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Abstract We prove that if two conformal embeddings between Riemann
surfaces with finite topology are homotopic, then they are isotopic through
conformal embeddings. Furthermore, we show that the space of all conformal
embeddings in a given homotopy class is homotopy equivalent to a point, a
circle, a torus, or the unit tangent bundle of the codomain, depending on the
induced homomorphism on fundamental groups. Quadratic differentials play
a central role in the proof.
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1 Introduction

Loosely speaking, the 1-parametric h-principle is said to hold for a class of
maps betweenmanifolds if the only obstructions to connecting twomaps in the
class through maps in the same class are topological [10, p. 60]. For example,
the 1-parametric h-principle holds for immersions of S2 inR

3, so that the stan-
dard sphere can be turned inside out via immersions. This is known as Smale’s
paradox. Of course, there are situations where the 1-parametric h-principle
fails due to geometric obstructions. A famous example is Gromov’s symplec-
tic camel theorem, which says that one cannot move a closed 4-dimensional
ball through a hole in a wall in R

4 via symplectic embeddings if the ball is
bigger than the hole.
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The holomorphic couch theorem 321

For us, a Riemann surface is a connected 1-dimensional complex manifold.
A finite Riemann surface is a Riemann surface with finitely generated fun-
damental group. Equivalently, a finite Riemann surface is a closed Riemann
surface with finitely many points and closed disks removed. This should not be
confused with the notion of a Riemann surface of finite type, which is a closed
Riemann surface with finitely many points removed. A conformal embedding
between Riemann surfaces is an injective holomorphic map.

In this paper, we prove that the 1-parametric h-principle holds for conformal
embeddings between finite Riemann surfaces.

Theorem 1.1 (The holomorphic couch theorem) If two conformal embed-
dings between finite Riemann surfaces are homotopic, then they are isotopic
through conformal embeddings.

We think of the codomain as a house and the domain as a couch that we
want to move around in the house without changing its holomorphic structure.
Hence the name “holomorphic couch”.

Given finite Riemann surfaces X and Y , and a topological embedding h :
X → Y , we define CEmb(X, Y, h) to be the set of all conformal embeddings
homotopic to h. We equip this set with the compact-open topology, which is
the same as the topology of uniform convergence on compact sets with respect
to any metric inducing the topology given on Y . Theorem 1.1 is equivalent1 to
the statement that CEmb(X, Y, h) is path-connected whenever it is non-empty.

In fact, we prove a stronger result. Namely, we determine the homotopy
type of the space CEmb(X, Y, h). The answer depends on the image of h at
the level of fundamental groups. We say that h is trivial, cyclic, or generic if
the image of the induced homomorphism π1(h) : π1(X, x) → π1(Y, h(x))
is trivial, infinite cyclic, or non-abelian, respectively. If Y is a torus, then the
image of π1(h) can be isomorphic to Z

2, but we do not need to distinguish
this case.

Theorem 1.2 (Strong holomorphic couch) Let h : X → Y be a topological
embedding between finite Riemann surfaces such that CEmb(X, Y, h) is non-
empty. Then CEmb(X, Y, h) is homotopy equivalent to either the unit tangent
bundle of Y , a circle, or a point, depending on whether h is trivial, cyclic,
or generic. This is unless Y is a torus and h is non-trivial, in which case
CEmb(X, Y, h) is homotopy equivalent to a torus.

If h is generic, then CEmb(X, Y, h) is contractible. This is the most inte-
resting case; the other cases are either analogous or corollaries (see Sect. 11).
The rest of the introduction outlines the proof of Theorem 1.2 in the case that
h is generic, although we state some intermediate results in greater generality.

1 Since X is locally compact Hausdorff, a path [0, 1] → Map(X, Y ) is the same as a homotopy
X × [0, 1] → Y [31, p. 287].
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322 M. F. Bourque

1.1 Ioffe’s theorem

A Teichmüller embedding between finite Riemann surfaces X and Y is an
injective continuous map f : X → Y for which there exists a constant K ≥ 1
and non-zero integrable holomorphic quadratic differentials on X and Y that
extend to be real and non-negative along the ideal boundary, such that f is
locally of the form x + iy �→ Kx + iy in natural coordinates and Y\ f (X) is
a finite union of points and horizontal arcs.

Ourmain tool is a theorem of Ioffe which says that extremal quasiconformal
embeddings and Teichmüller embeddings are one and the same [20].

Theorem 1.3 (Ioffe) Let f : X → Y be a quasiconformal embedding
between finite Riemann surfaces which is not conformal. Then f has mini-
mal dilatation (i.e. is closest to being conformal) in its homotopy class if and
only if it is a Teichmüller embedding.

We reprove this theorem in Sect. 3. In the special case where X and Y
are closed, this reduces to Teichmüller’s celebrated theorem, since an embed-
ding between closed surfaces is a homeomorphism. What is different from
Teichmüller’s theorem, however, is that Teichmüller embeddings are not ne-
cessarily unique in their homotopy class—even after ruling out the obvious
counterexamples. This is an important issue which we discuss next.

1.2 Slit mappings

A slit mapping is a conformal Teichmüller embedding, i.e., with stretch factor
K = 1. In this case, the quadratic differential on X is the pull-back of the
quadratic differential on Y by the slit mapping.

We show that if CEmb(X, Y, h) contains a slit mapping, then every element
of CEmb(X, Y, h) is a slit mapping and CEmb(X, Y, h) is naturally homeo-
morphic to a point, a compact interval, a circle, or a torus.

Theorem 1.4 (Slit mappings are almost rigid) Let h : X → Y be any embed-
ding between finite Riemann surfaces. Suppose that CEmb(X, Y, h) contains
a slit mapping with respect to a quadratic differential ψ on Y . Then every
f ∈ CEmb(X, Y, h) is a slit mapping with respect to ψ . Moreover, for every
x ∈ X, the evaluation map CEmb(X, Y, h) → Y sending f to f (x) is a
homeomorphism onto its image. This image is equal to Y if Y is a torus, is a
compact horizontal arc or a point if h is generic, and is a horizontal circle if
h is cyclic and Y is not a torus.

Abetterway to say this is: except in the torus case, any conformal embedding
homotopic to a slit mapping differs from the latter by a horizontal translation
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The holomorphic couch theorem 323

which can be performed gradually (Theorem 4.1). An analogous statement
holds for Teichmüller embeddings of dilatation K > 1.

This theorem corrects the wrong statement from [20] that CEmb(X, Y, h)
is a single point if h is generic and CEmb(X, Y, h) contains a slit mapping.
Indeed, there are easy examples showing that CEmb(X, Y, h) can be a non-
degenerate interval (see Sect. 3.3).

We prove Theorem 1.4 in Sect. 4. Observe that Theorem 1.4 implies Theo-
rem 1.2 whenever CEmb(X, Y, h) contains a slit mapping. If h is generic and
CEmb(X, Y, h) is non-empty but does not contain a slit mapping, the idea is to
enlarge X until it barely fits in Y , then appeal to Theorem 1.4 for the enlarged
surface.

1.3 Modulus of extension

Given a finite Riemann surface X with non-empty ideal boundary, we define
a 1-parameter family of enlargements of X as follows. We first choose an
analytic parametrization S1 → C of each ideal boundary component C of X .
Then, for every r ∈ (0,∞], we let Xr be the bordered surface X ∪ ∂X with
a copy of the cylinder S1 × [0, r) glued to each ideal boundary component
along S1 × {0} via the fixed parametrization S1 → C . We also let X0 = X .

We say that a cyclic embedding is parabolic if its image on π1 is generated
by a loop around a puncture. Denote by (H) the hypothesis that:

– h : X → Y is a non-trivial and non-parabolic embedding between finite
Riemann surfaces;

– X has non-empty ideal boundary2;
– {Xr }r∈[0,∞] is a 1-parameter family of enlargements of X ;
– CEmb(X, Y, h) is non-empty.

Under hypothesis (H), we define the modulus of extension m( f ) of any
f ∈ CEmb(X, Y, h) as the supremum of the set of r ∈ [0,∞] such that f
extends to a conformal embedding of Xr into Y . Montel’s theorem in complex
analysis implies that:

– for every f ∈ CEmb(X, Y, h) the supremumm( f ) is achieved by a unique
conformal embedding ̂f : Xm( f ) → Y extending f ;

– CEmb(X, Y, h) is compact;
– m is upper semi-continuous.

In particular, m achieves its maximum value over CEmb(X, Y, h). Using
Ioffe’s theorem, it is not too hard to show that if m attains its maximum at f ,
then ̂f is a slit mapping. We prove in Sect. 5 that the same holds if f is only
assumed to be a local maximum of m.

2 If X has finite type, then Theorem 1.2 is easy (see Sect. 2.2).
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324 M. F. Bourque

Theorem 1.5 (Characterization of local maxima) Assume hypothesis (H). Let
f ∈ CEmb(X, Y, h) be a local maximum ofm such thatm( f ) <∞ and let ̂f
be the conformal extension of f to Xm( f ). Then ̂f is a slit mapping. Conversely,
if g : Xr → Y is a slit mapping such that g|X is homotopic to h, then g|X is a
global maximum of m. The set M of all local maxima of m is homeomorphic
to a point, a compact interval, a circle, or a torus, and m is constant on M.

The initial motivation for studying m was to think of it as a Morse function
for the space CEmb(X, Y, h). In an ideal world, flowing along the gradient of
m would yield a deformation retraction of CEmb(X, Y, h) into M . This does
not make sense, however, since m is not even continuous unless it is constant
equal to zero. In any case, the connectedness of CEmb(X, Y, h) is a direct
consequence of Theorem 1.5 (see Sect. 5).

Theorem 1.6 Under hypothesis (H), the space CEmb(X, Y, h) is connected.

To improve upon this, we show that there are no local obstructions to con-
tractibility.

1.4 Where can one point go?

Throughout this subsection, we assume that:

– h : X → Y is a generic embedding between finite Riemann surfaces;
– X has non-empty ideal boundary;
– CEmb(X, Y, h) is non-empty and does not contain any slit mapping;

which we call hypothesis (H′). Note that (H′)⇒ (H).
Given a point x ∈ X , we are interested in set of points in Y where x can

be mapped by the elements of CEmb(X, Y, h). It is convenient to also keep
track of how x gets mapped to a given y ∈ Y in the following sense. If
f ∈ CEmb(X, Y, h), then by definition there exists a homotopy

H : X × [0, 1] → Y

from h to f . Since h is generic, the homotopy class rel endpoints of the path
t �→ H(x, t) from h(x) to f (x) does not depend on the particular choice of
H (see Lemma 6.1). Denote the homotopy class of that path by liftx ( f ). If the
point x ∈ X is kept fixed, liftx ( f ) represents an element of the universal cover
of Y based at h(x). Since Y has non-abelian fundamental group, its universal
cover is conformally equivalent to the unit disk D.

The map liftx : CEmb(X, Y, h) → D is continuous, and we call its image
Blob(x, X, Y, h). The blob is simpler than the image of the evaluation map in
much the sameway as Teichmüller space is simpler thanmoduli space. Indeed,
the blob is as simple as can be.
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The holomorphic couch theorem 325

Theorem 1.7 (The blob is a disk) Under hypothesis (H′), Blob(x, X, Y, h) is
homeomorphic to a closed disk for any x ∈ X.

The proof has four steps:

– the blob is compact and connected (because CEmb(X, Y, h) is);
– the blob is semi-smooth;
– every semi-smooth subset of R

2 is a 2-manifold with boundary;
– there are no holes in the blob.

We refer the reader to Sects. 6–9 for the definition of a semi-smooth set and
the breakdown of these steps. Suffice it to say that Ioffe’s theorem implies that
points on the boundary of Blob(x, X, Y, h) come from conformal embeddings
f whose restriction f � : X\{x} → Y\{ f (x)} is a slit mapping. We then use a
variational formula for extremal length to deduce information about the shape
of Blob(x, X, Y, h) near such boundary points.

1.5 Moving one point at a time

We now explain how to deduce that CEmb(X, Y, h) is contractible from the
previous results, still assuming hypothesis (H′). Pick a countable dense set
{x1, x2, ...} in X and let F ∈ CEmb(X, Y, h) be any conformal embedding.
We define a deformation retraction of the space CEmb(X, Y, h) into {F}
by moving one point at a time. Given a map f in CEmb(X, Y, h), we join
liftx1( f ) to liftx1(F) by a path γ1 in Blob(x1, X, Y, h). Such a path exists
since Blob(x1, X, Y, h) is homeomorphic to a closed disk.

For every t ∈ [0, 1], we then look at where x2 can go under maps g in
CEmb(X, Y, h) which satisfy liftx1(g) = γ1(t). This defines a new kind of
blob, call it Blobt (x2). We show that Blobt (x2) moves continuously with t ,
which allows us to construct a second path γ2 from liftx2( f ) to liftx2(F) with
the property that for every t ∈ [0, 1], the point γ2(t) belongs to Blobt (x2).

Proceeding by induction, we obtain a sequence of paths γ1, γ2, . . . such
that for every n ∈ N and every t ∈ [0, 1], there exists at least one map f nt in
CEmb(X, Y, h) such that liftx j ( f

n
t ) = γ j (t) for every j ∈ {1, . . . , n}. If we fix

t and pass to a subsequence, we get some limit ft ∈ CEmb(X, Y, h) for which
liftx j ( ft ) = γ j (t) for every j ∈ N. Since any two limits agree on the dense
set {x1, x2, ...}, we actually have convergence f nt → ft as n → ∞ (without
passing to a subsequence). By a similar argument, ft depends continuously on
t . We thus found a path from f to F in CEmb(X, Y, h).

We construct the paths γ1, γ2, . . . carefully enough so that they depend
continuously on the initial map f , hence the path t �→ ft also depends conti-
nuously on f . The end result is a deformation retraction of CEmb(X, Y, h)
into {F}. See Sect. 10 for details.
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326 M. F. Bourque

1.6 Notes and references

The holomorphic couch problem arose in the context of renormalization in
complex dynamics.AlthoughTheorem1.1 does not have any direct application
to dynamics, some of the tools used here do (see [41]).

The space CEmb(D,C), or rather its subspace S of conformal embeddings
f : D → C satisfying f (0) = 0 and f ′(0) = 1, was the subject of much
interest until the solution of the Bieberbach conjecture by de Branges in 1984.
It is easy to see that S is contractible in the compact-open topology. On the
other hand, S has isolated points when equipped with the topology of uniform
convergence of the Schwarzian derivative [42]. The literature on the class
S is quite vast. In comparison, not much has been written about conformal
embeddings between general Riemann surfaces. Exceptions include [6,20–
22,36] and [37].

The holomorphic couch problem for embeddings of a multiply-punctured
disk in a multiply-punctured sphere was first considered in [34]. However, the
solution presented there relies in part on a rigidity claim [33] which is known
to be false in general [23].

Theorems 1.4 and 1.5 generalize the fact that in the homotopy class of an
essential simple closed curve α on a finite Riemann surface Y , there exists a
unique embedded annulus X ⊂ Y of largest modulus, and X is the horizontal
cylinder of a quadratic differential ψ on Y (known as the Jenkins–Strebel
differential corresponding to α).

In [6], Earle and Marden consider a functional similar to our modulus of
extensionm where they keep the annuli disjoint from X . Their construction is
more natural than ours as it does not require any choice of parametrization of
∂X .Wedecided to glue the annuli to X in order to dealwith a connected surface.
The main theorem in [6] is analogous to Theorem 1.5, but its uniqueness
statement is false for the same reason that Ioffe’s uniqueness statement is.

There is a plethora of other extremal problems on Riemann surfaces who-
se solutions involve quadratic differentials (see e.g. [25] and the references
therein). These are all examples of “Teichmüller’s principle” [22, p.48].

For the class S of normalized univalent functions from D to C, a suitable
version of the blob is actually a round disk. More precisely, for every z ∈ D

and every f ∈ S, the quantity w = log( f (z)/z) satisfies
∣

∣

∣

∣

w − log
1

1− |z|2
∣

∣

∣

∣

≤ log
1+ |z|
1− |z|

and every value w satisfying the inequality is achieved for some f ∈ S.
This was proved by Grunsky in 1932 (see [5, p. 323]). The blob for K -
quasiconformal homeomorphisms of the disk with prescribed boundary values
was studied in [40] (see also [9] for a generalization to arbitrary hyperbolic
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surfaces). Our approach for proving that the blob is homeomorphic to a closed
disk seems similar to Strebel’s, but the context is different.

The idea of moving one point at a time to get an isotopy is reminiscent
of the finite “holomorphic axiom of choice” used by Slodkowski to extend
holomorphicmotions [38]. Our isotopies are holomorphic in the space variable
and continuous in the timevariable,whereas holomorphicmotions are the other
way around.

2 Preliminaries

2.1 Ideal boundary and punctures

ARiemann surface is hyperbolic if its universal covering space is conformally
isomorphic to the unit disk D. The only non-hyperbolic Riemann surfaces are
the Riemann sphere ̂C, the complex plane C, the once-punctured plane C\{0}
and complex tori. A hyperbolic surface X can be regarded as the quotient of
its universal covering space D by its group of deck transformations Γ . The
limit set ΛΓ is the set of accumulation points in ∂D of the Γ -orbit of any point
z ∈ D, and the set of discontinuity is ΩΓ = ∂D\ΛΓ . The ideal boundary of
X is ∂X = ΩΓ /Γ . The union X ∪ ∂X = (D∪ΩΓ )/Γ is naturally a bordered
Riemann surface, since Γ acts properly discontinuously and analytically on
D∪ΩΓ . If X is a finite hyperbolic surface, then ∂X has finitelymany connected
components, each homeomorphic to a circle.

A puncture in a Riemann surface X is an end corresponding to a proper
(preimages of compact sets are compact) conformal embedding D\{0} → X .
For example, C has one puncture at infinity and C\{0} has two punctures. For
hyperbolic surfaces, punctures are the same as a cusps, or ends with parabolic
monodromy.Everypuncture canbefilled,meaning that one can add themissing
point and extend the complex structure there. The set of punctures of X is
denoted by Ẋ .

Given a finite Riemann surface X , we write ̂X = X ∪ ∂X ∪ Ẋ for the
compact bordered Riemann surface obtained after adding the ideal boundary
and filling the punctures (by definition, a non-hyperbolic Riemann surface has
empty ideal boundary). Suppose that ∂X is non-empty. Then if we take two
copies of ̂X—the second with reversed orientation—and glue them along ∂X
with the identity, we get a closed Riemann surface called the double of ̂X .
Because of this construction, many theorems about Riemann surfaces of finite
type are also true for finite Riemann surfaces.

2.2 Automorphisms

Given a Riemann surface X , let Aut0(X) be its group of conformal automor-
phisms homotopic to the identity. It is well-known that:
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328 M. F. Bourque

– Aut0(̂C) acts simply transitively on ordered triples of distinct points in ̂C;
– Aut0(C) acts simply transitively on ordered pairs of distinct points in C;
– Aut0(C\{0}) acts simply transitively on C\{0};
– if X is a torus, then Aut0(X) acts simply transitively on X ;
– Aut0(D) acts simply transitively on the unit tangent bundle of D (with
respect to the hyperbolic metric);

– if r ∈ [0, 1), then Aut0(D\rD) is isomorphic to the circle S1.

In all other cases, Aut0(X) only contains the identity.

Lemma 2.1 Let X be a hyperbolic Riemann surface not isomorphic to D nor
D\{0}, and let h : X → X be a holomorphic map homotopic to the identity.
Then h is equal to the identity unless X is an annulus and h is a rotation.

In this lemma, X is not assumed to be finite and h is not assumed to be
either injective or surjective.

Proof By the Schwarz lemma, h is 1-Lipschitz with respect to the hyperbolic
metric. Therefore, if α is a closed geodesic in X , then h(α) is at most as long as
α. But geodesics minimize length in their homotopy class, so that h(α) = α.
In particular, h is an isometry along α.

If X is an annulus, then it contains a unique simple closed geodesic α. We
can post-compose h by a rotation r of X so that r ◦ h is equal to the identity
on α and hence on all of X by the identity principle.

If X is not an annulus, then it contains a closed geodesic α which self-
intersects exactly once. Then h fixes this self-intersection point, thus all of α
pointwise, and hence all of X pointwise by the identity principle. 
�

It follows that Aut0(X) is path-connected for any Riemann surface X . More
precisely, Aut0(X) is

– homotopy equivalent to the unit tangent bundle of X if π1(X) = {0};
– homotopy equivalent to S1 if π1(X) ∼= Z;
– homeomorphic to S1 × S1 if π1(X) ∼= Z

2;
– a point if π1(X) is non-abelian.

Theorems 1.1 and 1.2 can be viewed as generalizations of this. When the
domain has finite type, Theorem 1.2 actually follows from the above.

Lemma 2.2 Suppose that h : X → Y is a topological embedding between
finite Riemann surfaces, where ∂X is empty and Y is not the spherewith at most
2 punctures nor a torus. Then CEmb(X, Y, h) contains at most one element.

Proof Since conformal embeddings send punctures to punctures or regular
points, every f in CEmb(X, Y, h) extends to a conformal embedding ̂f from
X ∪ Ẋ to Y ∪ Ẏ . As ̂X = X ∪ Ẋ is compact and ̂f is open, the map ̂f is
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surjective. In particular, Y ∪ Ẏ = ̂Y is compact. If f, g ∈ CEmb(X, Y, h),
then the inverses of the extensions ̂f , ĝ : ̂X → ̂Y are homotopic rel Ẏ . The
composition ĝ ◦ ̂f −1 is thus a conformal automorphism of ̂Y homotopic to
the identity rel Ẏ . If ̂Y has genus 0, then Ẏ must contain at least 3 points by
hypothesis, so that ̂f = ĝ. If ̂Y has genus 1, then Ẏ contains at least 1 point,
so that ̂f = ĝ. If ̂Y has genus at least 2, then ̂f = ĝ by Lemma 2.1. 
�

By the same argument, if ∂X = ∅ and Y is the sphere with at most 2
punctures or a torus, then CEmb(X, Y, h) is either empty or homeomorphic to
Aut0(Y ). Theorem 1.2 for domains of finite type follows easily.
Proof of Theorem 1.2 in the case where ∂X = ∅. The image of any element in
CEmb(X, Y, h) has finite complement in Y so that π1(h) surjects onto π1(Y ).
If π1(Y ) is non-abelian, then h is generic and CEmb(X, Y, h) is a singleton by
Lemma 2.2. Otherwise CEmb(X, Y, h) is homeomorphic to Aut0(Y ), whose
homotopy type was described above. 
�

2.3 Montel’s theorem

The simplest version of Montel’s theorem says that the set of all holomorphic
maps from D to D is compact. This implies a similar result for holomorphic
maps between arbitrary hyperbolic surfaces by lifting to the universal cov-
ers.

A sequence of maps fn : X → Y between Riemann surfaces diverges
locally uniformly if for every compact sets K ⊂ X and L ⊂ Y , the sets
fn(K ) and L are disjoint for all large enough n. A set F of maps between
two Riemann surfaces X and Y is normal if every sequence inF admits either
a locally uniformly convergent subsequence or a locally uniformly divergent
subsequence.

Theorem 2.3 (Montel’s theorem) If X and Y are hyperbolic surfaces, then
every set of holomorphic maps from X to Y is normal.

See [29, p. 34]. Note that the limit of a convergent sequence of holomorphic
maps is holomorphic. If every map in the sequence is injective, then the limit
is either injective or constant. If every map in the sequence is locally injective,
then the limit is either locally injective or constant.

2.4 Quasiconformal maps

Let K ≥ 1. A K -quasiconformal map3 between Riemann surfaces is a map
f such that in charts, its first partial derivatives in the distributional sense

3 This notion is usually called “quasiregular map”, and the expression “quasiconformal map”
is usually reserved for homeomorphisms. It seems more convenient to modify the noun “map”
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are locally in L2 and the formal matrix d f of partial derivatives satisfies the
inequality ‖d f ‖2 ≤ K det(d f ) almost everywhere. For almost every point z,
the real linear map dz f sends circles in the tangent plane at z to ellipses of
eccentricity ‖dz f ‖2/ det(dz f ) in the tangent plane at f (z), and this ratio is
called the pointwise dilatation of f at z. The dilatation of f , denoted Dil( f ),
is the smallest K ≥ 1 for which f is K -quasiconformal. This is the same as
the essential supremum of the pointwise dilatation of f .

ABeltrami form on a Riemann surface X is a mapμ : T X\0→ C such that
μ(λv) = (λ/λ)μ(v) for everyv ∈ T X\0 and everyλ ∈ C\{0}where0 denotes
the zero section. In charts, theWirtinger derivatives of a quasiconformal map
f are

∂ f = 1

2

(

∂ f

∂x
− i

∂ f

∂y

)

and ∂ f = 1

2

(

∂ f

∂x
+ i

∂ f

∂y

)

.

The ratio ∂ f/∂ f is naturally a Beltrami form, and is sometimes called the
Beltrami coefficient of f . The Beltrami coefficient of f encodes the field of
ellipses in T X which d f sends to circles.

The measurable Riemann mapping theorem of Morrey and Ahlfors–Bers
says that every measurable ellipse field with bounded eccentricity is the Bel-
trami coefficient of a quasiconformal homeomorphism.

Theorem 2.4 (The measurable Riemann mapping theorem) Let X be a Rie-
mann surface and let μ be a measurable Beltrami form on X such that
‖μ‖∞ < 1. Then there exists a Riemann surface Y and a quasiconformal
homeomorphism f : X → Y such that ∂ f/∂ f = μ almost everywhere.
The surface and the quasiconformal homeomorphism are unique up to post-
composition with a conformal homeomorphism.

An important consequence is the following factorization principle. Suppose
that f : X → Y is a quasiconformal map. Then f = g ◦ h where h : X → Z
is a quasiconformal homeomorphism and g : Z → Y is holomorphic. Indeed,
we can take h to be the solution of the Beltrami equation with μ = ∂ f/∂ f and
let g = f ◦ h−1.

Another fundamental property of K -quasiconformal homeomorphisms is
compactness under appropriate normalization [2, p. 32].

Footnote 3 continued
instead, to indicate further attributes. For example we will use “quasiconformal immersion”,
“quasiconformal embedding”, or “quasiconformal homeomorphism” for a quasiconformal map
which is a local embedding, an embedding, or a homeomorphism respectively.
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Theorem 2.5 For every K ≥ 1, the space of all K -quasiconformal homeo-
morphisms from D to D fixing 0 is compact.

Lastly, we will use the fact that quasiconformal homeomorphisms send
punctures to punctures.As a consequence, any quasiconformal embedding bet-
ween finite Riemann surfaces extends to a quasiconformal embedding between
the surfaces with their punctures filled.

The readermay consult [2] formore background on quasiconformal homeo-
morphisms.

2.5 Quadratic differentials

A quadratic differential on a Riemann surface X is a map ϕ : T X → ̂C

such that ϕ(λv) = λ2ϕ(v) for every v ∈ T X and every λ ∈ C. A quadratic
differential on X is holomorphic (resp. meromorphic) if for every open set
U ⊂ X , and every holomorphic vector field v : U → TU , the function
ϕ◦v : U → C is holomorphic (resp. meromorphic). All quadratic differentials
in this paper will be holomorphic or meromorphic. The pull-back f ∗ϕ of a
quadratic differential ϕ by a holomorphic map f is defined in the usual way
by the formula f ∗ϕ(v) = ϕ(d f (v)).

A vector v ∈ T X is horizontal (resp. vertical) for ϕ if ϕ(v) > 0 (resp.
ϕ(v) < 0). Let I ⊂ R be an interval. A piecewise smooth arc γ : I → X is
horizontal (resp. vertical) if γ ′(t) is horizontal (resp. vertical) wherever it is
defined. Such a trajectory is called regular if it does not contain any zero or
pole of ϕ. The absolute value |ϕ| is an area form, and its integral ‖ϕ‖ = ∫

X |ϕ|
is the norm of ϕ. For a finite Riemann surface X , we denote by Q(X) the
set of all integrable holomorphic quadratic differentials ϕ on X which extend
analytically to the ideal boundary of X , and such that ϕ(v) ∈ R for every
vector v tangent to ∂X . Every ϕ ∈ Q(X) extends to a meromorphic quadratic
differential on ̂X with at most simple poles on Ẋ . The set Q+(X) is similarly
defined, but with the additional requirements that ϕ ≥ 0 along ∂X and that
ϕ is not identically zero. The set Q(X) is a real vector space inside of which
Q+(X) forms a convex cone.

For every simply connected open set U ⊂ ̂X where a quadratic differential
ϕ does not have any zero or pole, there exists a locally injective holomorphic
map z : U → C such that ϕ = dz2. The map z is unique up to translation
and sign and is called a natural coordinate when it is injective. If ϕ ∈ Q(X),
then the atlas of natural coordinates for ϕ is a half-translation structure on ̂X
minus the singularities of ϕ. The transition maps for this atlas have the form
z �→ ±z + c. Such a structure induces a flat geometry with cone points on
̂X . We return to this geometry at the end of the present section. The standard
reference for this material is [39].
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2.6 Teichmüller’s theorem

A Teichmüller homeomorphism (usually called Teichmüller map) between
finite Riemann surfaces X and Y is a homeomorphism f : X → Y such that
there exists a constant K > 1 and non-zero ϕ ∈ Q(X) and ψ ∈ Q(Y ) such
that f is locally of the form x+ iy �→ Kx+ iy in natural coordinates for ϕ and
ψ , up to sign and translation. Such a homeomorphism is K -quasiconformal
with constant pointwise dilatation.

The following theorems of Teichmüller are of central importance.

Theorem 2.6 (Teichmüller’s existence theorem) Let h be a quasiconformal
homeomorphism between finite Riemann surfaces. If there is no conformal
homeomorphism homotopic to h, then there is a Teichmüller homeomorphism
homotopic to h.

Theorem 2.7 (Teichmüller’s uniqueness theorem) Let f : X → Y be a
Teichmüller homeomorphism of dilatation K between finite Riemann surfaces.
If g is a K -quasiconformal homeomorphism homotopic to f , then g ◦ f −1 is a
conformal automorphism of Y homotopic to the identity. If Y is not an annulus
nor a torus, then g = f .

Teichmüller’s theorem is usually stated and proved for closed Riemann
surfaces, but the general case follows from the closed case by doubling across
the ideal boundary and by taking a branched cover of degree 2 or 4 ramified
at the punctures [1].

2.7 Teichmüller spaces

Let S be a finite Riemann surface. The Teichmüller space T (S) is defined as
the set of pairs (X, f )where X is a finite Riemann surface and f : S → X is a
quasiconformal homeomorphism, modulo the equivalence relation (X, f ) ∼
(Y, g) if and only if g ◦ f −1 is homotopic to a conformal homeomorphism.
The equivalence class of (X, f ) is denoted [X, f ], or just X when themarking
f is implicit. The Teichmüller distance between two points of T (S) is defined
as

d([X, f ], [Y, g]) = 1

2
inf logDil(h)

where the infimum is taken over all quasiconformal homeomorphisms h homo-
topic to g ◦ f −1. By Teichmüller’s theorem, the infimum is realized by a
(usually unique) quasiconformal homeomorphism h which is either confor-
mal or a Teichmüller homeomorphism.
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The space T (S) is a contractible real-analytic manifold of finite dimen-
sion. Let M(X) denote the space of essentially bounded Beltrami forms on
X ∈ T (S). By the measurable Riemann mapping theorem, the tangent space
to T (S) at X can be identified with the quotient of M(X) by its subspace
M0(X) of infinitesimally trivial deformations. There is a natural pairing bet-
weenM(X) and Q(X) given by

〈μ, ϕ〉 = Re
∫

X
μϕ,

and it turns out thatM0(X) = Q(X)⊥ with respect to this pairing. The tangent
and cotangent spaces to T (S) at X are thus isomorphic toM(X)/Q(X)⊥ and
Q(X) respectively. See [7] and [8] for more details.

Remark 2.8 In the literature, T (S) is called the reduced Teichmüller space of
S. The (unreduced) Teichmüller space of S is defined similarly, except that
pairs (X, f ) and (Y, g) are declared equivalent if g ◦ f −1 is homotopic to
a conformal homeomorphism rel ∂X . This unreduced Teichmüller space is
always a contractible complex manifold, but has infinite dimension whenever
the ideal boundary of S is non-empty. We will only consider reduced Teich-
müller spaces in this paper, and will therefore omit the adjective “reduced”.

2.8 Homotopies

If twomaps are homotopic, then they induce the same homomorphismbetween
fundamental groups, up to conjugation. The converse also holds under appro-
priate conditions [2, p. 60] [3, §6].

Lemma 2.9 Let X be a space which has a universal cover, let Y be a metric
space whose universal cover is a uniquely geodesic space in which geodesics
depend continuously on endpoints, and let f0, f1 : X → Y be continuous
maps. Suppose that for some x ∈ X the induced homomorphisms π1( f j ) :
π1(X, x) → π1(Y, f j (x)) agree up to conjugation by a path between f0(x)
and f1(x). Then f0 and f1 are homotopic.

Proof Let ˜X and ˜Y be the universal covers of X and Y , and let α be a path
connecting f0(x) to f1(x) which conjugates the homomorphisms π1( f0) and
π1( f1). Given a lift ˜f0 : ˜X → ˜Y , the path α allows us to lift f1 in such a way
that ˜f0 and ˜f1 are equivariant with respect to the same homomorphism of deck
groups. The homotopy from ˜f0 to ˜f1 sending (x, t) ∈ ˜X × [0, 1] to the point
at proportion t along the geodesic from ˜f0(x) to ˜f1(x) in ˜Y is continuous and
equivariant, so it descends to a homotopy from f0 to f1. 
�
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This is also true if X is a CW-complex and Y is a K (π, 1) [18, p. 90].
If X and Y are finite Riemann surfaces and Y is not the sphere, then either
hypotheses are satisfied. The most useful consequence for us is that homotopy
classes of maps between finite Riemann surfaces are closed.

Corollary 2.10 Let X andY befiniteRiemann surfaces and let fn, f : X → Y
be continuous maps such that fn → f as n → ∞. Then fn is homotopic to
f for all large enough n.

Proof First assume that Y is the Riemann sphere. By the Hopf theorem [30, p.
50], two maps X → Y are homotopic if and only if they have the same degree.
Since topological degree depends continuously on the map, fn eventually has
the same degree as f and is therefore homotopic to it.

Suppose that Y is not the Riemann sphere. Then the universal cover of
Y supports a metric which is proper (whose closed balls are compact) and
is uniquely geodesic. In such a metric, geodesics depend continuously on
endpoints. Thus the hypotheses of Lemma 2.9 are satisfied.

Let β1, . . . , βk be loops based at x ∈ X which generate π1(X, x) and let
V be a simply connected neighborhood of f (x) in Y . Let n be large enough
so that fn(x) ∈ V and so that there is a homotopy between the restrictions
fn|β j and f |β j which keeps the image of the basepoint x inside V for every
j ∈ {1, . . . , k}. Let α be any path from f (x) to fn(x) in V . Then α∗ fn(β j )∗α
is homotopic to f (β j ) as loops based at f (x), for every j . In other words, α
conjugates the induced homomorphisms π1( f ) and π1( fn). By Lemma 2.9,
fn is homotopic to f . 
�
In Teichmüller theory, one often goes back and forth between punctures and

marked points as convenient. This passage is justified by the fact that quasicon-
formal homeomorphisms send punctures to punctures. Moreover, homotopies
defined in the complement of punctures can be modified as to extend to the
punctures.

Definition 2.11 Let h : X → Y be a quasiconformal embedding between
finite Riemann surfaces. Recall that h extends to a quasiconformal embedding
h from X ∪ Ẋ to Y ∪ Ẏ .We say that a puncture p ∈ Ẋ is essential if h(p) ∈ Ẏ
and is inessential if h(p) ∈ Y .

Lemma 2.12 Let X and Y be finite Riemann surfaces, let f0, f1 : X → Y be
quasiconformal embeddings, let f 0 and f 1 be their extensions to X ∪ Ẋ , and
let H : X × [0, 1] → Y be a homotopy from f0 to f1. Let E ⊂ Ẋ be the set of
punctures which are essential with respect to f0. Then there exists a homotopy
H : X ∪ Ẋ × [0, 1] → Y ∪ Ẏ from f 0 to f 1 which is constant on E × [0, 1],
maps X × [0, 1] into Y , and whose restriction to X × [0, 1] is homotopic to
H.
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Proof For each p ∈ Ẋ , let Dp ⊂ X ∪ Ẋ be an embedded closed disk such that
Dp∩ Ẋ = {p}. Further assume that the disks Dp are all disjoint. The idea is to
define H = H on X\⋃

p∈Ẋ Dp × [0, 1] and then extend this to a continuous
map H : Dp × [0, 1] → Y ∪ Ẏ sending Dp\{p} into Y for each p ∈ Ẋ . If the
puncture p ∈ Ẋ is inessential, then the annulus H(∂Dp×[0, 1]) is contractible
in Y so that H extends to a continuous map H : Dp × [0, 1] → Y . If p ∈ Ẋ
is essential, then the annulus H(∂Dp × [0, 1]) is contractible in Y ∪ { f0(p)}
so that H extends to a continuous map H : Dp × [0, 1] → Y ∪ { f0(p)}. We

can further choose the extension to satisfy H
−1

( f0(p)) = {p} × [0, 1]. 
�

2.9 Geometry of quadratic differentials

Let X be a finite Riemann surface and let ϕ ∈ Q(X)\{0}. Then ϕ induces a
notion of direction as well as a Riemannian metric with singularities |ϕ| on X .
This metric is Euclidean except at the zeros of ϕ, where it has cone points. At
a zero of order k, the metric looks like a cone with angle (k + 2)π . Because
the total angle at cone points is at least 2π , the induced metric is locally
CAT(0). However, the metric |ϕ| is not complete whenever X is not closed.
Nevertheless, given an arc γ : [0, 1] → X there exists a unique “geodesic
representative” γ † : [0, 1] → ̂X which is a limit of arcs homotopic to γ in X
and has minimal |ϕ|-length among such arcs. To see this, it is convenient to
pass to the universal cover first.

Let π : ˜X → X be the universal covering map and let ϕ̃ = π∗ϕ. The
Riemannian metric with singularities |ϕ̃| induces a distance d on ˜X in the
usual way: for any x, y ∈ ˜X the distance d(x, y) is defined as the infimum
of

∫

γ

√|ϕ̃| over all piecewise smooth paths γ between x and y. The resulting

metric space (˜X , d) is CAT(0). It follows that its metric completion (˜X ′, d ′)
is also CAT(0) [4, Corollary 3.11]. When X is hyperbolic, ˜X ′ is the universal
cover ˜X together with the the set of discontinuity and the parabolic limit
points. Observe that ̂X is the metric completion of X in the metric |ϕ| and that
π extends to a continuous map π ′ : ˜X ′ → ̂X .

Since (˜X ′, d ′) is a complete CAT(0) space, there is a unique geodesic seg-
ment between any two points of ˜X ′. Thus given an arc γ : [0, 1] → X , we
can lift it to an arc γ̃ : [0, 1] → ˜X , find the geodesic γ̃ † : [0, 1] → ˜X ′
between the endpoints of γ̃ , then define the “geodesic representative”4 of γ
to be γ † = π ′ ◦ γ̃ †.

By hypothesis, ϕ extends analytically to the ideal boundary of X (if any).
Hence ϕ̃ extends analytically to the set of discontinuity in ˜X ′. Say that a

4 The quotation marks are because γ † is not necessarily geodesic in ̂X . For example, it may
pass through a pole of ϕ.

123



336 M. F. Bourque

singularity of ϕ̃ is a point in ˜X ′ where ϕ̃ has a zero or is not defined (those
are the parabolic limit points). Since (˜X ′, d ′) is locally Euclidean, geodesics
are straight lines in natural coordinates away from the singularities of ϕ̃. If a
geodesic passes though a singularity, then there should not be any shortcut on
either side, which translates into an angle condition at the singularity. More
precisely, an arc γ : [0, 1] → ˜X ′ is geodesic if and only if
– γ is smooth except at singularities of ϕ̃;
– the argument of ϕ̃(γ ′(t)) is locally constant where γ is smooth;
– at a singularity of ϕ̃, the cone angle on either side5 of γ is at least π .

For example, an arc which is horizontal and does not backtrack is geodesic.
Actually, any horizontal arc which does not backtrack minimizes horizontal
travel (defined as the integral of |Re√ϕ̃|) between its endpoints, since it is
quasi-transverse to the vertical foliation [19, Proposition 2.5].

A geodesic polygon in a CAT(0) space is a closed curve which is piecewise
geodesic. Self-intersecting polygons are allowed. Given a geodesic polygon
P in a CAT(0) space, and three consecutive vertices a, b and c along P , let
� abc be the Alexandrov angle between the geodesics [a, b] and [b, c] at b. In
general, this is defined as the limit of the angle at b′ in the comparison triangle
Δu′b′v′ ⊂ R

2 for Δubv, as u → b along [a, b] and v → b along [b, c] (see
[4, p. 184]). In particular, the Alexandrov angle takes values in [0, π ].

For example, if P is a geodesic polygon in the Euclidean surface with
conical singularities ˜X ′, then � abc is simply the minimum between π and
the two cone angles on either side of [a, b] ∪ [b, c] at b, as measured in the
metric induced by ϕ̃. With this terminology, a piecewise geodesic arc γ in ˜X ′
is geodesic if and only if the Alexandrov angle at any point along γ is equal
to π .

The next Proposition is a generalization of Strebel’s “divergence principle”
[39, p.77]. It says that if two geodesic rays γ0 and γ1 in ˜X ′ are such that the
angles they form with the geodesic [γ0(0), γ1(0)] sum to at least π , then the
distance between γ0(t) and γ1(t) is non-decreasing as a function of t ≥ 0. In
the original statement, each angle is assumed to be at least π/2. The result
actually holds in any CAT(0) space.

Lemma 2.13 Let Q be a geodesic quadrilateral with vertices a, b, c, d in a
CAT(0) space (M, μ). Suppose thatμ(a, d) = μ(b, c)and � dab+� abc ≥ π .
Then μ(c, d) ≥ μ(a, b) with equality only if Q is isometric to a (possibly
degenerate) Euclidean parallelogram.

Proof Consider the geodesic triangles Δabc and Δacd. Let Δa′b′c′ and
Δa′c′d ′ be corresponding comparison triangles in R

2. We may assume that

5 At a boundary point of ˜X ′, the cone angle only makes sense on one side of γ , but we can
define the cone angle on the “other side” to be +∞ by convention.
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these two triangles are on opposite sides of the segment [a′, c′] so that the
quadrilateral Q′ they form is simple.We need to show that |c′−d ′| ≥ |a′−b′|.
By the law of cosines, it suffices to prove that � d ′a′c′ ≥ � b′c′a′. Indeed, the
triangles Δa′b′c′ and Δa′c′d ′ share the side [a′, c′] and the sides [b′, c′] and
[d ′, a′] are congruent. There are two cases to consider depending on whether
Q′ is convex or not.
Suppose first that � d ′a′c′ + � c′a′b′ ≤ π . Note that angles in Δa′b′c′ and

Δa′c′d ′ are are at least as large as corresponding angles in Δabc and Δacd.
Moreover, angles are subadditive in the sense that � dab ≤ � dac + � cab for
instance. Since the sum of � d ′a′c′ and � c′a′b′ is at most π , we have

� d ′a′b′ = � d ′a′c′ + � c′a′b′ ≥ � dac + � cab ≥ � dab

so that

� d ′a′b′ + � a′b′c′ ≥ � dab + � abc ≥ π.

We deduce that

0 ≤ � d ′a′b′ + � a′b′c′ − π

= (� d ′a′c′ + � c′a′b′)+ � a′b′c′ − (� c′a′b′ + � a′b′c′ + � b′c′a′)
= � d ′a′c′ − � b′c′a′

as required.
If � d ′a′c′ = � b′c′a′, then Q′ is a parallelogram (which is possibly contained

in a line) and all the above inequalities are equations. Thus the angles inΔabc
and Δacd are the same as in their comparison triangles, which implies that
Δabc and Δacd are isometric to their comparison triangles. By considering
the other diagonal of Q, we get that any two adjacent sides of Q lie in a flat
triangle. The equality � dab = � dac + � cab means that the triangles Δabc
and Δacd line up, in the sense that the union of their convex hulls is convex.
Hence Q spans a Euclidean parallelogram.

Now suppose that � d ′a′c′ + � c′a′b′ > π . Then

0 ≤ π + � a′b′c′ − π

< (� d ′a′c′ + � c′a′b′)+ � a′b′c′ − (� c′a′b′ + � a′b′c′ + � b′c′a′)
= � d ′a′c′ − � b′c′a′.

Equality cannot hold in this case. 
�
One can deduce from this the well-known fact that if two simple closed

geodesics in X (with respect to |ϕ|) are freely homotopic, then they span a
Euclidean cylinder.
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3 Ioffe’s theorem

The goal of this section is to reprove Theorem 1.3 from Ioffe, that is, to
characterize quasiconformal embeddings that have minimal dilatation in their
homotopy class. The main motivation for doing so is that Ioffe’s original state-
ment contains a mistake (we pointed this out in the introduction and will return
to this issue in Sect. 3.3). Thus we wanted to work out the proof in detail to
make sure that the remaining part was correct.

The results are stated for quasiconformal embeddings from one finite Rie-
mann surface to another, but they extend to quasiconformal embeddings from
a finite union of finite Riemann surfaces to a finite Riemann surface, which is
is the context considered in Ioffe’s paper [20].

3.1 Compactness

Recall that an embedding h between finite Riemann surfaces is trivial if the
image of π1(h) is trivial, is cyclic if the image of π1(h) is infinite cyclic, and
is generic if the image of π1(h) is non-abelian. An embedding h is called
parabolic if the image of π1(h) is infinite cyclic and generated by a loop
around a puncture.

The following compactness lemma (cf. [20, Theorem 1.1]) guarantees the
existence of extremal quasiconformal embeddings, that is,withminimal dilata-
tion in their homotopy class.

Lemma 3.1 Let K ≥ 1 and let h : X → Y be a K -quasiconformal embed-
ding between finite Riemann surfaces. The space of all K -quasiconformal
embeddings homotopic to h is compact if and only if h is neither trivial nor
parabolic.

Proof Suppose that Y is equal to ̂C, C or C\{0}. Then h is either trivial
or parabolic. Moreover, the space of K -quasiconformal emdeddings homo-
topic to h is closed under post-composition with elements of Aut0(Y ), which
is non-compact. It follows that the space of K -quasiconformal emdeddings
homotopic to h is also non-compact.

Suppose that Y is a torus. The group Aut0(Y ) is homeomorphic to Y and is
in particular compact. Let W be the set of all K -quasiconformal embeddings
homotopic to h and let N be the space of of K -quasiconformal embeddings
homotopic to h rel x0, where x0 is any point in X . Then W is homeomorphic
to Aut0(Y ) × N , hence is compact if and only if N is. Now N is the same
as the space of K -quasiconformal embeddings homotopic to the restriction
h� : X\{x0} → Y\{h(x0)}. Moreover h non-trivial if and only if h� is non-
parabolic. The case where Y is a torus thus reduces to the case where Y is a
once-punctured torus, hence hyperbolic.
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For the rest of the proof, we may assume that Y is hyperbolic. This implies
that X is hyperbolic as well, since there is no non-constant quasiconformal
map from a non-hyperbolic surface to a hyperbolic surface.

If h is trivial then its image is contained in a disk in Y . In other words, h
can be written as h = F ◦ g where F : D → Y is a conformal embedding and
g : X → D is a K -quasiconformal embedding. Consider the sequence hn =
Fn ◦ g where Fn(z) = F(z/n). Each hn is a K -quasiconformal embedding
homotopic to h, but the sequence converges to a constant map. Similarly, if
h is parabolic, then we can form a sequence of homotopic K -quasiconformal
embeddings which diverges to the corresponding puncture.

If h is neither trivial nor parabolic then it is is either generic, or cyclic
but not parabolic. We treat the generic case first and return to the cyclic case
at the end. Suppose that h is generic. Pick any basepoint b0 ∈ X and let
πX : (D, 0) → (X, b0) and πY : (D, 0) → (Y, h(b0)) be universal covering
maps with respective deck groups Deck(X) and Deck(Y ). Let˜h be the unique
lift of h such that ˜h(0) = 0. For any α ∈ Deck(X), let Θ(α) be the unique
element in Deck(Y ) sending 0 to˜h(α · 0). Then Θ is a homomorphism.

If f : X → Y is a K -quasiconformal embedding homotopic to h, then it
lifts to a K -quasiconformal immersion ˜f : D → D satisfying

˜f (α · z) = Θ(α) · ˜f (z)

for every z ∈ D and every α ∈ Deck(X). The lift ˜f is uniquely determined by
this equation, since there is only one homotopy class of homotopy from h to
f according to Lemma 6.1. We do not really need uniqueness of the lift here
(any lift would do), which is why the lemma is postponed to a later section.
Observe that f is injective if and only if

πY (˜f (z)) = πY (˜f (w))⇒ πX (z) = πX (w).

Let f be a K -quasiconformal embedding homotopic to h and ˜f be its
lift as above. Write ˜f = F ◦ g where g : D → D is a K -quasiconformal
homeomorphism fixing 0 and F : D → D is a holomorphic immersion.
As mentioned in Sect. 2, the space of K -quasiconformal homeomorphisms
of D fixing the origin and the space of holomorphic maps from D to D are
both compact. Thus, given a sequence of K -quasiconformal embeddings fn
homotopic to h and corresponding lifts ˜fn = Fn ◦ gn factored as above,
we can pass to a subsequence such that Fn → F and gn → g and hence
˜fn → ˜f := F ◦ g.
We claim that the limit ˜f is not constant. Indeed, if there is a constant

w0 ∈ D such that ˜f (z) = w0 for every z ∈ D, then

123



340 M. F. Bourque

w0 = ˜f (α · z) = lim
n→∞

˜fn(α · z) = lim
n→∞Θ(α) · ˜fn(z) = Θ(α) · ˜f (z)

= Θ(α) · w0

for every α ∈ Deck(X). However, a Fuchsian group which fixes a point in
D is cyclic, contradicting the assumption that h is generic. In particular, the
holomorphic map g is not constant, hence has image in D. By Hurwitz’s
theorem in complex analysis, g is locally injective. Therefore ˜f = F ◦ g is a
K -quasiconformal immersion. Moreover, the equality ˜f (α · z) = Θ(α) · ˜f (z)
for every z ∈ D and every α ∈ Deck(X) implies that ˜f descends to a K -
quasiconformal immersion f : X → Y .

It remains to show that f is injective. If f (πX (z)) = f (πX (w)), then
πY (˜f (z)) = πY (˜f (w)). Since ˜fn → ˜f and since these maps are open, we
can find a sequence zn converging to z and a sequence wn converging to w

such that ˜fn(zn) = ˜f (z) and ˜fn(wn) = ˜f (w) for all n large enough. Then
πY (˜fn(zn)) = πY (˜fn(wn)), which implies that πX (zn) = πX (wn) since fn is
injective. Taking the limit as n →∞, we obtain πX (z) = πX (w).

Lastly, f is homotopic to h because it is a limit of maps which are (see
Corollary 2.10). We have shown that if Y is hyperbolic and h is generic, then
the space of K -quasiconformal embeddings homotopic to h is sequentially
compact.

Suppose now that h is cyclic but not parabolic. The same construction
as above still applies, but the image of Θ is a cyclic group generated by a
hyperbolic element β ∈ Deck(Y ). Morover, given an embedding f homotopic
to h, its lift ˜f is only defined up to post-composition with powers of β. Let
D ⊂ D be a fundamental domain for β whose closure is disjoint from the
fixed points of β. Let { fn}n≥1 be a sequence of K -quasiconformal embeddings
homotopic to h. By applying an appropriate power of β, we can choose a lift ˜fn
of fn such that ˜fn(0) ∈ D. As above, we can extract a subsequence of {˜fn}n≥1
converging to some map ˜f . By our normalization, the limit ˜f (0) belongs to
the closure D, so it is not one of the fixed points of β. It follows that ˜f is
not constant. The rest of the argument applies verbatim to conclude that ˜f
descends to a K -quasiconformal embedding f homotopic to h. 
�

The following corollary is immediate.

Corollary 3.2 Let h : X → Y be a non-trivial and non-parabolic quasicon-
formal embedding between finite Riemann surfaces. Among the quasiconfor-
mal embeddings homotopic to h, there is one with minimal dilatation.

Proof Dilatation is lower semi-continuous, hence achieves its minimum on
any compact set. 
�
Remark 3.3 If h : X → Y is a quasiconformal embedding between finite Rie-
mann surfaces which is trivial or parabolic, then it is homotopic to a conformal
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embedding. This is because h(X) is contained in a subset Z ⊂ Y isomorphic
to the disk with at most one puncture or the sphere with at most two punc-
tures, whose Teichmüller space is a point. Using Theorem 2.4, we can apply a
quasiconformal deformation on Z to make h conformal. The hypothesis that
h be non-trivial and non-peripheral is thus superfluous in Corollary 3.2.

3.2 Teichmüller embeddings

Let us recall the definition of a Teichmüller embedding.

Definition 3.4 A Teichmüller embedding of dilatation K ≥ 1 between finite
Riemann surfaces X and Y is an injective continuous map f : X → Y for
which there exist quadratic differentials ϕ ∈ Q+(X) and ψ ∈ Q+(Y ) such
that f has the form x + iy �→ Kx + iy in natural coordinates and such that
Y\ f (X) is a finite union of points and horizontal arcs for ψ . We say that ϕ
and ψ are initial and terminal quadratic differentials for f . A slit mapping is
a conformal Teichmüller embedding, i.e. one with K = 1.

Remark 3.5 The horizontal arcs in the definition are allowed to overlap. In ge-
neral, the complement of the image of a Teichmüller embedding is an analytic
graph (see Fig. 4 for example).

Remark 3.6 Despite the appellation, a Teichmüller homeomorphism between
surfaces with non-empty ideal boundary is not necessarily a Teichmüller
embedding, as its initial and terminal quadratic differentials are allowed be
negative along the ideal boundary.

Remark 3.7 If Y is a finite Riemann surface, ψ ∈ Q+(Y ), and X is the com-
plement of a finite union of points and of horizontal arcs in Y , then ι∗ψ belongs
toQ+(X), where ι : X → Y is the inclusionmap. This means that ι∗ψ extends
analytically to the ideal boundary of X and that the latter is horizontal. Near
the endpoint of a horizontal slit, one needs to take a square root in order to
unfold the slit to an ideal boundary component. If we pull-back the quadratic
differential zkdz2 in C by the squaring map s(z) = z2 from H to C\[0,∞),
we get the quadratic differential 4z2k+2dz2. In other words, unfolding a slit
ending at a singularity of order k ≥ −1 yields a singularity of order 2k+2 ≥ 0
on the boundary. In particular, if the slit ends at a simple pole then the unfolded
quadratic differential is regular at the corresponding point. It is perhaps more
natural to count the number of prongs: an n-prong singularity transforms into
half of a 2n-prong singularity (see Fig. 1). The ideal boundary remains hori-
zontal in the process of unfolding so that ι∗ψ ∈ Q+(X).

Every slit mapping f : X → Y arises in this way, in the sense that f gives
a conformal homeomorphism from X to f (X) and f (X) ⊂ Y is obtained by
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Fig. 1 Unfolding a slit ending at a simple zero (a 3-prong singularity) of a quadratic differential
yields half of a zero of order 4 (a 6-prong singularity)

removing finitely many points and horizontal arcs for some ψ ∈ Q+(Y ). The
quadratic differential ϕ = f ∗ψ is redundant data.

Remark 3.8 Every Teichmüller embedding can be factored as a Teichmüller
homeomorphismG : X → Z (which happens to also be a Teichmüller embed-
ding) followed by a slit mapping F : Z → Y , where the terminal quadratic
differential of G agrees with the initial quadratic differential of F .

Remark 3.9 If there is a Teichmüller embedding X → Y , thenQ+(Y ) is non-
empty. This imposes some restrictions on Y , namely, it cannot be a sphere with
at most 3 punctures or a disk with at most 1 puncture. By the same token, a
Teichmüller embedding is always non-trivial and non-parabolic.

Remark 3.10 If f is a Teichmüller embedding of dilatation K with initial and
terminal quadratic differentials ϕ and ψ , then ∂ f/∂ f = kϕ/|ϕ| on X and
∂( f −1)/∂( f −1) = −kψ/|ψ | on f (X), where k = K−1

K+1 . This is one way of
describing f without using coordinates.

We present Ioffe’s theorem in two parts. The first part says that every
extremal quasiconformal embedding is either conformal or a Teichmüller
embedding.

Theorem 3.11 (Extremal embeddings are Teichmüller) Let f : X → Y be
a quasiconformal embedding between finite Riemann surfaces with minimal
dilatation in its homotopy class. If f is not conformal, then it is a Teichmüller
embedding.

Proof Suppose that f is not conformal and let

μ :=
{

∂( f −1)/∂( f −1) on f (X)

0 on Y\ f (X).

Let F : Y → Yμ be the solution to theBeltrami equation ∂F/∂F = μprovided
by Theorem 2.4. By construction we have ∂(F ◦ f )/∂(F ◦ f ) = 0 so that F ◦ f
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δ L

δ/K

f δ

Fig. 2 Reducing the pointwise dilatation of an embedding near a vertical boundary arc

is a conformal embedding. By Teichmüller’s theorem (Theorems 2.6 and 2.7),
there exists a quasiconformal homeomorphism G : Yμ → Y homotopic to
F−1 withminimal dilatation.Moreover,G is either conformal or a Teichmüller
homeomorphism. The composition G ◦ F ◦ f : X → Y is a quasiconformal
embedding homotopic to f , so that

Dil( f ) ≤ Dil(G ◦ F ◦ f ) ≤ Dil(G) ≤ Dil(F−1) = Dil( f ).

Thus all the terms in this chain are equal. The equality Dil(G) = Dil(F−1)
implies that F has minimal dilatation in its homotopy class. Since F is not
conformal, it is a Teichmüller homeomorphism. This means that there is a
non-zero ψ ∈ Q(Y ) and a constant k ∈ (0, 1) such that μ = −kψ/|ψ |
almost everywhere. In particular,Y\ f (X) hasmeasure zero and f has constant
pointwise dilatation.

Thought of as a homeomorphism from X to f (X), the map f has minimal
dilatation in its homotopy class and is thus a Teichmüller homeomorphism.
Let ϕ and ω be its initial and terminal quadratic differentials. Since F ◦ f
is conformal, the directions of maximal stretching for F and f −1 must be
perpendicular, which means that ψ = cω on f (X) for some c > 0, which we
may assume is equal to 1 by rescaling.

We have to show that ϕ ∈ Q+(X). If not, then ϕ < 0 along some segment
I ⊂ ∂X . We will explicitly construct a quasiconformal embedding ˜f from
X to f (X) with pointwise dilatation smaller than f near I . We may work in
a natural coordinate chart for ϕ in which I is equal to the vertical segment
[−i, i] in the plane and X is to the right of I . There is also a natural chart for ω
in which f takes the form x + iy �→ Kx + iy. Let Δ be the isoceles triangle
with base [−i, i] and apex δ > 0 (Fig. 2).

Consider the map L : Δ→ Δwhich is affine on the upper and lower halves
ofΔ, fixes all three vertices ofΔ, and sends the midpoint of I to (1− 1/K )δ.
Extend L to be the identity on X\Δ and let ˜f = f ◦ L . The linear part of ˜f
on the lower half of Δ is equal to
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(

1 (K − 1)δ
0 1

)

and the dilatation of this matrix tends to 1 as δ → 0. A similar statement holds
in the upper half of Δ. Therefore, if δ is small enough, then the embedding
˜f has strictly smaller pointwise dilatation than f on Δ. Moreover, the global
dilatation of ˜f is the same as f , so that ˜f also has minimal dilatation in its
homotopy class. By the first paragraph of the proof, the pointwise dilatation
of ˜f must be constant. This is a contradiction, and hence ϕ ∈ Q+(X).

It remains to show that f (X) is the complement of a graph which is hori-
zontal with respect to ψ . Recall that ̂X is the compactification of X obtained
by adding its ideal boundary and filling its punctures. The metrics induced
by |ϕ| and |ψ | extend to complete metrics on ̂X and ̂Y . Since f : X → Y
is K -Lipschitz with respect to these metrics, it extends to a K -Lipschitz map
̂f : ̂X → ̂Y . Moreover, ̂f is surjective since Y\ f (X) has measure zero
and hence empty interior. Let I be the closure of a connected component of
∂X\{zeros of ϕ}. There is a sequence {In} of arcs in X which are horizontal
for ϕ and converge uniformly to I . Since the image arcs f (In) are all hori-
zontal for ψ , they can only accumulate onto horizontal arcs, and thus ̂f (I ) is
horizontal. Therefore, the complement ̂Y\ f (X) = ̂f (∂X ∪ Ẋ) is a union of
finitelymany points and horizontal arcs forψ . In particular, the ideal boundary
∂Y is horizontal for ψ so that ψ ∈ Q+(Y ). 
�

In the last paragraph of the proof we actually showed the following useful
criterion.

Lemma 3.12 Let X and Y be finite Riemann surfaces, let ϕ ∈ Q+(X) and
ψ ∈ Q(Y )\{0}, and let f : X → Y be an embedding which is locally of the
form x + iy �→ Kx + iy in natural coordinates. If f (X) is dense in Y , then
ψ ∈ Q+(Y ) and f is a Teichmüller embedding with respect to ϕ and ψ .

The second part of Ioffe’s theorem says that every Teichmüller embedding
is extremal. The proof is very similar to the proofs of Teichmüller’s uniqueness
theorem given in [3] and [11, Chapter 11], only with additional technicalities
due to the lack of compactness.

Theorem 3.13 (Teichmüller embeddings are extremal) Let f : X → Y be
a Teichmüller embedding of dilatation K with initial and terminal quadratic
differential ϕ and ψ , and let g : X → Y be a K -quasiconformal embedding
homotopic to f . Then g is a Teichmüller embedding of dilatation K with initial
and terminal quadratic differentials ϕ and ψ , and g ◦ f −1 : f (X) → g(X)

is locally a translation in natural coordinates for ψ .

Proof Wemay assume that all the punctures of X are essential with respect to
f . Otherwise, the set I of inessential punctures can be filled and f extended
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to a Teichmüller embedding ˜f : X ∪ I → Y . Similarly, g extends to a
K -quasiconformal embedding g̃ : X ∪ I → Y homotopic to ˜f . If g̃ is a
Teichmüller embedding with respect to ψ , then so is its restriction g.

By rescaling, we may assume that ‖ϕ‖ = 1. This implies that ‖ψ‖ = K
since f multiplies area by a factor K and f (X) has full measure in Y . Recall
that ̂X and̂Y are themetric completions of X and Y with respect to the distance
induced by |ϕ| and |ψ |. Since f is K -Lipschitz with respect to these metrics,
it extends to a K -Lipschitz map ̂f : ̂X → ̂Y . Since f is assumed to have only
essential punctures, ̂f maps Ẋ into Ẏ .

Let M > 1. For every n ∈ N, let Gn : ̂X → ̂X be a smooth M-quasicon-
formal and M-Lipschitz embedding such that

– Gn(Ẋ) = Ẋ ;
– Gn is homotopic to the identity rel Ẋ ;
– Gn(̂X) is contained in X ∪ Ẋ ;
– Gn → id uniformly in the C1 norm as n →∞.

Here is one way to construct such maps. Given a smooth vector field on ̂X
pointing inwards on ∂X and vanishing on Ẋ , we can let Gn be the correspon-
ding flow at small enough time tn . Then let gn = g ◦ Gn : ̂X → ̂Y , which
is a KM-quasiconformal embedding. The purpose of this construction is to
circumvent the following difficulty: when X ∪ Ẋ is non-compact g has no
reason to extend continuously to ∂X while gn does.

Fix n for a little while. By construction, gn|X is homotopic to g and hence
to f . By Lemma 2.12, there is a homotopy H : X × [0, 1] → Y from f to
gn|X that extends to be constant at the punctures (which are assumed to be
essential). By flowing ∂X inward at the beginning and end of the homotopy
as above, we may further assume that H extends continuously to ∂X × [0, 1].
Let ̂H be the extension of H to ̂X × [0, 1].

For every x ∈ X , let �(x) = inf
∫

α

√|ψ | where the infimum is taken
over all piecewise smooth paths α : [0, 1] → Y that are homotopic to t �→
H(x, t) rel endpoints. In general, the infimum need not be realized since the
restriction of |ψ | to Y is not complete. However, �(x) is equal to the length
of the “geodesic representative” γx of t �→ H(x, t) in the completion ̂Y as
explained in Sect. 2.9.

Since H is continuous, the maps x �→ γx and x �→ �(x) are continuous.
Moreover, they extend continuously to ̂X . Indeed, for x ∈ ̂X\X we can define
γx as the limit of γxn as n →∞, where {xn}n≥1 is a sequence in X converging
to x . This limit exists and does not depend on the sequence {xn}n≥1 since the
path t �→ ̂H(x, t) is well-defined even for x ∈ ̂X\X . Moreover, its length
�(x) is the limit of the lengths �(xn). As ̂X is compact, there exists a constant
B such that �(x) < B for every x ∈ ̂X . This constant B depends on n, but we
will make it disappear before changing n.
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Let η be a horizontal arc of length L > 0 in X . Since f is a Teichmüller
embedding of dilatation K , it sends η to a horizontal arc of length K L in Y .
Let x0 and x1 be the endpoints of η. We can obtain a path homotopic to f (η)
in Y by taking the concatenation of a piecewise smooth path α0 of length at
most B homotopic to t �→ H(x0, t), the image gn(η), and a piecewise smooth
path α1 of length at most B homotopic to t �→ H(x1, 1− t). Since horizontal
arcs minimize horizontal travel among all homotopic paths, we have

K L =
∫

f (η)
|Re√

ψ | ≤
∫

α0

|Re√

ψ | +
∫

gn(η)
|Re√

ψ | +
∫

α1

|Re√

ψ |

≤ 2B +
∫

gn(η)
|Re√

ψ |.

Let dgn denote the matrix of partial derivatives of gn with respect to natu-
ral coordinates6 and (dgn)1,1 its first entry. If z = x + iy and ζ are natural
coordinates for ϕ and ψ , then (dgn)1,1 = Re(∂(ζ ◦ gn ◦ z−1)/∂x). If gn is
absolutely continuous on η, then we have

∫

η

|(dgn)1,1| ·
√|ϕ| =

∫

gn(η)
|Re√

ψ | ≥ K L − 2B.

Remove from X all trajectories that go through a puncture of X or a zero
of ϕ and denote the resulting full measure subset by U . For every x ∈ U ,
there is a unique (possibly closed) bi-infinite horizontal trajectory through x .
For every L > 0 and every x ∈ U , let η(x, L) be the horizontal arc of length
L centered at x . Since gn is quasiconformal, it is absolutely continuous on
almost every horizontal trajectory. Upon applying Fubini’s theorem, we find

∫

U
|(dgn)1,1| · |ϕ| =

∫

x∈U

(

1

L

∫

η(x,L)
|(dgn)1,1| ·

√|ϕ|
)

· |ϕ|

≥
(

K − 2B

L

) ∫

U
|ϕ|.

Letting L →∞, we obtain
∫

U |(dgn)1,1| · |ϕ| ≥ K
∫

U |ϕ| and hence
∫

X
|(dgn)1,1| · |ϕ| ≥ K

∫

X
|ϕ| = K ,

since U has full measure in X .
Now that we got rid of the constant B = B(n), we can vary the index n.

