〈u,Kv〉L2(�,RM)

≤ ‖K ṽ‖∗|u|TV − λ|u|TV ≤ 0,

thus by the equivalent definition of the projection on a closed
convex set (see Ekeland-Témam [40]), we obtain the desired
result.

Consequently, v is the orthogonal projection of f on
the set K−1Gλ where Gλ = {λdiv �p, |�p| ≤ 1} (see Theo-
rem 2.2), and the problem is equivalent to its dual formula-
tion:

inf
|�p|≤1

‖λK−1 div �p − f ‖2
H. (8)

4 Projected Gradient Algorithm

In the present section, we are interested in solving the dual
formulation (8), which can be done using fast algorithms.
For grayscale images, the famous projection algorithm by
A. Chambolle [21] was the inspiration for all the following
algorithms. We present here a projection algorithm, and we
provide a complete proof of convergence of this scheme. We
note that an independent work has just been reported in [74],
where the authors M. Zhu, S.J. Wright, and T.F. Chan have
also applied the projected gradient method for solving the
dual formulation of total variation minimization for image
denoising. They have a general framework also, although
applied only to scalar image denoising and not related to
image decompositions.

As explained in the introduction, the scheme we propose
here can be seen as a proximal point algorithm [31]. The
proof of convergence could then be derived from results in
[52] (the Lions-Mercier algorithm being itself a particular
instance of proximal algorithms [39]). However, we have de-
cided to present here an elementary proof of the convergence
for didactic reasons.

4.1 Discrete Setting

From now on, we will work in the discrete case, using the
following conventions. A grayscale image is a matrix of size
N ×N . We write X = R

N×N the space of grayscale images.
Their gradients belong to the space Y = X×X. The discrete
L2 inner product is 〈u,v〉X =∑1≤i,j≤N ui,j vi,j .

The gradient operator is defined by (∇u)i,j = ((∇u)xi,j ,

(∇u)
y
i,j ) with:

(∇u)xi,j =
{

ui+1,j − ui,j if i < N

0 if i = N

and

(∇u)
y
i,j =

{
ui,j+1 − ui,j if j < N

0 if j = N .

The divergence operator is defined as the opposite of the
adjoint operator of ∇:

∀ �p ∈ Y, 〈−div �p,u〉X = 〈 �p,∇u〉Y ,
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(div �p)i,j =
⎧⎨
⎩

px
i+1,j − px

i,j if 1 < i < N

px
i,j if i = 1

−px
i−1,j if i = N

+

⎧⎪⎨
⎪⎩

px
i,j+1 − p

y
i,j if 1 < j < N

p
y
i,j if j = 1

−p
y

i,j−1 if j = N .

A color image is an element of XM . The gradient and the
divergence are defined component by component, and the
discrete L2 inner product is given by:

∀u,v ∈ XM, 〈u,v〉XM =
M∑

k=1

〈u(k), v(k)〉X,

∀�p, �q ∈ YM, 〈�p, �q〉YM =
M∑

k=1

〈p(k), q(k)〉Y

so that the color divergence is still the opposite of the adjoint
of the color gradient.

4.2 Bresson-Chan Algorithm

Problem (8) for grayscale images was tackled in [21] in the
case K = Id, then in [11] for a general K . For color im-
ages, X. Bresson and T. Chan [20] showed that Chambolle’s
projection algorithm could still be used when K = Id. It is
actually easy to check that it can be used with a general K

for color images as well.
Following the steps of [11], one can notice that, provided

τ ≤ 1
8‖K−1‖

L2
, the fixed point iteration:

�p n+1 = �p n + τ(∇(K−1 div �p n − f /λ)

1 + τ |∇(K−1 div �p n − f /λ)| (9)

gives a sequence (�p n)n∈N such that λK−1 div �pn+1 → vλ,
and f − λK−1 div �pn+1 → uλ when n → +∞.

Notice that the upper bound on τ is the same as for
grayscale images.

4.3 Projected Gradient

It was recently noticed [8, 22] that problem (8) for grayscale
images could be solved using a projected gradient descent.
This is the algorithm we decided to extend to the case of
color images.

Let B be the discrete version of our set of test-functions:

B = {v ∈ YM,∀1 ≤ i, j ≤ N, |vi,j |2 ≤ 1}.
The orthogonal projection on B is easily computed:

PB(x) =
(

x1

max{1, |x|2} ,
x2

max{1, |x|2}
)

.

