View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarWorks@UNIST

SIAM J. IMAGING SCIENCES (©) 2014 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 366—-390

Image Restoration Using One-Dimensional Sobolev Norm Profiles of Noise and
Texture*

Yunho Kim®, John B. Garnett!, and Luminita A. Vese!

Abstract. This work is devoted to image restoration (denoising and deblurring) by variational models. As in
our prior work [Inverse Probl. Imaging, 3 (2009), pp. 43-68], the image f to be restored is assumed to
be the sum of a cartoon component v (a function of bounded variation) and a texture component v
(an oscillatory function in a Sobolev space with negative degree of differentiability). In order to
separate noise from texture in a blurred noisy textured image, we need to collect some information
that helps distinguish noise, especially Gaussian noise, from texture. We know that homogeneous
Sobolev spaces of negative differentiability help capture oscillations in images very well; however,
these spaces do not directly provide clear distinction between texture and noise, which is also highly
oscillatory, especially when the blurring effect is noticeable. Here, we propose a new method for
distinguishing noise from texture by considering a family of Sobolev norms corresponding to noise
and texture. It turns out that the two Sobolev norm profiles for texture and noise are different, and
this enables us to better separate noise from texture during the deblurring process.
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1. Introduction. We consider in this paper one of the classical problems in image analysis:
the recovery of an unknown image from its blurry-noisy version, in the presence of a known
blurring operator K. Assume we are given a blurry-noisy grayscale image f : R™ — R (if the
image is only defined on a bounded domain 2, such as a rectangle in R?, we extend it by zero
or by periodicity on the complement R™ \ Q):

f = K[ +noise.

In our proposed method, we not only recover the sharp image f , but also decompose f into
its cartoon and texture parts, which will be denoted by w and v, respectively.

The standard method for solving such inverse ill-posed problems is inspired by Tikhonov
regularization [49], [50], [51], which can be regarded as a general minimization problem of a
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functional in integral form,
(1.1) mf/ f — KfPde + A/R(f)dx,
f

where p depends on the type of noise (for instance, p = 2 for Gaussian noise, while p = 1
for Laplacian or impulse noise). The regularizing potential R usually has the form R(f) =
R(|Df]), so that it depends on the partial derivatives of f. We assume that R has at most
linear growth at infinity to facilitate the recovery of sharp edges. Earlier work on variational
image deblurring includes a study of the Wiener filter with quadratic potential [22], the work
of Geman and Geman [20] with nonconvex potentials in the discrete setting, and the work of
Rudin and Osher [43] (as an extension of [44] to deblurring) in the continuous and discrete
cases when the regularization is the total variation. We also refer to extensive works on
minimization models of the form (1.1), with theoretical results, numerical algorithms, and
experimental results: [1], [13], [7], [52], [4] for the analysis of the problem in the convex case;
[17], [11], [10] with convex or nonconvex regularizations; and [33], [35], [36], [16] using total
variation and wavelet principles.
In the last several years, model (1.1) has been generalized to cases of the form

(1.2) it ||f — K77+ A / R(DFI),
f

where || - || denotes the norm in a Banach space of generalized functions of negative degree
of differentiability, which better model oscillatory functions (such as noise or texture). This
is inspired by work of Meyer [37] and of Mumford and Gidas [38]. When K = I, spaces of
negative differentiability were used both theoretically and numerically to model oscillatory
functions and to separate cartoon from texture; for examples, see [53], [41]; work by Aujol
and coworkers [8], [9], [6]; Le and Vese [29]; Garnett and coworkers [19], [18]; Starck, Elad,
and Donoho [45]; Levine [30]; or a hierarchical approach in Tadmor, Nezzar, and Vese [46].

A Sobolev space of distributions of negative differentiability for image deblurring has been
used in [41], where it is imposed that f € BV and f — K f € H~'. This was generalized in
[32] to the case f € BV and f — Kf € H™* (s > 0), a Sobolev space defined via the Fourier
transform. In these works, the recovered image f is represented by a function of bounded
variation. However, the use of BV ignores many oscillatory details, such as texture. Indeed,
it has been shown in [23], [2], and [3] that natural images with fine details are not well
represented by functions of bounded variation.

To better restore images including texture and details (that are not necessarily modeled
by functions of bounded variation), several recent papers have appeared that propose several
different methods. We mention some of them below:

(ia) Hierarchical decompositions were used to better recover images with small details and
texture for deblurring in the presence of noise. See, for example, Tadmor, Nezzar, and Vese
[46], [47] and Athavale and Tadmor [5].

(ib) Variational proximal point methods for solving ill-posed inverse problems such as
deblurring in the presence of noise (work by Osher et al. [40], etc.)

(ii) Methods using patch-based techniques and nonlocal operators (such as NL Means
by Buades, Coll, and Morel [12] and Kindermann, Osher, and Jones [28], or nonlocal total
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variation [21] by Gilboa and Osher) were extended to image deblurring for better restoration
of texture. We would like to mention the work of Lou et al. [34], Peyré, Bougleux, and
Cohen [42], and Jung and Vese [24], among others.

(iii) Deblurring using regularized locally adaptive kernel regression—based methods in the
presence of noise, by Takeda, Farsiu, and Milanfar [48].

