3,161 research outputs found

    Human Attention in Image Captioning: Dataset and Analysis

    Get PDF
    In this work, we present a novel dataset consisting of eye movements and verbal descriptions recorded synchronously over images. Using this data, we study the differences in human attention during free-viewing and image captioning tasks. We look into the relationship between human attention and language constructs during perception and sentence articulation. We also analyse attention deployment mechanisms in the top-down soft attention approach that is argued to mimic human attention in captioning tasks, and investigate whether visual saliency can help image captioning. Our study reveals that (1) human attention behaviour differs in free-viewing and image description tasks. Humans tend to fixate on a greater variety of regions under the latter task, (2) there is a strong relationship between described objects and attended objects (97%97\% of the described objects are being attended), (3) a convolutional neural network as feature encoder accounts for human-attended regions during image captioning to a great extent (around 78%78\%), (4) soft-attention mechanism differs from human attention, both spatially and temporally, and there is low correlation between caption scores and attention consistency scores. These indicate a large gap between humans and machines in regards to top-down attention, and (5) by integrating the soft attention model with image saliency, we can significantly improve the model's performance on Flickr30k and MSCOCO benchmarks. The dataset can be found at: https://github.com/SenHe/Human-Attention-in-Image-Captioning.Comment: To appear at ICCV 201

    Objects that Sound

    Full text link
    In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.Comment: Appears in: European Conference on Computer Vision (ECCV) 201

    Skip-Thought Vectors

    Full text link
    We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice. We will make our encoder publicly available.Comment: 11 page

    Towards Interaction-level Video Action Understanding

    Get PDF
    A huge amount of videos have been created, spread, and viewed daily. Among these massive videos, the actions and activities of humans account for a large part. We desire machines to understand human actions in videos as this is essential to various applications, including but not limited to autonomous driving cars, security systems, human-robot interactions and healthcare. Towards real intelligent system that is able to interact with humans, video understanding must go beyond simply answering ``what is the action in the video", but be more aware of what those actions mean to humans and be more in line with human thinking, which we call interactive-level action understanding. This thesis identifies three main challenges to approaching interactive-level video action understanding: 1) understanding actions given human consensus; 2) understanding actions based on specific human rules; 3) directly understanding actions in videos via human natural language. For the first challenge, we select video summary as a representative task that aims to select informative frames to retain high-level information based on human annotators' experience. Through self-attention architecture and meta-learning, which jointly process dual representations of visual and sequential information for video summarization, the proposed model is capable of understanding video from human consensus (e.g., how humans think which parts of an action sequence are essential). For the second challenge, our works on action quality assessment utilize transformer decoders to parse the input action into several sub-actions and assess the more fine-grained qualities of the given action, yielding the capability of action understanding given specific human rules. (e.g., how well a diving action performs, how well a robot performs surgery) The third key idea explored in this thesis is to use graph neural networks in an adversarial fashion to understand actions through natural language. We demonstrate the utility of this technique for the video captioning task, which takes an action video as input, outputs natural language, and yields state-of-the-art performance. It can be concluded that the research directions and methods introduced in this thesis provide fundamental components toward interactive-level action understanding

    Sounding the past: three silent films

    Get PDF
    The project was an experiment in linking music and poetry to archive films, not only to provide an enhancing accompaniment but, in some cases, with the aim of making something new which would quite profoundly change the way that these films were perceived by audiences

    NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems

    Full text link
    In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neural Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples the specification of a network from the training and inference utilities to simplify the addition of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been used for LIUM's top-ranked submissions to WMT Multimodal Machine Translation and News Translation tasks in 2016 and 2017.Comment: 10 pages, 3 figure

    Attentive Single-Tasking of Multiple Tasks

    Full text link
    In this work we address task interference in universal networks by considering that a network is trained on multiple tasks, but performs one task at a time, an approach we refer to as "single-tasking multiple tasks". The network thus modifies its behaviour through task-dependent feature adaptation, or task attention. This gives the network the ability to accentuate the features that are adapted to a task, while shunning irrelevant ones. We further reduce task interference by forcing the task gradients to be statistically indistinguishable through adversarial training, ensuring that the common backbone architecture serving all tasks is not dominated by any of the task-specific gradients. Results in three multi-task dense labelling problems consistently show: (i) a large reduction in the number of parameters while preserving, or even improving performance and (ii) a smooth trade-off between computation and multi-task accuracy. We provide our system's code and pre-trained models at http://vision.ee.ethz.ch/~kmaninis/astmt/.Comment: CVPR 2019 Camera Read

    Towards Video Anomaly Retrieval from Video Anomaly Detection: New Benchmarks and Model

    Full text link
    Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies% at the frame level, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., ``vandalism'', is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks, UCFCrime-AR and XDViolence-AR, constructed on top of prevalent anomaly datasets. Meanwhile, we design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore