534 research outputs found

    Weakly Supervised Domain-Specific Color Naming Based on Attention

    Full text link
    The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.Comment: Accepted at ICPR201

    Data Clustering And Visualization Through Matrix Factorization

    Get PDF
    Clustering is traditionally an unsupervised task which is to find natural groupings or clusters in multidimensional data based on perceived similarities among the patterns. The purpose of clustering is to extract useful information from unlabeled data. In order to present the extracted useful knowledge obtained by clustering in a meaningful way, data visualization becomes a popular and growing area of research field. Visualization can provide a qualitative overview of large and complex data sets, which help us the desired insight in truly understanding the phenomena of interest in data. The contribution of this dissertation is two-fold: Semi-Supervised Non-negative Matrix Factorization (SS-NMF) for data clustering/co-clustering and Exemplar-based data Visualization (EV) through matrix factorization. Compared to traditional data mining models, matrix-based methods are fast, easy to understand and implement, especially suitable to solve large-scale challenging problems in text mining, image grouping, medical diagnosis, and bioinformatics. In this dissertation, we present two effective matrix-based solutions in the new directions of data clustering and visualization. First, in many practical learning domains, there is a large supply of unlabeled data but limited labeled data, and in most cases it might be expensive to generate large amounts of labeled data. Traditional clustering algorithms completely ignore these valuable labeled data and thus are inapplicable to these problems. Consequently, semi-supervised clustering, which can incorporate the domain knowledge to guide a clustering algorithm, has become a topic of significant recent interest. Thus, we develop a Non-negative Matrix Factorization (NMF) based framework to incorporate prior knowledge into data clustering. Moreover, with the fast growth of Internet and computational technologies in the past decade, many data mining applications have advanced swiftly from the simple clustering of one data type to the co-clustering of multiple data types, usually involving high heterogeneity. To this end, we extend SS-NMF to perform heterogeneous data co-clustering. From a theoretical perspective, SS-NMF for data clustering/co-clustering is mathematically rigorous. The convergence and correctness of our algorithms are proved. In addition, we discuss the relationship between SS-NMF with other well-known clustering and co-clustering models. Second, most of current clustering models only provide the centroids (e.g., mathematical means of the clusters) without inferring the representative exemplars from real data, thus they are unable to better summarize or visualize the raw data. A new method, Exemplar-based Visualization (EV), is proposed to cluster and visualize an extremely large-scale data. Capitalizing on recent advances in matrix approximation and factorization, EV provides a means to visualize large scale data with high accuracy (in retaining neighbor relations), high efficiency (in computation), and high flexibility (through the use of exemplars). Empirically, we demonstrate the superior performance of our matrix-based data clustering and visualization models through extensive experiments performed on the publicly available large scale data sets

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Hyperspectral Unmixing Based on Dual-Depth Sparse Probabilistic Latent Semantic Analysis

    Get PDF
    This paper presents a novel approach for spectral unmixing of remotely sensed hyperspectral data. It exploits probabilistic latent topics in order to take advantage of the semantics pervading the latent topic space when identifying spectral signatures and estimating fractional abundances from hyperspectral images. Despite the contrasted potential of topic models to uncover image semantics, they have been merely used in hyperspectral unmixing as a straightforward data decomposition process. This limits their actual capabilities to provide semantic representations of the spectral data. The proposed model, called dual-depth sparse probabilistic latent semantic analysis (DEpLSA), makes use of two different levels of topics to exploit the semantic patterns extracted from the initial spectral space in order to relieve the ill-posed nature of the unmixing problem. In other words, DEpLSA defines a first level of deep topics to capture the semantic representations of the spectra, and a second level of restricted topics to estimate endmembers and abundances over this semantic space. An experimental comparison in conducted using the two standard topic models and the seven state-of-the-art unmixing methods available in the literature. Our experiments, conducted using four different hyperspectral images, reveal that the proposed approach is able to provide competitive advantages over available unmixing approaches

    Cross-Domain Labeled LDA for Cross-Domain Text Classification

    Full text link
    Cross-domain text classification aims at building a classifier for a target domain which leverages data from both source and target domain. One promising idea is to minimize the feature distribution differences of the two domains. Most existing studies explicitly minimize such differences by an exact alignment mechanism (aligning features by one-to-one feature alignment, projection matrix etc.). Such exact alignment, however, will restrict models' learning ability and will further impair models' performance on classification tasks when the semantic distributions of different domains are very different. To address this problem, we propose a novel group alignment which aligns the semantics at group level. In addition, to help the model learn better semantic groups and semantics within these groups, we also propose a partial supervision for model's learning in source domain. To this end, we embed the group alignment and a partial supervision into a cross-domain topic model, and propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and Reuters dataset, extensive quantitative (classification, perplexity etc.) and qualitative (topic detection) experiments are conducted to show the effectiveness of the proposed group alignment and partial supervision.Comment: ICDM 201

    3D Robotic Sensing of People: Human Perception, Representation and Activity Recognition

    Get PDF
    The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives. As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical human-centered robotics applications. This research focuses on robotic sensing of people, that is, how robots can perceive and represent humans and understand their behaviors, primarily through 3D robotic vision. In this dissertation, I begin with a broad perspective on human-centered robotics by discussing its real-world applications and significant challenges. Then, I will introduce a real-time perception system, based on the concept of Depth of Interest, to detect and track multiple individuals using a color-depth camera that is installed on moving robotic platforms. In addition, I will discuss human representation approaches, based on local spatio-temporal features, including new “CoDe4D” features that incorporate both color and depth information, a new “SOD” descriptor to efficiently quantize 3D visual features, and the novel AdHuC features, which are capable of representing the activities of multiple individuals. Several new algorithms to recognize human activities are also discussed, including the RG-PLSA model, which allows us to discover activity patterns without supervision, the MC-HCRF model, which can explicitly investigate certainty in latent temporal patterns, and the FuzzySR model, which is used to segment continuous data into events and probabilistically recognize human activities. Cognition models based on recognition results are also implemented for decision making that allow robotic systems to react to human activities. Finally, I will conclude with a discussion of future directions that will accelerate the upcoming technological revolution of human-centered robotics
    • …
    corecore