(iv) Finally, work aiming to recover the unknown image f using the cartoon + texture
model u+wv. Here the first work is by Daubechies and Teschke [14], where the authors recover
an image from its blurry version by the following “cartoon + texture” minimization model:

(13 e IS = K 0 sy, 4 el

in the Besov-wavelets framework. Very satisfactory results are reported in [14], where the
recovered sharp image is given by f = u + v. A second model for image restoration using
cartoon and texture, which forms a basis for the one presented here, is introduced and analyzed
in [27] (as an extension of model [18] to deblurring):

inf  pllf = K(u+ )72 + [ulpy + Aolly -
ueBV,veW —s:p

Our proposed work is a continuation of [27]. In the present paper, using one-dimensional
profiles of Sobolev norms of negative degree of differentiability, we distinguish noise from
texture in the restoration model. (Otherwise, both noise and texture could be captured in
the same component, especially when the noise is strong.) We first describe the main idea
and the proposed variational model. We analyze theoretically the variational model, showing
existence of minimizers. Then we give the derivation details of the Euler—Lagrange equations
and of the numerical algorithm. Finally, we present numerical results for image deblurring
in the presence of noise obtained by the proposed model. Comparisons with state-of-the-art
results found in [24] show that the proposed model gives improved results.

2. Proposed model.

2.1. One-dimensional Sobolev norm profiles of noise and texture. We assume that the
noise n has a known PDF (probability density function); that is, at each point x, n(x) is a
random variable following a given PDF. For example, the PDF could be a Gaussian function
with zero mean and known variance o2. For each function v, we define a function ¢,(-) of
seR_={seR:s5<0} by

(2.1) Po(s) = [10.1 - 27[€])* 0 () L2 (Rn),

where v is the Fourier transform of v.

Let us explain our choice of the constant C' = 0.1 - 27 in the norm (2.1). For any constant
C >0, [[(CI£)*0(-) | L2 (rny defines a norm equivalent to the homogeneous Sobolev norm [|v|| ;..
But since we want to emphasize high frequencies, which serve to distinguish texture from noise,
and since we will work with s < 0 and |s| large, we may take 0 < C' < 1 in place of 0.1 - 27,
to give high frequencies more weight. The particular choice 0.1 - 27 is for computational
convenience and is fixed throughout the paper.
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Let (a,b) be an interval in R_. The main assumption is that texture and noise have quite
distinguishable homogeneous Sobolev norm profiles when a family of negative homogeneous
Sobolev norms shown in (2.1) for s € (a,b) are considered simultaneously. Moreover, we as-
sume that the function ¢, of s € R_ behaves in the same way for all texture images v. We
denote by 1" such a “universal” function describing this common behavior of ¢,. Likewise, we
make the same assumption on ¢,; that is, when applied to noise n, the function ¢, depends
only on the noise distribution. So, if two noise images n; and no are from the same noise
distribution, then ¢, (s) = ¢n,(s) for s € R_. We denote by N such a universal function
describing this common behavior of ¢,, for Gaussian noise n in this work. We assume through-
out this paper that 7" and IV are known. This assumption was inspired by the experiments in
Figure 1, where the computed one-dimensional profiles of ¢,(s) and ¢, (s) for s < 0 are given
for several purely texture images v and one Gaussian noise image n. The z-axis represents s
in an interval of negative values, while the y-axis represents the values of ¢,(s) and ¢, (s) for
a given texture image v and the noise n. The texture profiles of ¢, are in red, and the noise
profiles of ¢,, are in blue. We note that for all six textured images shown, the red profiles for
texture images are much different from the blue profiles for Gaussian noise, whereas the red
profiles are similar in shape to one another. Even though the texture profiles, the red dashed
lines in Figure 1, are similar in shape, their actual values are slightly different. Therefore
we would like to develop a model that allows ¢, and ¢, to be somewhat different from 7T
and N, but to be controlled by 7" and N in some way. In section 3, we describe how one
can compute the two functions 7" and N to be used in the numerical experiments. We also
show in Figure 2 two noisy images (constant images corrupted by additive Gaussian noise of
different variances) and their Sobolev norm profiles.

In the image processing literature, dual Banach spaces have been frequently used to model
oscillatory components. For instance, Meyer [37] considered the dual spaces G C F C E of
negative differentiability, where GG is dual to the homogeneous Sobolev space Wl’l(]R2), F' can
be expressed as div(BMO(R2;R?2)), and, finally, E = By"°(R2) is dual to the homogeneous
Besov space Bl1 ’I(Rz). Among possible choices of dual spaces, we note that the Sobolev spaces
WP, WP and the Besov spaces By?, B;’p depend on a parameter s that measures the degree
of a distribution’s differentiability. Hence, unlike previous attempts at modeling the oscillatory
components of images in which a single dual space was used to model either texture or noise,
we will use an entire family of dual spaces having a scaling parameter related to the degree of
differentiability. In this paper, we will work only with Sobolev spaces, although Besov spaces
could provide an alternative approach.