The projected gradient descent scheme is defined by:

�pm+1 = PB(�pm+1 + τ∇(K−1 div �pm − f /λ)) (10)

which amounts to:

pm+1
i,j = pm

i,j + τ∇(K−1 divpm − f
λ
)i,j

max(1, |pm
i,j + τ∇(K−1div pm − f

λ
)i,j |2)

, (11)

where τ = λ
μ

.
The convergence result for the projected gradient descent

in the case of elliptic functions is standard (see [43], Theo-
rem 8.6-2). Yet in our case the functional is not elliptic, and
the proof needs a little more work.

Proposition 4.1 If 0 < τ < 1
4‖K−1‖ , then algorithm (11)

converges. More precisely, there exists �̃p ∈ B such that:

lim
m→∞(K−1 div �pm) = K−1 div �̃p

and

‖λK−1 div �̃p − f ‖2
H = inf

�p∈B
‖λK−1 div �p − f ‖2

H.

Proof In the following, we shall write A := −∇K−1 div.
Since

‖K−1 div �q − f /λ‖2
H

= ‖K−1 div �p − f /λ‖2
H

+ 〈KK−1 div(�q − �p),K−1 div �p − f /λ〉L2

+ O(‖�q − �p‖2),

we begin by noticing that �p is a minimizer if and only if,

�p ∈ B and ∀�q ∈ B,∀τ > 0,

〈�q − �p, �p − (�p + τ∇(K−1 div �p − f /λ))〉L2 ≥ 0.

Or equivalently:

�p = PB(�p + τ(∇(K−1 div �p − f /λ)))

where PB is the orthogonal projection on B with respect to
the L2 inner product.

We know that such a minimizer exists. Let us denote it
by �p.

• Now let us consider a sequence defined by (10).

We have:

‖�pk+1 − �p‖2 = ‖PB(�pk + τ∇(K−1 div �pk − f /λ))

− PB(�p + τ∇(K−1 div �p − f /λ))‖2
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≤ ‖�p − �pk + τ∇K−1 div(�p − �pk)‖2

since PB is 1-Lipschitz [43]

≤ ‖(I − τA)(�p − �pk)‖2.

Provided ‖I − τA‖ ≤ 1, we can deduce:

‖�pk+1 − �p‖ ≤ ‖�pk − �p‖ (12)

and the sequence (‖�pk − �p‖) is convergent.

• A is a symmetric positive semi-definite operator.

By writing E = kerA and F = ImA, we have:

YM = E
⊥⊕ F

and we can decompose any �q ∈ YM as the sum of two or-
thogonal components �qE ∈ E and �qF ∈ F . Notice that by
injectivity of K−1, E is actually equal to the kernel of the
divergence operator.

Let μ1 = 0 < μ2 ≤ · · · ≤ μa be the ordered eigenvalues
of A.

‖I − τA‖ = max(|1 − τμ1|, |1 − τμa|)
= max(1, |1 − τμa|)
= 1 for 0 ≤ τ ≤ 2

μa

.

We can restrict I − τA to F and then define:

g(τ) = ‖(I − τA)|F ‖
= max(|1 − τμ2|, |1 − τμa|)
< 1 for 0 < τ <

2

μa

.

• Now we assume that 0 < τ < 2
μa

.

Therefore, inequality (12) is true and the sequence (�pk) is
bounded, and so is the sequence (K−1 div �pk). We are going
to prove that the sequence (K−1 div �pk) has a unique cluster
point. Let (K−1 div �pϕ(k)) be a convergent subsequence. By
extraction, one can assume that �pϕ(k) is convergent too, and
denote by �̃p its limit.

Passing to the limit in (10), the sequence (�pϕ(k)+1) is
convergent towards:

�̂p = PB
( �̃p + τ∇(K−1div �̃p − f /λ

))

Using (12), we also notice that:

‖ �̃p − �p‖ = ‖�̂p − �p‖.

As a consequence:

‖ �̃p − �p‖2 = ‖ �̂p − �p‖2

= ‖PB( �̃p + τ∇(K−1 div �̃p − f /λ))

− PB(�p + τ∇(K−1 div �p − f /λ))‖2

≤ ‖(I − τA)( �̃p − �p)‖2

≤ ‖( �̃p − �p)E‖2 + g(τ)2‖( �̃p − �p)F ‖2

< ‖ �̃p − �p‖2 if ( �̃p − �p)F �= 0.

Of course, this last inequality cannot hold, which means
that ‖( �̃p − �p)F ‖ = 0. Hence ( �̃p − �p) ∈ E = kerA and
K−1 div �̃p = K−1 div �p: the sequence (K−1 div �pk) is con-
vergent.

• The last remark consists in evaluating μa .

We have:

μa = ‖∇K−1 div‖ ≤ ‖∇‖‖K−1‖‖div‖.