We claim that
∫

X |(dg)1,1| · |ϕ| = limn→∞
∫

X |(dgn)1,1| · |ϕ| and hence that

6 The matrix is only defined up to sign, but no matter.
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∫

X |(dg)1,1|·|ϕ| ≥ K . This is a consequence of theVitali convergence theorem
[35, p. 94]. In order to apply the theorem, we need to check that the functions
|(dgn)1,1| are uniformly integrable. First observe that

∫

X
det(dg) · |ϕ| =

∫

g(X)

|ψ | ≤ K ,

so that det(dg) is integrable. It follows that for every ε > 0, there exists a δ > 0
such that if A ⊂ X is measurable and

∫

A |ϕ| < δ, then
∫

A det(dg) · |ϕ| < ε.
Now if

∫

A |ϕ| < δ/M2, then
∫

Gn(A)
|ϕ| < δ since Gn is M-Lipschitz. By the

Cauchy–Schwarz inequality we have

(∫

A
|(dgn)1,1| · |ϕ|

)2

≤
∫

A
|(dgn)1,1|2 · |ϕ| ≤

∫

A
‖dgn‖2 · |ϕ|

≤ KM
∫

A
det(dgn) · |ϕ|

= KM
∫

A
det(dGn(z)g) det(dzGn) · |ϕ|

= KM
∫

Gn(A)
det(dg) · |ϕ| < KMε,

which shows uniform integrability and proves the claim.
Applying Cauchy–Schwarz to the inequality K ≤ ∫

X |(dg)1,1| · |ϕ| yields

K 2 (a)≤
(∫

X
|(dg)1,1| · |ϕ|

)2 (b)≤
∫

X
|(dg)1,1|2 · |ϕ|

(c)≤
∫

X
‖dg‖2 · |ϕ| ≤ K

∫

X
det(dg) · |ϕ|

= K
∫

g(X)

|ψ | (d)≤ K
∫

Y
|ψ | = K 2.

Since the two ends of this chain of inequalities agree, each intermediate
inequality is in fact an equation. Equality in (b) implies that |(dg)1,1| is equal
to a constant almost everywhere on X , and that constant is equal to K by (a).
The inequality (c) is based on

|(dg)1,1|2 ≤ |(dg)1,1|2 + |(dg)2,1|2 = |dg
(

1
0

)|2 ≤ sup
‖v‖=1

|dg(v)|2 = ‖dg‖2.

Equality implies that dg
(

1
0

) = ±(

K
0

)

.Moreover, since dg stretchesmaximally
in the horizontal direction which is preserved, dg must be diagonal, i.e. dg =
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±(

K 0
0 ∗

)

with 0 < ∗ ≤ K . Then the equality K 2 = ‖dg‖2 = K det(dg)
determines that dg = ±(

K 0
0 1

)

almost everywhere on X .
Since d f = (

K 0
0 1

)

up to sign as well, we have d(g ◦ f −1) = ±(

1 0
0 1

)

almost everywhere on f (X). TheBeltrami coefficient of g◦ f −1 is thus equal to
0 almost everywhere on f (X), so that g ◦ f −1 is conformal and in particular
smooth. Since f is smooth except at the zeros of ϕ, the same holds for g.
Therefore the equality dg = ±(

K 0
0 1

)

holds everywhere except at the zeros
of ϕ, and g takes the form x + iy �→ ±(Kx + iy)+ c in natural coordinates.
Equality in (d) means that g(X) has full measure in Y . By Lemma 3.12,
g is a Teichmüller embedding with respect to ϕ and ψ . Finally, the equality
d(g◦ f −1) = ±(

1 0
0 1

)

holds everywhere, so that g◦ f −1 is a local translation.

�

Theorems 3.11 and 3.13 together imply Theorem 1.3 from the introduction.

Remark 3.14 Theorem 3.13 does not say that the quadratic differentials ϕ and
ψ are unique up to scale because that is not the case when K = 1. A slit
mapping may be so with respect to a large-dimensional family of quadratic
differentials.

For example, suppose that Y admits an anti-conformal involution σ and let
X be the complement in Y of finitely many arcs contained in the fixed locus
of σ . Any element of Q+(Y/σ) can be doubled to a quadratic differential in
Q+(Y ) which is non-negative along the fixed locus of σ . The inclusion map
X ↪→ Y is a slit mapping with respect to any quadratic differential obtained
in this way.

However, if K > 1 then ϕ and ψ are unique up to a positive scalar, since
the Beltrami coefficients ∂ f/∂ f and ∂( f −1)/∂( f −1) on X and f (X) encode
the directions of maximal stretching, which are the horizontal and vertical
directions of ϕ and ψ respectively.

3.3 Lack of uniqueness

If f and g are homotopic Teichmüller embeddings between finite Riemann
surfaces X and Y , then the inclusion map f (X) ↪→ Y and the composition
g ◦ f −1 : f (X) → Y are homotopic slit mappings with respect to the same
quadratic differential by Theorem 3.13. If X and Y are closed, then g ◦ f −1 is
a conformal automorphism of Y homotopic to the identity. If Y has genus at
least 2, then g = f by Lemma 2.1.

However, the map g ◦ f −1 does not extend to all of Y in general and indeed,
Teichmüller embeddings are not necessaily unique in their homotopy class.
There are two obvious ways for uniqueness to fail:

– if Y is a torus, then we can post-compose f with any automorphism of Y
isotopic to the identity;
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Fig. 3 A 1-parameter family of slit mappings between pairs of pants

– if f (X) is contained in an annulus A ⊂ Y , then we can post-compose f
with rotations of A.

In [20], Ioffe claims these are the only exceptions, but this is wrong7. The
next simplest example is as follows. Let Y be a round annulus in the plane
with a concentric circular arc removed, and let X be the same annulus but with
a slightly longer arc removed. Then we can obviously rotate X inside of Y by
some amount. This gives a 1-parameter family of slit mappings between triply
connected domains. If the annulus is centered at the origin, then the quadratic
differential in play is −dz2/z2.

Onemight think that every counterexample comes froma torus or an annulus
with slits, but this is not the case. Here is a general method for constructing
examples of slit mappings which are not unique in their homotopy class, with
essentially any codomain Y . Let ω be a holomorphic 1-form on Y such that
ω2 ∈ Q+(Y ). Then we can find finitely many horizontal arcs for ω2 such that
their complement X ⊂ Y is not rigid as follows. For every point y ∈ ̂Y which
is either a zero of ω or a puncture of Y , and every trajectory γ of ω ending at
y in forward time, remove a neighborhood of y in γ from Y to obtain X . For
all small enough t > 0, the time-t flow for the vector field 1/ω is well-defined
on X , and is a slit mapping homotopic to the inclusion map yet different from
it. The slit annulus example is a special case of this (Fig. 3).

In the next section, we show that this kind of phenomenon is the worse
that can happen: we can always get from any slit mapping to any homotopic
one by flowing horizontally (except in the torus case), although the quadratic
differential does not have to be globally the square of an abelian differential
in general.

7 The source of the mistake is [20, Lemma 3.2]. Similarly, [6,21], and [17] contain minor errors
as they build up on the false claim.
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4 Slit mappings are almost rigid

We prove that slit mappings are almost rigid in their isotopy class, in the sense
that we can get from any one to any other by flowing horizontally (except in
the torus case).

Theorem 4.1 Let f0, f1 : X → Y be distinct homotopic slit mappings with
terminal quadratic differentialψ . There is an isotopy ft from f0 to f1 through
slit mappings with terminal quadratic differentialψ such that for every x ∈ X,
the path t �→ ft (x) is a regular geodesic for ψ whose length and slope are
independent of x. If Y is not a torus, then the paths t �→ ft (x) are horizontal.

Remark 4.2 The statement is still true if we replace each occurrence of “slit
mappings” with “Teichmüller embeddings of dilatation K ”, since this is really
a statement about f1◦ f −10 , which is a slit mapping either way (Theorem 3.13).

Proof The setup is the same as in Theorem 3.13. We can assume that f0 and
f1 have only essential punctures, since inessential punctures can be filled and
play no special role whatsoever. As explained earlier, the maps f0 and f1
extend to continuous maps ̂f0 and ̂f1 from ̂X to ̂Y . By Lemma 2.12, there is a
homotopy H : X×[0, 1] → Y from f0 to f1 which extends to be constant at the
punctures. Bypushing ∂X inward at the beginning and end of the homotopy,we
may further assume that H extends continuously to ∂X×[0, 1]. To summarize,
we have a homotopy ̂H : ̂X×[0, 1] → ̂Y from ̂f0 to ̂f1 which sends Ẋ×[0, 1]
into Ẏ and whose restriction H to X × [0, 1] has image in Y .

Given x ∈ X , let �(x) be the infimum |ψ |-length of piecewise smooth arcs
homotopic rel endpoints to the path t �→ H(x, t) in Y . This is equal to the
length of the “geodesic representative” γx of t �→ H(x, t), which has image
in ̂Y a priori. Note that γx has endpoints f0(x) and f1(x) by construction. As
explained in the proof of Theorem 3.13, the maps x �→ γx and x �→ �(x) are
continuous and extend continuously to ̂X .

Recall that the initial quadratic differential ϕ = f ∗0 ψ = f ∗1 ψ is the same
for both slit mappings and that f1 ◦ f −10 is a local translation with respect toψ

by Theorem 3.13. In what follows, a singularity of ψ is either a zero of ψ or
a puncture of Y . The rationale behind this is that even if ψ is regular at some
puncture, its pull-back to the universal cover has infinite angle singularities at
the corresponding boundary points.

Claim Suppose that � has a local maximum at x ∈ ̂X . Then x /∈ Ẋ and �

is constant in a neighborhood of x . If x ∈ X , then γx does not contain any
singularity of ψ , and ϕ does not have a zero at x . Moreover, for every y near x
there is an isometric immersion from a Euclidean parallelogram P to Y which
sends two opposite sides of P to γx and γy .
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Proof of Claim Suppose that x ∈ Ẋ . Then �(x) = 0 since H is constant on
Ẋ . Since x is a local maximum, �(y) = 0 for all y in a neighborhood U of x .
This means that ̂f0 = ̂f1 onU and hence on all of ̂X by the identity principle.
This contradicts the hypothesis that f0 �= f1.

We need to set up some notation. Let πX : ˜X → X and πY : ˜Y → Y be the
universal covers and let ˜X ′ and ˜Y ′ be their metric completions with respect to
ϕ̃ = π∗Xϕ and ˜ψ = π∗Yψ . Recall that πX and πY extend to continuous maps
π ′X : ˜X ′ → ̂X and π ′Y : ˜Y ′ → ̂Y . The homotopy ̂H : ̂X ×[0, 1] → ̂Y lifts to a
continuousmap ˜H : ˜X ′×[0, 1] → ˜Y ′ under these. For any (u, j) ∈ ˜X ′×{0, 1},
let us write ˜Hj (u) := ˜H(u, j). Note that ˜Hj is a lift of ̂f j . In particular, the
restriction of ˜Hj to ˜X is a local translation with respect to ϕ̃ and ˜ψ . For any
u ∈ ˜X ′, let γ̃u be the geodesic between ˜H0(u) and ˜H1(u) in ˜Y ′ and let˜�(u) be
its length. By definition, γπ ′X (u) = π ′X (γ̃u) and �(π ′X (u)) = ˜�(u). Let u ∈ ˜X ′

be any lift of x under π ′X . Then ˜� has a local maximum at u. Let B be a ball
centered at u in ˜X ′ such that˜�(v) ≤ ˜�(u) for every v ∈ B. Let η : [−1, 1] → B
be a geodesic such that η(0) = u. Let η− and η+ be its restrictions to [−1, 0]
and [0, 1] respectively, and let v± = η(±1). Given two geodesic rays α and
β sharing an endpoint in ˜X ′ or ˜Y ′, we will denote their Alexandrov angle by
� (α, β) instead of the three point notation from Sect. 2.9 (this angle takes
values in [0, π ]).

After possibly shrinking B and η, the images ˜H0(η
+) and ˜H1(η

+) are
geodesic segments of the same length in ˜Y ′ (and similarly for η−). This is
because ˜H0 and ˜H1 are local isometries in ˜X . Their extensions to (π ′X )−1(∂X)

are also local isometries except perhaps at zeros of ϕ where they can fold the
boundary in two. In any case, ˜H0 and ˜H1 are isometries along any sufficiently
short geodesic rays at u.

Here is the main observation. Let σ ∈ {+,−}. By Lemma 2.13, if

� (˜H0(η
σ ), γ̃u)+ � (γ̃u, ˜H1(η

σ )) ≥ π

then˜�(vσ ) ≥ ˜�(u). But˜�(vσ ) ≤ ˜�(u) by hypothesis. Since equality holds, the
geodesic quadrilateral Qσ with sides γ̃u , γ̃vσ , ˜H0(η

σ ) and ˜H1(η
σ ) is isometric

to a Euclidean parallelogram and � (˜H0(η
σ ), γ̃u)+ � (γ̃u, ˜H1(η

σ )) = π .

Case 1:Suppose that x ∈ X .
Then after possibly shrinking the ball B centered at u ∈ ˜X , the restrictions of

˜H0 and ˜H1 to B are isometries. This means that ˜H0(η) and ˜H1(η) are geodesics
and hence that

π = � (˜Hj (η
+), ˜Hj (η

−)) ≤ � (˜Hj (η
+), γ̃u)+ � (γ̃u, ˜Hj (η

−))

for j = 0 and j = 1 by subadditivity of angles. Thus if
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� (˜H0(η
+), γ̃u)+ � (γ̃u, ˜H1(η

+)) < π

then

� (˜H0(η
−), γ̃u)+ � (γ̃u, ˜H1(η

−)) > π.

Lemma 2.13 implies that˜�(v−) > ˜�(u), which is a contradiction.We conclude
that � (˜H0(η

+), γ̃u) + � (γ̃u, ˜H1(η
+)) ≥ π . By the main observation, Q+ is

isometric to a Euclidean parallelogram and˜�(v+) = ˜�(u). Since the geodesic
η through u was arbitrary, ˜� is constant in a neighborhood of u.

Choose η in such a way that each of H0(η
+), H0(η

−), H1(η
+) and H1(η

−)
forms a positive anglewith γ̃u . Then the corresponding parallelograms Q+ and
Q− are non-degenerate and lie on opposite sides of γ̃u . In particular, there is no
excess angle on either side of γ̃u in the metric |˜ψ |. In other words, the interior
of γ̃u does not contain any singularity of ˜ψ . Suppose however that ˜ψ has a
zero at an endpoint of γ̃u . Then ϕ̃ has a zero at u as both ˜H0 and ˜H1 are local
translations in a neigborhood of u. Since u is in the interior, the cone angle at u
in themetric |ϕ̃| is at least 3π . Thus there is awhole sector of pointsv+ ∈ B\{u}
such that � (˜H0(η

+), γ̃u) = π where η+ is the geodesic [u, v+]. For each such
v+, we then have � (˜H1(η

+), γ̃u) = 0, which means that ˜H1(η
+) and γ̃u share

a segment. In other words, ˜H1 collapses a whole sector of B into γ̃u . But this
is impossible since ˜H1 is locally injective. This shows that γ̃u is completely
free of singularities. In particular, ϕ̃ = (˜H0)

∗
˜ψ does not have a zero at u.