In the absence of blurring, it is less difficult to denoise noisy images. There are many effi-
cient algorithms to remove noise, whether it is additive or multiplicative or of a more complex
nature. However, many such algorithms are not well suited for a denoising + deblurring prob-
lem because the two processes, denoising and deblurring, are completely opposite in nature.
In other words, denoising can be considered as a smoothing process, while deblurring can be
considered as a sharpening process. Hence, when combined they compete with each other and
produce a highly ill-posed problem. In most models stronger deblurring may also amplify the
noise and instabilities. Here we will use the additional information presented above to better
recover natural textured images corrupted by both blur and noise.
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Figure 1. Texture images v and their Sobolev norm profiles ¢., together with noise profile ¢n. In each
plot, the red dotted line is the Sobolev profile of the texture image above; the blue solid line is the noise Sobolev
profile. The s values are between —5.4 and —0.2.
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Figure 2. Two Gaussian noise images of different variances and their Sobolev norm profiles.

2.2. Description of the proposed image restoration model. As a continuation of the
work [27], we may consider the following minimization problem to incorporate a series of
Sobolev spaces:

22) min lulsy + A7 &+ )

T — 6oy + 5 IV — B ater [ }
with a < b < 0.

The function ¢, was defined in (2.1), and we use k*(u+uv) here and in what follows to realize
the blurring operator K by a convolution operator with a kernel k, i.e., K (u+v) = kx*(u+v).
In the above minimization model, f is a given blurry and noisy datum; the recovered image
will be represented by u + v; if (u,v) would be a minimizing pair of the above functional,
then the recovered texture component v must have its Sobolev profile similar to the universal
texture profile T'(s), while the computed noise residual f — k * (u + v) must have its Sobolev
profile close to the universal Gaussian noise profile N(s). In practice, the universal learned
texture profile 1" is an average of profiles corresponding to several different purely texture
images, and N will be obtained in the same way with several purely noise images with a
prescribed variance; A\, p, and y are positive coefficients. We also impose that the cartoon
component 1 is of bounded variation.
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As described earlier, we want to consider a series of homogeneous Sobolev spaces WP for
s < 0. We no longer restrict ourselves to the case —2 < s < 0 as in [18], [19].

Unfortunately, the functional in (2.2) is not convex. Moreover, in this model, we assume
the existence of the two functions T'(s) and N (s) while imposing that minimizers (u, v) should
have ¢, (s) and ¢ _py(utv) close to T'(s) and N(s), respectively. But in practice such universal
functions T" and N are not fully known; we only estimate them by considering a few texture
and noise images. Thus we know only probable profiles of T" and N, and not their exact
profiles. Hence, knowing that recovering details of v requires v to contain more structured
oscillatory components, we would like to use 7" and N not necessarily for perfect matches of
¢y and ¢y, but for upper bounds of ¢, and ¢,, respectively, so that we can recover as much
detail as possible up to 7" and as much noise as possible up to N. In this spirit, we also
propose the following convex constrained minimization problem that can be seen as a relaxed
version of the previous nonconvex model.

Proposed constrained minimization problem: We define F by

F(uv) = [ulgy + Af =k * (u+ )7
and propose to solve

(2.3) inf F(u,v),

subject to
¢y <T and  Gs_pu(utv) < N a.e. in (a,b),

in appropriate spaces for v and v that will be described later.
Remark 1. F is convex in v and v, and the feasible set

E={(u,v) : ¢y < T and ¢y ju(utv) < N ae. in (a,b)}

is also convex.

We now proceed with a series of definitions of function spaces that we will use. Since the
case n = 1 is more trivial than the other cases n > 2, we will make the assumption n > 2,
and our main interest is the case n = 2.

Definition 2.1 (BV space). BV (R") forn > 2 is the space of functions of bounded variation;
i.e., w € BV(R™), if and only if u € L*(R"™) and there exists a Radon measure Du that is a
gradient of u in the distributional sense with total variation

/ |Dul := sup {/ udiv(¢)dr : ¢ € CLR™,R™), |40 < 1} < 00.
n Rn

Remark 2. The space WH1(R™) is a subspace of BV (R"), and for u € W11(R") we have
Jgn |1Du| = [ |[Vu(z)|dz, where Du is the usual gradient Vu in L'(R",R"). The Banach
space BV(R"™) is equipped with the following norm, which extends the classical norm in
WELLR™):

v ey = alsery + [ 1Dl
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In this paper, we will use a slightly different space to model the cartoon component.
The following definition can be found in [37]. To distinguish it from the classical BV space,
BV (R"™), we denote it by BV(R™).

Definition 2.2. BV(R™) for n > 2 is the space of functions u satisfying the following:

1. w vanishes at infinity in a weak sense; that is, uxp(x) — 0 as |x| — oo for p € S(R™).
2. The distributional gradient Du of the function u is a bounded Radon measure.

Remark 3. S(R™) is the Schwartz space. Note that any function in LP(R"), 1 < p < oo,
vanishes at infinity in the weak sense described above.

