13,502 research outputs found

    On Nonrigid Shape Similarity and Correspondence

    Full text link
    An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks

    Quasi-Isometric Embeddings of Symmetric Spaces

    Full text link
    We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of higher rank symmetric spaces. In particular, we produce embeddings of SL(n,R)SL(n,\mathbb R) into Sp(2(n−1),R)Sp(2(n-1),\mathbb R) when no isometric embeddings exist. A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow-Morse Lemma in higher rank. Typically this lemma is replaced by the quasi-flat theorem which says that maximal quasi-flat is within bounded distance of a finite union of flats. We improve this by showing that the quasi-flat is in fact flat off of a subset of codimension 22.Comment: Exposition improved, outlines of proofs added to introduction. Typos corrected, references added. Also some discussion of the reducible case adde

    The holomorphic couch theorem

    Get PDF
    We prove that if two conformal embeddings between Riemann surfaces with finite topology are homotopic, then they are isotopic through conformal embeddings. Furthermore, we show that the space of all conformal embeddings in a given homotopy class deformation retracts into a point, a circle, a torus, or the unit tangent bundle of the codomain, depending on the induced homomorphism on fundamental groups. Quadratic differentials play a central role in the proof.Comment: 70 pages, 13 figures. Sections 4 and 8 modified following referee's repor

    From rubber bands to rational maps: A research report

    Get PDF
    This research report outlines work, partially joint with Jeremy Kahn and Kevin Pilgrim, which gives parallel theories of elastic graphs and conformal surfaces with boundary. One one hand, this lets us tell when one rubber band network is looser than another, and on the other hand tell when one conformal surface embeds in another. We apply this to give a new characterization of hyperbolic critically finite rational maps among branched self-coverings of the sphere, by a positive criterion: a branched covering is equivalent to a hyperbolic rational map if and only if there is an elastic graph with a particular "self-embedding" property. This complements the earlier negative criterion of W. Thurston.Comment: 52 pages, numerous figures. v2: New example

    Generalizations of the Kolmogorov-Barzdin embedding estimates

    Full text link
    We consider several ways to measure the `geometric complexity' of an embedding from a simplicial complex into Euclidean space. One of these is a version of `thickness', based on a paper of Kolmogorov and Barzdin. We prove inequalities relating the thickness and the number of simplices in the simplicial complex, generalizing an estimate that Kolmogorov and Barzdin proved for graphs. We also consider the distortion of knots. We give an alternate proof of a theorem of Pardon that there are isotopy classes of knots requiring arbitrarily large distortion. This proof is based on the expander-like properties of arithmetic hyperbolic manifolds.Comment: 45 page

    DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling

    Full text link
    This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and nonlocal generalization of the isometric mapping as compared to analogous non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.Comment: 10 pages, 11 Figure

    The Topological Cigar Observables

    Full text link
    We study the topologically twisted cigar, namely the SL(2,R)/U(1) superconformal field theory at arbitrary level, and find the BRST cohomology of the topologically twisted N=2 theory. We find a one to one correspondence between the spectrum of the twisted coset and singular vectors in the Wakimoto modules constructed over the SL(2,R) current algebra. The topological cigar cohomology is the crucial ingredient in calculating the closed string spectrum of topological strings on non-compact Gepner models.Comment: 28 page
    • …
    corecore