Since γ̃u is regular and has endpoints in ˜Y , it is contained in ˜Y . Similarly, for
any short geodesic ray η+ at u, the resulting parallelogram Q+ is contained
in ˜Y . The covering map πY : ˜Y → Y is an isometric immersion which sends
two parallel sides of Q+ to γx and γy where y = πY (v

+).

Case 2:Suppose that x ∈ ∂X and that ϕ has a zero at x .
Then the total cone angle at u in the metric |ϕ̃| is at least 2π . For any

geodesic η through u in B, the main observation still holds. Now for every
geodesic ray η+ from u, there exists a ray η− such that ˜H0(η) and ˜H1(η) are
geodesic, where η = η+ ∪ η−. This is because there is enough angle at u to
make sure that the cone angle on either side of ˜Hj (η) at ˜Hj (u) is at least π .

The argument from Case 1 applies for any such geodesic η: if the angles
at the endpoints of γ̃u in Q+ sum to less than π , then ˜�(v−) > ˜�(u). Hence
the angles sum to at least π and Q+ is a Euclidean parallelogram by the main
observation. This shows that˜�(v+) = ˜�(u). This holds for every v+ ∈ B\{u},
so that ˜� is constant there.
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Case 3:Suppose that x ∈ ∂X and that ϕ does not have a zero at x .
Then the cone angle at u in the metric |ϕ̃| is π and there is only one geodesic

η through u, namely the horizontal one running along the boundary. In this
case, neither ˜H0 nor ˜H1 folds the boundary of ˜X ′ in two at u. Indeed, if ˜Hj did
fold in two at u, then ˜ψ would have a simple pole at ˜Hj (u). But all the simple
poles of ψ in ̂Y have been unwrapped to infinite angle singularities in ˜Y ′.

Therefore ˜H0(η) and ˜H1(η) are geodesic. Thus the same argument as above
applies to show that the corresponding quadrilaterals Q± are parallelograms.
If one of Q+ or Q− is degenerate, then so is the other one.

Suppose first that Q± are degenerate so that the beginning and end of γ̃u
are contained in ˜H0(η) and ˜H1(η) respectively. Moreover if the beginning is
contained in ˜H0(η

+) then the end is contained in ˜H1(η
−), and vice versa. It

follows that for any w ∈ B\{u} the geodesic τ = [u, w] satifies
� (˜H0(τ ), γ̃u)+ � (γ̃u, ˜H1(τ )) = π. (1)

By the main observation, γ̃w and γ̃u are the opposite sides of a Euclidean
parallelogram and ˜�(w) = ˜�(u).

Now suppose that Q+ and Q− are non-degenerate. Then the interior of γ̃u
is free of singularities, as Q+ and Q− lie on opposite sides of it. This implies
that equation (1) holds for any geodesic ray τ at u in B, as parallel transport
is well-defined along γ̃u . Therefore ˜� is constant on B. 
�

It follows from the above claim that � is constant. Indeed, the subset of ̂X
where � attains its maximum is open by the claim and is closed by continuity,
hence equal to ̂X . In particular, every point of ̂X is a local maximum of �, so
the additional conclusions of the claim hold everywhere. Specifically,
(C1) Ẋ is empty8;
(C2) ϕ does not have any zero in X ;
(C3) for every x ∈ X and y near x , the geodesics γx and γy form opposite

sides of an isometrically immersed parallelogram in Y .
Let x ∈ X . Parametrize γx : [0, 1] → Y proportionally to arc length in such

a way that γx (0) = f0(x) and γx (1) = f1(x). For every (x, t) ∈ X × [0, 1],
define ft (x) = γx (t). Then ft has image in Y and depends continuously on t .
By (C3), ft ◦ f −10 is a local translation with respect to ψ for every t ∈ [0, 1].
Thus ft is a local translation with respect to ϕ and ψ . It remains to prove that
ft is injective and that its image is the complement of finitely many horizontal
arcs and points.

Suppose that Y is a torus. Then ψ = ω2 for an abelian differential ω. For
any x ∈ X , the tangent vector v(x, t) = ω(γ ′x (t)) ∈ C does not depend on

8 Recall that punctures are assumed to be essential in the proof. This proves that if two slit
mappings are homotopic and have an essential puncture, then they are equal.
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t ∈ [0, 1] since γx is a smooth geodesic. As nearby geodesics γx and γy are
parallel and of the same length, v is locally constant as a function of x ∈ X ,
hence constant on X . This means that ft differs from f0 by the translation
z �→ z + tv with respect to ω, and is therefore a slit mapping.

Suppose that Y is an annulus. Then ψ is again the square of an abelian dif-
ferential ω. By the same argument as in the previous paragraph, v = ω(γ ′x (t))
is independent of (x, t) ∈ X × [0, 1]. If the geodesics γx are not horizontal,
then they point away from Y on one of the two boundary components, which
is absurd. Hence v ∈ R and ft differs from f0 by the horizontal translation
z �→ z + tv with respect to ω (i.e., by a rotation of Y ).

Our proof that ft is a slit mapping in the general case is rather indirect. By
Lemma 3.12, it suffices to show that ft is injective and that ft (X) is dense in
Y . To prove this, we first show that the geodesics γx are horizontal.

Claim If Y is not a torus, then γx is horizontal for every x ∈ ̂X .

Proof By the same argument as in the torus and annulus case, the unoriented
slopeψ(γ ′x (t)) is constant on X ×[0, 1]. Since the map x �→ γx is continuous
on ̂X and since the limit of a sequence of geodesics of slope s has slope s
wherever it is smooth, the slope function is constant on all ̂X . Thus if we find
a single horizontal geodesic, then all geodesics are horizontal.

If Y is an annulus, then we have already shown that γx is horizontal for
every x ∈ ̂X . We can leverage the same idea to prove that if Y contains a
horizontal cylinder, then γx is horizontal for some (hence all) x ∈ ̂X .

Let A ⊂ Y be a maximal horizontal cylinder for ψ . Let α be a closed
horizontal trajectory in A ∩ f0(X). Then ft ◦ f −10 (α) is a closed horizontal
trajectory homotopic to α—hence is contained in A—for every t ∈ [0, 1].
Since all but finitely many horizontal trajectories in A are contained in f0(X),
we have that ft ◦ f −10 (A ∩ f0(X)) ⊂ A for every t ∈ [0, 1]. In particular, the
geodesic γx is contained in A for every x ∈ f −10 (A).

Observe that f0(X) ∩ A has either one or two connected components. If
f0(X)∩ A is connected, then the same argument as in the annulus case applies:
if the geodesics γx are not horizontal, then they point away from A on one of
its two boundary components, contradicting the fact that they are contained in
A. Suppose that f0(X)∩ A has two components. Since X is connected, f0(X)

intersects each boundary component of A. If γx points strictly inward at such a
boundary point f0(x), then for small t > 0 the map ft ◦ f −10 drags points from
the complement of A into A, which is impossible. Said differently, if t > 0
and α ⊂ A∩ ft (X) is a closed horizontal trajectory sufficiently close to f0(x),
then f0 ◦ f −1t (α) is a closed horizontal trajectory outside of A yet homotopic
to α, contradicting the maximality of A. In either case, the geodesics γx have
to be horizontal.
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Fig. 4 Pulling a horizontal curve tight shrinks it to a point, a puncture, or a geodesic

If Y has a horizontal cylinder then we are done, so suppose that it does not
have any. Let t ∈ [0, 1]. Since ft : X → Y is 1-Lipschitz with respect to |ϕ|
and |ψ |, it extends to a 1-Lipschitz map ̂ft : ̂X → ̂Y between the completions.
Let C be a connected component of ∂X , let N be neighborhood of C in ̂X
such that N ∩ X is an annulus, and let α ⊂ N ∩ X be homotopic to C in N .
If f0(α) is not homotopic to a point or a puncture in Y , then ̂ft (C) becomes
the “geodesic representative” of f0(α) after erasing its backtracks (see Fig. 4).
Since Y contains no horizontal cylinders, the “geodesic representative” of
f0(α) is unique. This means that ̂ft (C) is contained in the same horizontal
leaf for every t ∈ [0, 1], hence that γx is horizontal for every x ∈ C .

We may thus assume that f0(α) is homotopic to a point or a puncture in Y
for every C , N and α as above. This means that ̂ft (C) is completely folded
onto itself, as it reduces to a point after erasing its backtracks. Thus ̂ft (N )

forms an open neighborhood of ̂ft (C) in ̂Y . This holds for every component
C of ∂X and every t ∈ [0, 1]. Moreover, ∂Y is empty for otherwise there is
some component C of ∂X such that ̂f0(C) intersects ∂Y , forcing f0(α) to be
essential.

Since Y is not a torus nor an annulus, ψ has at least one singularity, say at
y ∈ ̂Y . As ̂f0 : ̂X → ̂Y is surjective, there is some x ∈ ̂X such that ̂f0(x) = y.
We have that x ∈ ∂X since Ẋ is empty (C1) and ϕ does not have any zeros in
X (C2). Let C be the component of ∂X containing x . If γx is not horizontal,
then ̂ft (C) moves off of its horizontal leaf for small enough t > 0. On the
other hand, y is contained in the open set ̂ft (N ) for all sufficiently small t > 0.
But then y ∈ ft (N\C) ⊂ ft (X) ⊂ Y so that ψ has a zero at y and hence ϕ

has zeros on f −1t (y), contradicting (C2). Therefore γx is horizontal. 
�
Since ft is a local translation with respect to ϕ and ψ , the area of its image

is at most the area of X , with equality only if ft is injective. Recall that the
set U ⊂ X of points through which passes a bi-infinite regular horizontal
trajectory of ϕ has full measure in X . For every bi-infinite regular horizontal
trajectory η ⊂ U , its image f0(η) is a bi-infinite regular horizontal trajectory
of ψ . For any x ∈ η, the horizontal geodesic γx is thus contained in f0(η).
Hence ft ◦ f −10 acts as a translation along f0(η) for every t ∈ [0, 1], so that
ft (η) = f0(η). It follows that ft (U ) = f0(U ). But f0(U ) has full measure in
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Y since U has full measure in X and f0(X) has full measure in Y . Therefore
ft (X) has full measure in Y , whose area is equal to that of X . Hence ft is
injective.

It follows that ft is a slit mapping by Lemma 3.12. Thus (x, t) �→ ft (x) is
an isotopy from f0 to f1 through slit mappings. If Y is not a torus, then the
path t �→ ft (x) = γx (t) is horizontal for every x ∈ X by the previous claim.

�
Remark 4.3 As observed in footnote 8, if f0, f1 : X → Y are homotopic slit
mappings with an essential puncture, then f0 = f1. Similarly, if their initial
quadratic differential has a zero in X then f0 = f1. As another example, if
their terminal quadratic differential has a horizontal saddle connection whose
interior is contained in f j (X) for j = 0 or j = 1 then f0 = f1. This is
because the saddle connection has nowhere to go under the horizontal isotopy.
The same statements apply to Teichmüller embeddings.

Remark 4.4 IfY is not the torus and f0, f1 : X → Y are distinct homotopic slit
mappings, then their terminal quadratic differentialψ is unique up to a positive
scalar (cf. Remark 3.14). Indeed, for every x ∈ X and every ψ ∈ Q+(Y )

with respect to which f0 and f1 are slit mappings, f0(x) and f1(x) are on
the same horizontal leaf of ψ . Thus if ft is any isotopy between f0 and f1
through slit mappings, then t �→ ft (x) is horizontal for every x ∈ X and
every ψ ∈ Q+(Y ) with respect to which f0 and f1 are slit mappings. But
if two quadratic differentials have the same horizontal trajectories, then they
are positive multiples of each other. The contrapositive is worth mentioning
explicitly: if the terminal quadratic differential of a slitmapping f is not unique
up to scale, then f is the unique conformal embedding in its homotopy class.
For example, if dimQ+(Y ) > 1 and X ⊂ Y has finite complement, then the
inclusion map X ↪→ Y is the only conformal embedding in its homotopy class
(cf. Lemma 2.2).

Let h : X → Y be a topological embedding between finite Riemann
surfaces. Recall that the space CEmb(X, Y, h) is the set of all conformal
embeddings homotopic to h equipped with the compact-open topology. We
now deduce Theorem 1.4 from the introduction, which describes the homeo-
morphism type of CEmb(X, Y, h)whenever the latter contains a slit mapping.

Proof of Theorem 1.4 If CEmb(X, Y, h) contains a slit mapping with terminal
differential ψ , then every f ∈ CEmb(X, Y, h) is a slit mapping with respect
to ψ by Theorem 3.13. Let x ∈ X . The evaluation map CEmb(X, Y, h)→ Y
sending f to f (x) is continuous by definition of the compact-open topology.
We now show that it is injective.

Suppose that f0(x) = f1(x) for distinct f0, f1 ∈ CEmb(X, Y, h) and some
x ∈ X . Our goal is to show that f0 = f1. If not, let ft be the isotopy from f0
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to f1 provided by Theorem 4.1. Then γ : S1 → Y defined by γ (t) = ft (x) is
a closed regular geodesic for ψ .

Suppose that Y is a torus. For each t ∈ [0, 1], there is a unique translation
gt ∈ Aut0(Y ) such that gt (γ (t)) = γ (0). Then t �→ gt ◦ ft is an isotopy
from f0 to f1 which is constant at x . Thus the restrictions f �0 , f

�
1 : X\{x} →

Y\{ f0(x)} are homotopic slit mappings with an essential puncture. It follows
that f0 = f1 by Remark 4.3. Alternatively, the proof of Theorem 4.1 show
that f0 and f1 differ by an element of Aut0(Y ), which has to be the identity
since it fixes the point f0(x) = f1(x).