Theorem 2.3. BY(R") is a Banach space with a norm |u|gy defined by

lullsv = IDull®") = [ |Dul.
In fact, BV(R™) is the dual space of T with the dual norm, where I is a Banach space defined by
F={feSR"):f=01g1+  + Ongn, 9i € Co(R")}

with the norm

£l = inf{/]g1[2+ -+ [gnl?: f = g1+ + Ongn}-

Proof. We refer to [37] for the proof. [ |

Note that the norm || - ||gy is the same as the usual seminorm | - |y, and this Banach
space BV(R™) is more useful than BV (R") in that it encompasses more functions, yet it has
the continuous embedding

HUHL"/(n*l) S lullsy

for n > 2.
Definition 2.4. For s € R, we define the Sobolev space H*(R™) by

o) = {7 s [ @RIk < oo}

with the norm

X 1/2
e = ([ @+ eprifopae)

and its homogeneous version H®(R™) by

@) = {7 e [ eI < oo
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where So(R™) is the set of Schwartz functions whose Fourier transforms vanish near the origin,

with the norm
X 1/2
e = ( [ 1eP17@Pag)

Remark 4. We use the homogeneous space H® (R™) to avoid certain unnecessary and tech-
nical difficulties.

Theorem 2.5. H*(R"), H*(R") for s € R are Hilbert spaces with inner products { , )ys
and ( , ) s, respectively, defined by

(e = [ (+IEPr A,
P MG IGIGES

Proof. This proof is an easy exercise and can be found in many textbooks. |

In this paper, we will particularly use the following property.

Theorem 2.6. H*(R") is the dual space of H=*(R") for s < 0.

With the appropriate choices of spaces above, we can now prove the existence of a mini-
mizer of the problem (2.3).

Theorem 2.7. Let a < b < 0, n > 2, and A > 0. We assume that the blurring kernel

k belongs to L%(Rn) and that there exists s1 € (a,b) such that the Fourier transform k
satisfies ||| - ’_81]%(')”Loo(Rn) < 0o. We also assume that T,N € L*(a,b) and T > 0, N > 0
a.e. in (a,b). If there exists (u*,v*) € BV(R™) X Nges<pH*(R™) satisfying the constraints with
F(u*,v*) < oo in (2.3)—in other words, if the feasible set is nonempty—then (2.3) has a
minimizer in BY(R™) X NgesepH(R™).

Remark 5. The condition on the Fourier transform k that ||| - | =51 k(-)|| oo ®n) < oo for
some $1 € (a,b) is not a restriction in many applications: any Gaussian or averaging kernel
satisfies the condition with a < —1 < b < 0. Moreover, having a nonempty feasible set is not
a restriction either because we are free to choose T and N in L?(a,b).

Proof. Throughout the proof, we may ignore the constant C' > 0 introduced when defining
the function ¢, (s), which is equivalent to the homogeneous Sobolev norm |[[v|| ;.. The restric-
tion 0 < C' < 1 is important only for the numerical experiments. Hence, we will simply use
| - |l g7+ for ¢ (s) during this proof. Thus, we will replace ¢, (s) and ¢ f_g.(utv)(s) by V]l s
and ||f — k * (u + v)|| ., respectively.

For simplicity, we write {a,,} for both a sequence and for one of its subsequences. Also
we use the simpler notation S,S’, BV, BV, H%, L? for the spaces described above.

Let {(ug,vx)}?2; be a minimizing sequence of (2.3). Then there exists 0 < M < oo such
that for all k£ > 1,

F (uk, ’Uk) < M,

because, by assumption, F(u*,v*) < oo for some (u*,v*) and we may set M = F(u*,v*).
Since for any k > 1, ||v| 7 = ¢u, (s) < T'(s) for almost every s € (a,b), we know that

b 1/2
( / ||vk||2-sds> — ldwllizany < 1Tl 2.
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Then for any s € (a,b), there exists € > 0 such that (s —€,s + €) C (a,b), and we can obtain

wwazw—@—m/

l¢1<1

|@@WMW%+«&+Q—@/ [ (€) € e

l€1>1

S s+e

S/ / |v%(£)|2|£|2td£dt+/ / [0 ()2 €] dedt
s—e J[€[<1 s €[>1
s+e 5 N

< [ ol < 1T

Hence, for any s € (a,b), we have

(2.4) sup||vk||qu < 00.
k>1

We now fix sg € (a,b). There exists vy € H*® such that for any h € H™%, up to a
subsequence,

0 )i = ()i
In particular, if h € H=0NH* for s € (a,b), then H~* (1 H~* is dense in H~* and
kli—>r{>lo<hvvk>H*S><Hs = <h’U0>H*S><HS’

which means that, for s € (a,b), vo € H® and

2.5 7s < liminf e
(25 ool < imin gl

Hence, by Fatou’s lemma, we obtain

[ etz s < imint [ sl s < 171
We now claim that
(2.6) ksvp — kxvg in L%
Let h € L?. Note that for v € H*!
[(k* v, h)p2| < /Rn 1 B (ENE] R(E)1PE)]dE < (1] RE) | oo vl oy 1] 2-
This implies that
Jm (K x vy, h)p2 = lHm (o, ks h) oy o = (0o k% h) oy s jgsy = (k% vo, B2,

where k(z) = k(—x) and k % vy € L?, which implies (2.6).
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As for the sequence {uy}7°,, we already know that

Nurll, or S llullsy < M,
L

AT
so that there exists ug € L7 such that, up to a subsequence,
(2.7) up — ug in LaoT,