Since ‖div‖2 = ‖∇‖2 = 8 (see [21], the result is still true
for color images), we deduce that

μa ≤ 8‖K−1‖. �

Since we are only interested in v = λK−1 div �p, Proposi-
tion 4.1 justifies the validity of algorithm (10).

5 Applications to Color Image Denoising
and Decomposition

The projected gradient algorithm may now be applied to
solve various color image problems.

5.1 TV-Hilbert Model

The color ROF model As an application of (11) with K =
Id, we use the following scheme for the ROF model (6):

pm+1
i,j = pm

i,j + τ∇(divpm − f
λ
)i,j

max(1, |pm
i,j + τ∇(divpm − f

λ
)i,j |2)

. (13)

The color OSV model As for the OSV model (7), K =
−�−1, we use:

pm+1
i,j = pm

i,j − τ∇(�divpm + f
λ
)i,j

max(1, |pm
i,j − τ∇(�div pm + f

λ
)i,j |2)

. (14)
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5.2 The Color A2BC Algorithm

Following Y. Meyer [53], one can use the G(�) space to
model textures, and try to solve the problem:

inf
u

|u|TV + α‖f − u‖G. (15)

In [13], J.-F. Aujol, G. Aubert, L. Blanc-Féraud and
A. Chambolle approximate this problem by minimizing the
following functional:

Fμ,λ(u,v) =
⎧⎨
⎩

|u|TV + 1
2λ

‖f − u − v‖2
L2(�)

if (u,v) ∈ BV(�,R) × Gμ

+ ∞ otherwise

(16)

or equivalently,

Fμ,λ(u,v) = |u|TV + 1

2λ
‖f − u − v‖2

L2(�)
+ χGμ(vn)

with

χGμ(v) =
{

0 if v ∈ Gμ

+∞ otherwise.

The generalization to color images was done by J.-F. Au-
jol and S.H. Kang in [12] using a chromaticity-brightness
model. The authors used gradient descent in order to com-
pute the projections, which is rather slow, and requires to
regularize the total variation.

In [20], X. Bresson and T. Chan used the following
scheme (but relying on Chambolle’s algorithm) for color im-
ages in order to compute the projections. As in the grayscale
case, the minimization is done using an alternate scheme
(but in the present paper we use the projected gradient de-
scent scheme described before to compute the projections):

• Initialization:

u0 = v0 = 0

• Iterations:

vn+1 = PGμ(f − un) (17)

un+1 = f − vn+1 − PGλ(f − vn+1) (18)

• Stop if the following condition is true:

max(|un+1 − un|, |vn+1 − vn|) ≤ ε.

In [6], it is shown that under reasonable assumptions, the
solutions of problem (16) converge when λ → 0 to a solu-
tion of problem (15) for some α.

5.3 The Color TV-L1 Model

The TV-L1 model is very popular for grayscale images. It
benefits from having both good theoretical properties (it is
a morphological filter) and fast algorithms (see [32]). In or-
der to extend it to color images, we consider the following
problem:

inf
u

|u|TV + λ‖f − u‖1 (19)

with the notation

‖u‖1 =
∫

�

√√√√ M∑
l=1

|ul |2

(as for the total variation, we have decided to have a cou-
pling between channels).

Our approach is different from the one used by J. Darbon
in [32], since it was using a channel by channel decomposi-
tion with the additional constraint that no new color is cre-
ated. As for the A2BC algorithm, we are led to consider the
approximation:

inf
u,v

|u|TV + 1

2α
‖f − u − v‖2

2 + λ‖v‖1.

Once again, having a projection algorithm for color im-
ages allows us to generalize easily this problem. In order
to generalize the TV-L1 algorithm proposed by J.-F. Aujol,
G. Gilboa, T. Chan and S. Osher [14], we aim at solving the
alternate minimization problem:

(i) inf
u

|u|TV + 1

2α
‖f − u − v‖2

2

(ii) inf
v

1

2α
‖f − u − v‖2

2 + λ‖v‖1.

The first problem is a Rudin-Osher-Fatemi problem.
Scheme (11) with K = Id is well adapted for solving it. For
the second one, the following property shows that a “vecto-
rial soft thresholding” gives the solution:

Proposition 5.1 The solution of problem (ii) is given by:

v(x) = V Tαλ(f (x) − u(x))

= f (x) − u(x)

|f (x) − u(x)|2 max(|f (x) − u(x)|2 − αλ,0)

almost everywhere.

The proof of this last result is a straightforward extension
of Proposition 4 in [14].