We also claim that
(2.8) ksup — kxuy in L2

To see this, we take ¢ € L? and prove that a linear mapping Ty : L71 — R defined by

Ty(u) = /n o(x)k xu(x)dr = /n k* o(z)u(x)dx
satisfies
(2.9) To(w)] S llpllzllull zor -

Then (2.9) together with (2.7) proves (2.8).
To prove (2.9) it is enough by the Plancherel theorem to show that

(2.10) [ 1O Ia()1dE < llelzzlul -
Note that the Hausdorff-Young inequality says that for each n > 2

e < [lul

L2 and HkHL%ngk”Lf—b

If n = 2, then 2n/(n +2) = 1 and n/(n — 1) = 2. Hence, k € L™ implies (2.10). If n > 2,
then we obtain (2.10) by Holder’s inequality:
n—1

[ e@ni@na©ie < ([ 1e@=iorae) il

<([ !@(6)\2>% ([ =) ™

S lellcellull, ooy

Hence, (2.8) holds, and if ¢ € C} with ||¢||oc < 1, then

/ ug - divgp = lim ug - divg < liminf |Jug| gy
n k—o00 Rn k—00

implies
(2.11) luollsy < liminf [lug| sy
k—o0

Therefore, ug € BY.
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After extracting appropriate subsequences, we may now assume that the two sequences
{ur}, {vx} have weak limits wug, vy satisfying (2.5)—(2.11).
It now follows easily from the arguments above that

(2.12) F(ug,vo) < Flug,vr) forall k> 1.

What remains to prove is that (ug,vo) satisfies the constraints. As a matter of fact, (2.5)
implies that
Oy <T ae. in (a,b).

We note that
f—kxu,—k*vy— f—kxuyg—kxvy in L

It can also be shown that for s € (a,b)

(2.13) igl;”f—k*uk—k*vk\\zs < 00,

in the same way as (2.4) was shown. Let h € Sy. Then h € H* for t > 0. Hence, for s € (a,b)

klim (f —kxup —kxvg, h)pey g—s = klim (f —kxug —kxvg,h)r2 = (f —kxug— k*vg,h)r2
—00 —00

= (f —kxuy—k*xvo,h) e jg—s-
Since such functions as h are densely distributed in H %, we obtain that

f—kxuy—k*v,— f—kxug—k*vy in H®,

which implies
If =k x(uo +vo)ll s <N ae in (a,b).

Thus from (2.12) and the fact that {(uy,vy)}72; is a minimizing sequence, we see that
(u077)0) € BY x ma<s<bH8

is a minimizer. |
Remark 6. The constraints in (2.3)

¢ <T and  Gy_pyusv) <N a.e. in (a,b)
can be more relaxed to
[Pollz2(ap) < 1T r2(ap)  a0d @ f—psuro) | 22(ap) < IV L2(ap)

since this is what we need to show (2.4). These new constraints are still convex, and the same
proof works and yields a minimizer (ug, vg) with

[Puollz2(ap) SN TN 2(@p) a0 (195 —kwuorvo) I 22(a) < IV L2(00)-
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Unconstrained version. We will now realize the constraints by using the log barrier
function (e.g., [39]). This will give us an unconstrained minimization problem corresponding
to the proposed constrained minimization problem. We define F,,,, by

Fun(u,v) = ||lullgy + )\/ |f =k * (u+v)[?
Rn

b
it [ - s

a

b
v
— b —a / lll(NZ(S) - (b?”—k*(u-l-v) (3))ds
and solve

(2.14) inf Fop (u,v).

)

It is easy to see that the functional F,, is convex in u and v by checking that the log
barrier terms are convex. For A\ € (0,1) and feasible points (u1,v1) and (ug,v2), we obtain
that

T(5) = DRy 4 (1-2yws (8) 2 MT2(8) = 67, (5)) + (L = A)(T(5) — 63, (5)) 2 0
& —In(T%(5) = B3y, 4 (1-2y0e (8)) £ =~ IA(T?(5) = 63, (5)) + (1 = N)(T2(s) — ¢y, (s)))
< —AIn(T?(s) = &7, () = (1= A) In(T%(s) — 3, ().

In the same way, we obtain that

—In(NZ(5) = DX (f—tow i +01)) - (1) —Fs(auzt02)) (5))
< —)\IH(N2(S) - (b?—k*(ul—i-vl)(s)) - (1 - )‘) ln(NZ(S) - (b?—k*(ug-i-vg)(s))'

Remark 7. In formulating an unconstrained problem, we can use In(T?(s) — ¢h(s)) instead
of In(T?(s) — ¢2(s)) for any 1 < p < oo, which realizes the same constraint:

Ph(s) <TP(s) ae. & ¢u(s) <T(s) ae.

Likewise, we can make the same change to the last term. However, we choose p = 2 for
numerical reasons.

Theorem 2.8. Under the same assumptions as in Theorem 2.7, if there exists (u*,v*) €
BY(R™) x Na<s<pH*(R™) satisfying Fun(u*,v*) < oo, then (2.14) has a minimizer in BV(R™) x
Na<s<pH*(R™).

Proof. First, the assumption that F,,(u*,v*) < oo for some (u*,v*) implies

—00 < —1In <bia /abT2(s)ds> < bia /ab—ln(T2(s))ds

1

b
< m/@ —In(T?(s) — ¢2.(s))ds < oo
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and

—o0< —In (bia/:N%)ds) < bia/ab—ln(N%s))ds

1 ) )
< b—a u - ln(N (S) - ¢f—k*(u*+v*)(8))d‘9 < Q.

Note that this means that 72 > 0 and N? > 0 a.e. in (a,b). Hence, the functional F, is
bounded below, which enables us to extract a minimizing sequence. Now let {(ug,vr)}3,
be a minimizing sequence of (2.14). Then, we have ¢7, < T2 and ¢?_k*(%+vk) < N? ae.
in (a,b), which guarantees (2.4) and (2.13), and the rest of the proof is the same as that of
Theorem 2.7. |

3. Numerical computations. We present in this section a few numerical results for image
restoration. Images are corrupted by either an averaging kernel or a Gaussian kernel, and
then noise is added. Our main focus is on deblurring and Gaussian noise removal.

3.1. Numerical algorithm description. We consider a grayscale image f as a scalar func-
tion from a domain 2 C R? to R. When we solve the partial differential equations given below,
impose periodic boundary conditions, and consider that 22 is the actual periodic domain.

One of the fundamental assumptions in our work is the existence of two universal functions
T and N, as mentioned earlier. We obtain 7' by taking the average of the Sobolev norm
profiles of texture from several randomly chosen texture images shown in Figure 1 for all the
experiments in this paper. N is obtained from noise in the same way.

We solve (2.14) numerically using gradient descent and finite differences. We note that
other more efficient methods could be used. Let us first write a semidiscrete version of the
energy in (2.14), discretizing the s values:

inf]-"(u,v):”uHBv—i—)\/ \f—k*(u—kv)lz
u,v Rn
i K
3.1 — 2N "In ( T%(s; —/ C?si 28i@2>
(3.1) 9D (720~ [ c21eP1o

—lzK:ln <N2(SZ’)—/ 028i|§|28i|f—k‘(ﬂ+@)|2>
Ko R

for some K > 0 and a = s1 < s9 < -+ < Sg_1 < sg = b. If we choose a large number
K > 0, then the computational time for one iteration will be long due to the fact that the
number of Fourier and inverse Fourier transforms that we need to compute is proportional to
K. Hence, all our computational results use —5 = a < b = —0.2 < 0, and we test several
values of K = 2,5,9,17,33 to see the quality of the restored images as a function of K. Later,
we show the results comparing different values of K in Table 3.

We now summarize the procedure for solving (3.1). Step 2 is stopped as soon as the
energy functional stops decreasing or the computed noise variance becomes less than the true
noise variance. In addition, we preset the maximum number of iterations for Step 2 to avoid
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running the algorithm for a long time. A few hundred iterations works well. We adjust A and
At in Step 3 to keep the computed noise variance to at most the given noise variance when
the algorithm stops (because a computed noise variance larger than expected may imply that
some oscillatory features are not recovered in the texture component v).

Step 1. We start with At = 0.3. (A, u,y) and the s values are as given. The initial guess
(up,vp) is (G * f,0), where G is a Gaussian function.

Step 2. We solve (3.1) by gradient descent for a certain amount of time as described above.
While minimizing the functional, we check the variance of the computed noise. The
computed noise variance is

v,
ol=— [ |f—kx(@u+v)
g | 1F k=)

and Step 2 is stopped before the preset maximum number of iterations if o2 < o2,
where o2 is the given variance, or if the functional stops decreasing.

Step 3. If 02 < 02, then we use 0.8\ instead of A and 0.6At instead of At.
If 02 > 02, then we only change At to 0.8At.

Step 4. With the new set of parameters, we go to Step 2 and repeat this procedure five times.

Repeating five times at Step 4 was chosen for an empirical reason. Although three times
was sufficient for good quality recovery, we wanted to ensure a sufficient improvement in the
reconstruction while satisfying o2 ~ 0.

We give here the details of the gradient descent method used in Step 2. First, we obtain

the formal Euler—Lagrange equations as follows:

i F(u+eg,v+eh) — F(u,v)

e—0 €

Vu " v
/d1v<‘V ’> 2/()\k * (f —k=*(u+v)) +9Re{R"})g
=2 [OW < (f = ks (-t ) + RelrBY = 4QV D,

where g and h are test functions and k* is the adjoint of k. Also, QY and R are the inverse
Fourier transforms of () and R, respectively. These are defined by

Q) = (bfa/ab 2((3?‘_5’;( )ds>@<s>,

25| ¢|2s . ~ .
19 = (55 [ sty MO - KOG + o)

f kx(u+v)

Then, the formal Euler-Lagrange equations are

d1v<‘§ ’> + 22X« (f —kx (u+v)) + 29Re{R"} =0,

Me* 5 (f —k* (u+0)) +Re{yRY —uQ"} =0,
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and we will eventually solve the following time-dependent system of PDEs by the finite dif-
ference scheme and the gradient descent method:

3.9 { 9 = div((24) + 20" (f — ko (u+0)) + 29Re{RY),
| G = M (f =k (u - 0) + RefyRY — Q).