Henceforth, we propose the following generalization of
the TV-L1 algorithm:

• Initialization:

u0 = v0 = 0



242 J Math Imaging Vis (2010) 37: 232–248

• Iterations:

vn+1 = V Tαλ(f − un) (20)

un+1 = f − vn+1 − PGα(f − vn+1) (21)

• Stop if the following condition is satisfied:

max(|un+1 − un|, |vn+1 − vn|) ≤ ε.

5.4 Numerical Experiments

In this subsection, we present the results of the algorithms
described above. Figure 1 shows the decrease of the energy
and the convergence of the projected gradient algorithm for
the OSV model (7). We compare scheme (11) with the pro-
jection algorithm of [9] (which is a straightforward modifi-
cation of Chambolle’s projection algorithm [21]). Both al-
gorithms behave similarly and it is hard to tell whether one
converges faster than the other. Figures 2 and 3 depict de-
noising results using ROF (6) and OSV (7) models. The
images look very similar but since the OSV model penal-
izes much more the highest frequencies than the ROF model
[14], the denoised image still shows the lowest frequencies
of the noise.

Figures 5 and 6 depict cartoon-texture decomposition ex-
periments using different kinds of textures (the original im-
ages are shown on Fig. 4), using the A2BC and TVL1 al-
gorithms. Both results look good. However, one may ob-
serve, notably on Figs. 6 and 7, a sort of halo in the tex-
ture part of the A2BC (by comparison, with TVL1 the tex-
ture of the caps looks flatter), and edges that, in our opinion,
should remain in the cartoon part only. Both texture parts
look “gray”.

6 Qualitative Analysis of Decomposition Models

In this section, we try to explain some of the visual results
obtained in the last section.

6.1 Edges and Halo

More precisely, we first focus on Figs. 6 and 7 (cartoon-
texture decomposition), where it seems that, with the A2BC
algorithm, a sort of halo and edges appear in the texture
part (at least more visibly than with the TVL1 algorithm).
We believe that this phenomenon is not related to a wrong
choice of parameters, but rather to an inherent limit of
some models that rely on the total variation plus a norm
that favors oscillations for the texture part (like the BV-G
model).

For the sake of simplicity, we will restrict our discussion
to the simple case of one-dimensional single channel sig-
nals, but the core idea still applies to the case of color im-
ages. Suppose for instance, that one wants to decompose a

signal f using the BV-G model, i.e. find a decomposition
(u, v) that solves:

min
u+v=f

|u|TV + ‖v‖G (22)

where the functions are defined on � = (−1,1). In dimen-
sion 1, the divergence operator reduces to the derivation, and
the boundary condition on ξ implies that ξ is the antideriva-
tive of v that cancels at −1:

‖v‖G = sup
t∈(−1,1)

∣∣∣∣
∫ t

−1
v(t)dt

∣∣∣∣. (23)

Now, consider a step edge, perturbed with some textures
as in Fig. 8(a), for instance:

f (x) = 1(0,1)(x) + β sin(8pπx)1 1
4 ≤|x|≤ 3

4
(24)

where β > 0, p ∈ N
∗. The ideal decomposition would be a

perfect step u(x) = 1(0,1)(x) on the one hand, and the pure
oscillation v(x) = β sin(8pπx)1 1

4 ≤|x|≤ 3
4

on the other hand
(see Fig. 8(b) and (c)). The energy of the cartoon part is
simply |u|TV = lim1 u − lim−1 u = 1, whereas the energy of

the texture part is given by ‖v‖G = β
∫ 1

4 + 1
8p

1
4

sin(8pπt)dt =
β

4pπ
. Yet, replacing u on [− 1

4 , 1
4 ] with any non-decreasing

function ũ with the same limits at the boundary, say, a ramp
x �→ ( 1

2 + 1
2η

x)1[−η,η](x) as in Fig. 8(d)), one still gets the
same cartoon energy |ũ|TV = 1. As for the texture part, we
should notice that one extra oscillation is added near the
discontinuity of the original function f . But, precisely, the
G-norm favors oscillations, so that this change in the texture
part will not be penalized. Indeed:

‖ṽ‖G = max

(
β

4pπ
,

∫ 0

−η

(
1

2
+ 1

2η
t

)
dt

)
= 1

4pπ
(25)

for η small enough (0 ≤ η ≤ min( 1
4 ,

β
pπ

)).
To sum up, given any decomposition with sharp edges,

there exists a decomposition with the same energy where
shadows of edges appear in the texture part. So it is not sur-
prising to see edges appear in the texture part of our exper-
iments. This phenomenon is also a possible explanation of
the sort of halo that also appears. Replacing the sharp edge
with a gradation, the same argument shows that one can add
an oscillation to the texture part without changing the total
variation of the cartoon part. This is why in Fig. 6 the caps
in the texture part look so “inflated” compared to those of
TVL1.