When we compute the inverse Fourier transforms RY and QV, since 2Q is the periodic
domain, we first extend the functions R and @ to 2 by reflection, then compute RV and
QV, and consider RY|g and QV|n. More details about the implementation involving inverse
Fourier transforms on a periodic domain 2) are presented in prior work [27]. Let us briefly
mention how we discretize each term in (3.2). The divergence term is approximated by

1 1 2
Vu) 1 Dy D( >“
d1v< >~ {D}( >+D2<
v )~ 12 P 7l

where Dé, Dll for [ = 1,2 are the forward and backward differences in the [th component, for
instance,

. .
To avoid division by zero, we add a small parameter ¢ > 0 to the denominators in the above
approximation of the divergence term. Since we assume a periodic boundary condition, we
can use the MATLAB function IMFILTER to compute convolutions; e.g.,

Dju(i, j) =

kx(u+v)=IMFILTER(u + v, k, ‘symmetric’, ‘conv’).

Finally, the Sobolev norm |[|v|| ;. is computed as follows:

[FFT (ISHIFT( (Cm Je2 4 g%) SSHIFT(FFT(U))> > .

Since we are taking negative values of s, when we evaluate the Sobolev norm, we set the value
at the origin in the frequency domain to be 0.

To compare our method with prior methods, we compute the SNR (signal-to-noise-ratio)
and the RMSE (root-mean-squared-error), which are defined by

Variance of g>

SNR(damaged image(f),original clean image(g)) = 10log;, <m

1

Tl > (fG.5) — 96, )2

(4,7)€Q

RMSE(damaged image(f), original clean image(g)) =

A bigger SNR value implies better recovery. The RMSE works in the opposite way; that is,
a smaller RMSE value implies better recovery. Table 1 below compares the SNR and RMSE
values for various experiments. The authors in [27] chose parameters that experimentally gave
the best possible results. Hence, we also tried to find the most suitable parameters A, u,y
which produce the best results.
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3.2. Performance of our method and comparison results. We will use two images, the
factory image and the fishing boat image, for all the experiments because there are many
previous restoration results (e.g., in [24], [27], [48]) that can be used for comparison. The
initial time step At is 0.3, and the other parameters (A, u,~) are (1.32,107%,1077) for the
factory image and (0.4,107%,10~7) for the fishing boat image.

Figures 3-5 are results obtained by the proposed method with different o values. These
are compared with previous results from [27] and [48]. Table 1 compares the results of the
proposed model with those for the model in [27] in terms of SNR and RMSE values. The

Figure 3. Top row (left to right): Noisy blurry image (f) with o = 1.1531, restored image (u+ v) using
the proposed method, computed noise (f —k * (u+ v)). Bottom row (left to right): Cartoon part (u), texture
part (v). SNR = 13.7362, RMSE = 8.6380.

Table 1
SNR and RMSE values for the results in Figures 3—6.

SNR values RMSE values
o =1.1531 oc=3 oc=5 o =1.1531 oc=3 oc=5
Noisy blurry (f) 8.9919 8.8371 8.5476 14.9153 15.3067 | 15.8254

Recovered (u + Ag)
using TV /Sobolev [27]
Recovered (u + v)
using proposed model

13.5818 11.8415 | 10.6843 8.8643 10.8308 | 12.3742

13.7362 12.2085 | 11.3058 8.6380 10.3827 | 11.5198
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Figure 4. Top row (left to right): Noisy blurry image (f) with o = 3, restored image (u + v) using the
proposed method, computed noise (f —k*(u+v)). Bottom row (left to right): Cartoon part (u), texture part (v).
SNR =12.1351, RMSFE = 10.3865.

Figure 5. Top row (left to right): Noisy blurry image (f) with o = 5, restored image (u + v) using the
proposed method, computed noise (f —kx*(u+wv)). Bottom row (left to right): Cartoon part (u), texture part (v).
SNR =11.3555, RMSE = 11.3619.
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Noisy image (f) Recovered (u+Ag) [28] Recovered (u+v), our method

o=1.1531

Figure 6. Top row: With noise variance o = 1.1531, the T'V/Sobolev model from [27] gives SNR = 13.5818,
RMSE = 8.8643 (0 = 1.1531, s = 0, p = 1), while our proposed model gives SNR = 13.7362, RMSE = 8.6380
(0 = 1.1531). Middle row: With noise variance o = 3 the TV /Sobolev model from [27] gives SNR = 11.8415,
RMSE = 10.8308 (0 =3, s =0, p = 3), while our proposed model gives SNR = 12.1351, RMSE = 10.3865
(o0 = 3). Bottom row: With noise variance o = 5, the T'V/Sobolev model from [27] gives SNR = 10.6843,
RMSE = 123742 (0 =5, s =0, p = 3), while our proposed model gives SNR = 11.3555, RMSE = 11.3619

(0 =5).

related images for the comparison are shown in Figure 6. We can see in Figure 6 that, by the
proposed method, texture is better recovered and edges are sharper.

Besides the better recovery observed by comparing SNR and RMSE values, the proposed
model has one more advantage over the model in [27], which also uses Sobolev spaces of
negative differentiability. The algorithm we use in this paper is much like the one in [27];
however, model (2.3) utilizes the known values T'(s) and N(s) for texture and noise, which
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Figure 7. Energy plots corresponding to the results in Figures 3-5.

naturally imposes some restrictions on the computations of the texture and the noise compo-
nents. The main focus of the algorithm in [27] was to match the known noise variance o and
the computed noise variance o2 by adjusting the parameter A accordingly. That is, Steps 3
and 4 above were very important in [27] since the choice of parameters much influenced the
recovery. In particular, if we did not properly adjust A in [27], then noise would get amplified
easily and be absorbed into the texture component. On the other hand, the proposed model
does not seem to rely on Steps 3 and 4 as much as the one in [27] does. Instead, T'(s) and
N(s) play the main role of controlling texture and noise, which makes the recovery somewhat
insensitive to the adjustment of A. In this sense, we do not observe the same difficulty in the
computation of the proposed model as for the one in [27]. Figure 7 shows the energy over time
for the proposed model and provides visual evidence for these observations: the steep drops
at the tails indicate that At and A have been changed according to Steps 3 and 4, resulting
in decreasing the functional values. We should note that A gets reduced only if the computed
noise variance o2 is less than the noise variance o2, so updating A results in decreasing the
functional values as well. If we look at the plots horizontally, after the drops we hardly see
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any changes in the functional values. In terms of SNR, we observe increases of the SNR
values through these additional steps (Steps 3 and 4); however, the improvements are not so
significant. As explained in the algorithm, we confirm in Table 2 that the proposed model

removes noise of variance no bigger than the given variance o2.

Table 2
Comparison between the noise variances.

Figure 3 Figure 4 Figure 5
Given noise variance o =1.1531 oc=3 o=5
Computed noise variance | . = 1.0633 | 0. = 2.8296 | 0. = 4.7398

Table 3 shows the dependence of the quality of recovery on K. The SNR and RMSE
values are very close in all cases. Intuitively speaking, the larger K is, the better the recovery
should be. This was true among K = 2,5,9; however, it was not true among K = 9,17, 33.
The quality of recovery with K = 17,33 may be related either to the increasing computational

complexity of the algorithm causing trouble in obtaining optimal solutions or to the estimates
of T"and N.

Table 3
K is the number of s values being used in computations, which were uniformly chosen from [—5, —0.2]
including the endpoints.

K =2 K=5 K=9 | K=17 | K=33
SNR 11.3323 | 11.3227 | 11.3555 | 11.3064 | 11.2835
RMSE | 11.3923 | 11.4049 | 11.3619 | 11.4262 | 11.4564

Figure 8, Figure 9, and Table 4 show the last comparison results that we performed. The
authors of [24] reported the performances of various well-known effective regularizers for image
show restoration. It turns out from this comparison that modeling the oscillatory component
as in the present paper improves the recovery.

Figure 8. Left to right: Noisy blurry image (f) with the same blurring kernel and the same noise (o =5)
as in [24], restored image (w4 v) from our proposed model, computed noise (f — k= (u+wv)). SNR = 14.1237,
RMSE = 8.8481.
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Figure 9. Comparison with results in [24]: Recovery of noisy blurry image. First row: Recovered image
(u) using TV (SNR = 12.5115), MSTV (SNR = 12.5984), MSH1 (SNR = 11.5662). Third row: Recovered
image (u) using NL/TV (SNR = 13.2277), NL/MSTV (SNR = 13.2348), NL/MSH1 (SNR = 12.3582). The
second and the fourth rows are computed noise for the corresponding reconstructions. See more details in [24].

Table 4
SNR values for the results in Figures 8-9. TV: Total variation regularizer, MS: Mumford—Shah regularizer,
H1: H1 norm regularizer, NL: Nonlocal means reqularizer. See more details about the other results in [24].

Our model TV MSTV MSH1 | NL/TV | NL/MSTV | NL/MSH1
SNR 14.1237 12.5115 | 12.5984 | 11.5662 | 13.2277 13.2348 12.3582

4. Conclusion. We have proposed a “cartoon+texture” minimization model to recover
images degraded by blur and noise by separating noise from texture with the help of Sobolev
norms. Unlike the previous attempts at such recovery in the literature, we have devised a
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mathematical object which may be used to describe the difference between texture and noise.
The cartoon component u is modeled as usual by a function of bounded variation, while
the texture v and the noise f — k % (u + v) are modeled by functions in a series of Sobolev
spaces of negative differentiability H® (Q) for a < s < b < 0. The recovered image is u + v.
We numerically observed that the Sobolev norms of textured images, as functions belonging
to H*® (Q) for a < s < b < 0, behave very similarly, which led us to our main assumption
of the existence of functions 7" and N that describe such behaviors for texture and noise.
Incorporated into the restoration model, 7" and N control the amount of texture and noise
recovered, as opposed to the fixed or adjusted parameters controlling especially the noise. This
partially solved the stability problem in the computational part as well. As our numerical
results show, by a simple minimization we were able to ensure that the computed noise level
was comparable to the given noise level while recovering as much texture as possible and
keeping sharper edges. Comparisons with existing restoration results from [24], [27], [48] show
that the proposed model provides improvement.
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