It is clear that a model like TVL1 does not suffer from
such a drawback, since any extra oscillation in the texture
part would be penalized. In fact, the TVL1 model does not
favor oscillations at all, and it is rather surprising that this
model performs well compared to oscillation-based models
(see [33, 71], and Figs. 5 and 6). In fact, the TVL1 model
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Fig. 1 Left: Energy vs
iterations of the
Osher-Solé-Vese model with
Chambolle’s projection
algorithm (in green and
blue—stepsize 1/64 and 0.031)
and with the Projected gradient
algorithm (in red—stepsize
0.031). Right: L2 square
distance (on a logarithmic scale)
between the limit value (2000
iterations) vs the number of
iterations, for OSV using 1/64
stepsize

Fig. 2 First row: original and
noisy images
(PSNR = 56.9 dB). Second row:
denoised with color ROF
(λ = 15, PSNR = 73.8 dB) and
with color OSV (λ = 15,
PSNR = 73.4 dB)

“works” because instead of considering textures as oscil-
lations, one might as well regard them as objects of small
scale. For grayscale images, since this filter is morpholog-
ical, it is sufficient to study its effect on each level set of
the data. The case of disks was studied in [25] and convex
sets in [3, 38]. It can be shown that if the data is the charac-
teristic function of a convex set, solutions of (19) are given
by an opening of radius 1

λ
followed by a test on the ratio

perimeter/area. If that ratio is too large, then the solution is
the emptyset; if it is small enough, the solution is the result
of the opening. Therefore what we obtain when considering
the family of TVL1 filters for λ > 0 is very similar to a gran-
ulometry, a tool that is used in mathematical morphology in
the study of textures (see for instance [63]).

6.2 Color of Textures

The second remark is that the extracted texture parts look
like gray-level images. If one looks at them closely, one can
see that there are colors, but they are spread on very small ar-
eas. In view of the definition of the G-norm and the example
of Remark 2.3, it is clear that, on each channel and on every
local neighborhood, the average value of the texture part
should vanish (otherwise, the “antiderivative” ξ would take
large values, so that the G-norm would be large). Therefore
the overall impression is gray. The TVL1 model does not
impose such a condition on the average value, as it can be
seen on Fig. 6. Notice the stripes of the wood and the holes
inside the letters that are colored, contrary to the A2BC
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Fig. 3 First row: original and
noisy images
(PSNR = 57.3 dB). Second row:
denoised with color ROF
(λ = 25, PSNR = 74.2 dB) and
with color OSV (λ = 25,
PSNR = 74.1 dB)

Fig. 4 Original images

model. These were sent to the texture part because of their
small scale, not because they were oscillations. However the
overall impression is still gray too, since the colors of large
areas, which matter for an impression of color, are kept in
the cartoon part.

6.3 Comments

The conclusion is that although the different algorithms
studied in this paper produce apparently similar results, they

actually have very different qualitative properties, and they
rely on different definitions of textures. This is another il-
lustration of the difficulty to define precisely the notion of
texture. Even though we pointed out some qualitative differ-
ences in the visual results, the choice of the best decom-
position is arguable. While it is clear that some textures
should be dealt with working on their frequential content,
some others require to work geometrically on their elemen-
tary patterns, in a way that is reminiscent of the texton theory
[48].
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Fig. 5 Cartoon-texture
decomposition using color
A2BC algorithm (upper row)
and color TVL1 (lower row)

Fig. 6 Top: cartoon-texture
decomposition using the A2BC
algorithm (λ = 0.1, μ = 10).
Bottom: cartoon-texture
decomposition using the TVL1
algorithm (α = 0.1, λ = 0.7).
The parameters were chosen as
a compromise so that the results
are comparable. However, with
the A2BC algorithm, if one
wants to send the raised pattern
on the left side of the wall to the
texture part (as in the TVL1
model), one has to considerably
degrade the clouds

Fig. 7 Detail of the texture
parts of Fig. 6 (left: A2BC,
right: TVL1). Notice how the
edge of the cap appears in the
A2BC model
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Fig. 8 Decomposition of a 1-dimensional signal. Top: Original sig-
nal f . Middle row: ideal decomposition (left: cartoon part, right tex-
ture part). Bottom row: another decomposition. The total variation of

the cartoon part is equal to 1 in both cases, and by (23), the G-norm of
each texture part is equal to the maximum area of its “bumps”. There-
fore both decompositions have the same energy

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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