Suppose that Y is not a torus. Then γ is horizontal. Let A ⊂ Y be a cylinder
foliated by closed horizontal trajectories homotopic to γ which is symmetric
about γ . Since f0(x) is a fixed point of the local translation f1 ◦ f −10 , we
have that f1 ◦ f −10 is either equal to the identity near f0(x) or a half-turn
around f0(x). If f1 ◦ f −10 is equal to the identity near f0(x), then f0 = f1
by the identity principle. Otherwise, let σ be the conformal involution of A
which fixes f0(x) and permutes its two boundary components. By the identity
principle f1◦ f −10 = σ on the connected componentU of A∩ f0(X) containing
f0(x). Let α ⊂ U be a closed horizontal trajectory and let β = f −10 (α).
Then f0(β) = α and f1(β) = σ(α) are not homotopic in Y , for they have
reverse orientations. This is a contradiction,which proves that the first situation
prevails.

Thus the evaluation map is injective. Since CEmb(X, Y, h) contains a slit
mapping, h is non-trivial and non-parabolic by Remark 3.9. It follows that
CEmb(X, Y, h) is compact by Lemma 3.1. Any injective continuousmap from
a compact space to a Hausdorff space is a homeomorphism onto its image. Let
V (x) be the image of evaluation map at x ∈ X . If Y is a torus, then V (x) = Y
since Aut0(Y ) acts on CEmb(X, Y, h) by composition on the left and acts
transitively on Y .

Suppose that Y is not a torus. Then V (x) is path-connected and is contained
in a regular horizontal trajectory by Theorem 4.1. As V (x) is compact, it is
either a closed trajectory, a geodesic segment, or a point. If h is cyclic, then
the image of any f ∈ CEmb(X, Y, h) is contained in some annulus A ⊂ Y .
Since f can be post-composed with rotations of A, the set V (x) contains a
circle, hence is equal to a circle.

Conversely, if V (x) is a horizontal circle then its free homotopy class in
Y does not depend on x ∈ X since X is path-connected and V (x) depends
continuously on x . Therefore

⋃

x∈X V (x) is contained in a horizontal cylinder
A ⊂ Y , which means that f (X) ⊂ A for every f ∈ CEmb(X, Y, h) so that h
is cyclic. This shows that if h is generic (so that Y is not a torus), then V (x) is
either a segment or a point. 
�
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X Xr

Fig. 5 The surface Xr is obtained by gluing a cylinder of modulus r to each ideal boundary
component of X

As pointed out in the introduction, if CEmb(X, Y, h) contains a slit mapping
then the conclusions of Theorem 1.2 follow immediately from Theorem 1.4.
In that case h is necessarily non-trivial. If Y is a torus then CEmb(X, Y, h)
is homeomorphic to a torus, hence homotopy equivalent to one. If Y is not
a torus and h is cyclic, then CEmb(X, Y, h) is homeomorphic to a circle. If
h is generic, then CEmb(X, Y, h) is homeomorphic to a point or a compact
interval, hence contractible.

5 The modulus of extension

In this section, we characterize local maxima of the modulus of extension
(Theorem 1.5) and use that to prove that the space of all conformal embeddings
in a given homotopy class is connected under some conditions (Theorem 1.6).

Leth : X → Y be a topological embeddingbetweenfiniteRiemann surfaces
where X has non-empty ideal boundary. We will impose further conditions on
h in a moment, but for now the only hypothesis is that ∂X �= ∅.

For each connected componentC of ∂X , choose an analytic parametrization
ζC : S1 → C . For every r ∈ (0,∞] and every component C of ∂X , glue a
copy of the cylinder S1×[0, r) to X∪∂X along S1×{0} using the map ζC (see
Fig. 5). We denote the resulting surface by Xr and also let X0 = X . If ρ ≤ r ,
then the inclusion [0, ρ) ⊂ [0, r) induces a conformal embedding Xρ ⊂ Xr .
We call the directed family of Riemann surfaces {Xr } a 1-parameter family of
enlargements of X . Note that for every r ∈ [0,∞], there is a homeomorphism
Hr : Xr → X which when followed by the inclusion X ⊂ Xr is homotopic
to the identity. We will abuse notation and write CEmb(Xr , Y, h) instead of
CEmb(Xr , Y, h ◦ Hr ).

Given a conformal embedding f ∈ CEmb(X, Y, h), we define the modulus
of extension of f as

m( f ) = sup{ r ∈ [0,∞] | f extends to a conformal embedding Xr ↪→ Y }.
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This number depends on the 1-parameter family of enlargements {Xr }r∈[0,∞]
which is fixed once and for all. It is easy to see that the supremum is realized
and that the conformal extension of f to Xm( f ) is unique.

Lemma 5.1 For every f ∈ CEmb(X, Y, h), there is a unique conformal
embedding ̂f : Xm( f ) → Y extending f .

Proof Let r = m( f ), let rn ↗ r , and let fn : Xrn → Y be a conformal
embedding extending f . Every x ∈ Xr is contained in Xrn when n is large
enough since Xrn ↗ Xr . Define ̂f (x) = fn(x). This does not depend on n
since f j = f j+1 on Xr j by the identity principle. The function ̂f is holomor-
phic and injective on Xr because each fn is holomorphic and injective. The
uniqueness of ̂f follows from the identity principle. 
�

Similarly,m is upper semi-continuous on CEmb(X, Y, h). Again, this holds
without any extra assumptions on h.

Lemma 5.2 The modulus of extension m is upper semi-continuous.

Proof Suppose that fn → f in CEmb(X, Y, h). Pass to a subsequence so that
rn = m( fn) converges to some r ∈ [0,∞]. We have to show that m( f ) ≥ r .
If r = 0, then there is nothing to prove so we assume that r > 0.

If Y is not hyperbolic, then its group Aut0(Y ) of conformal automorphisms
homotopic to the identity acts simply transitively on k-tuples of distinct points
for some k ∈ {1, 2, 3}. Pick some k-tuple P ⊂ X of distinct points. Then there
exists a sequence of automorphisms Tn ∈ Aut0(Y ) converging to the identity
such that Tn ◦ fn(P) = f (P) for every n. Observe thatm( fn) = m(Tn ◦ fn), so
we might as well assume from the start that fn(P) = f (P) for every n. Under
this assumption, we can consider fn and f as maps from X\P to Y\ f (P).
Now Y\ f (P) is hyperbolic, so the problem is reduced to that case.

Assume that Y is hyperbolic. Let ρ ∈ (0, r) and let ̂fn be the conformal
extension of fn to Xrn . If n is large enough, then ρ ≤ rn , and we let gn be the
restriction of ̂fn to Xρ . Since gn cannot diverge locally uniformly (its restriction
to X converges to f ), we may pass to a subsequence such that gn → g for
some g ∈ CEmb(Xρ, Y, h) by Montel’s theorem. The restriction of g to X is
necessarily equal to f . In other words, g is a conformal embedding extending
f , so that m( f ) ≥ ρ. Since ρ ∈ (0, r) was arbitrary we have m( f ) ≥ r . 
�
Since m is upper semi-continuous, it attains its maximum whenever the

space CEmb(X, Y, h) is compact. This happens precisely when h is non-
trivial and non-parabolic by Lemma 3.1. Let us recall hypothesis (H) from
the introduction:

– h : X → Y is a non-trivial and non-parabolic embedding between finite
Riemann surfaces;
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– X has non-empty ideal boundary;
– {Xr }r∈[0,∞] is a 1-parameter family of enlargements of X ;
– m is the associated modulus of extension;
– CEmb(X, Y, h) is non-empty.

Note that this hypothesis prevents Y from being the sphere with at most 2
punctures or the disk with at most 1 puncture. Under hypothesis (H), m a-
chieves its maximum at some f ∈ CEmb(X, Y, h). We will see that any such
maximum is the restriction of a slit mapping. We first need to show that any
limit of Teichmüller embeddings is itself a Teichmüller embedding.

Definition 5.3 Let Xn ∈ T (X) and Yn ∈ T (Y ) be such that Xn → X and
Yn → Y as n →∞, and let σn : Xn → X and τn : Yn → Y be the Teichmüller
homeomorphisms that respect the markings. Let hn : Xn → Yn and h : X →
Y be any maps. We say that hn → h as n →∞ if τn ◦ hn ◦ σ−1n → h locally
uniformly on X as n →∞.

Lemma 5.4 Let h : X → Y be a non-trivial and non-parabolic embedding
between finite Riemann surfaces. Suppose that Xn → X in T (X) and Yn → Y
in T (Y ), and let fn : Xn → Yn be a sequence of Teichmüller embeddings
homotopic to h. Then there exists a Teichmüller embedding f : X → Y
homotopic to h such that fn → f after passing to a subsequence.

Note that passing to a subsequence might be necessary due to the non-
uniqueness of Teichmüller embeddings.

Proof By Lemma 3.1, we may pass to a subsequence such that fn → f for
some quasiconformal embedding f : X → Y homotopic to h. By Theo-
rem 3.13, each fn has minimal dilatation in its homotopy class. It follows that
f has minimal dilatation in its homotopy class. If f is not conformal, then it
is a Teichmüller embedding by Theorem 3.11, and we are done.

Suppose that f is conformal. We need to show that f is a slit mapping. Let
ψn be the terminal quadratic differential of fn , and let gn : Yn → Y ′n be a
Teichmüller homeomorphism of dilatation e2 and initial quadratic differential
ψn . Since d(Yn, Y ′n) = 1 for every n, Yn → Y as n →∞, and closed balls in
T (Y ) are compact, we may pass to a subsequence such that Y ′n → Y ′ as n →
∞, for some Y ′ ∈ T (Y ) with d(Y, Y ′) = 1. Let g : Y → Y ′ be a Teichmüller
homeomorphism that respects the markings. By a standard argument similar
to the one above, gn → g after passing to yet another subsequence (this is
only necessary if Y is an annulus or a torus).

By construction, gn ◦ fn : Xn → Y ′n is a Teichmüller embedding.Moreover,
gn ◦ fn → g ◦ f . As in the first paragraph of this proof, g ◦ f has minimal
dilatation in its homotopy class. This dilatation is equal to e2 > 1, so that
g◦ f is a Teichmüller embedding. Since f is conformal, the terminal quadratic
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differential of g◦ f is equal to the terminal quadratic differential of g. It follows
that f = g−1 ◦ (g ◦ f ) is a slit mapping with respect to the initial quadratic
differential of g. 
�

We obtain the following characterization of the global maxima of m.

Proposition 5.5 Assume hypothesis (H). Let f be a global maximum of m
with m( f ) <∞ and let ̂f be the conformal extension of f to Xm( f ). Then ̂f
is a slit mapping.

Proof Let R = m( f ). For every r > R, there is no conformal embedding g :
Xr → Y whose restriction to X is homotopic to h, for otherwisewewould have
m(g|X ) ≥ r > R = m( f ). By Corollary 3.2 and Theorem 3.11, there exists
a Teichmüller embedding gr : Xr → Y whose restriction to X is homotopic
to h. It is easy to see that Xr moves continuously in T (X) as a function of
r ∈ [0,∞). By Lemma 5.4, we can extract a limiting Teichmüller embedding
g : XR → Y fromsome subsequenceof gr as r → R. Since ̂f is conformal and
homotopic to g, Theorem3.13 implies that ̂f is itself aTeichmüller embedding.
A conformal Teichmüller embedding is a slit mapping. 
�
Remark 5.6 Observe that every end of the surface X∞ is a puncture since the
cylinder S1×[0,∞) is conformally isomorphic toD\{0}. Thus ifm( f ) = ∞,
then the extension ̂f extends further to a conformal homeomorphism between
X̂∞ and ̂Y . In particular, Y\̂f (X∞) is finite, so that ̂f is a slit mapping with
respect to any ψ ∈ Q+(Y ). This is unless Y is the triply-punctured sphere in
which case Q+(Y ) is empty. Thus the hypothesis m( f ) < ∞ in the above
theorem is superfluous unless Y is the triply-punctured sphere. In the latter
case ̂f is nevertheless unique in its homotopy class by Lemma 2.2.

We can in fact strengthen Proposition 5.5 by replacing the word “global”
with “local”. The proof requires another lemma similar to Lemma 5.4.

Lemma 5.7 Let h : X → Y be a non-trivial and non-parabolic embedding
between finite Riemann surfaces. Suppose that Yn ↗ Y , where the inclusion
ιn : Yn ↪→ Y is homotopic to a homeomorphism, and let fn : X → Yn be a
sequence of Teichmüller embeddings such that ιn ◦ fn is homotopic to h. Then
there exists a Teichmüller embedding f : X → Y homotopic to h such that
fn → f after passing to a subsequence.

The difference with Lemma 5.4 is that Yn is allowed to live in a diffe-
rent Teichmüller space than Y . For example, a surface with punctures can be
exhausted by surfaces with holes. A priori, the terminal quadratic differentials
could converge to a quadratic differential with double poles at the punctures
of Y and then the limiting map would not be a Teichmüller embedding. What
prevents this from happening is that the domain X is fixed.
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Proof Let Kn be the dilatation of fn . The sequence Kn is non-increasing and
thus converges to a limit K ≥ 1. After passing to a subsequence, fn converges
to a K -quasiconformal embedding f : X → Y .

We claim that f has minimal dilatation in its homotopy class. If not, let
g : X → Y be a quasiconformal embeddinghomotopic to f such thatDil(g) <
Dil( f ). If r > 0 is small enough, then there is a quasiconformal homeo-
morphism σ : Xr → X of dilatation strictly smaller than Dil( f )/Dil(g).
Thus the quasiconformal embedding F consisting of the inclusion X ↪→ Xr
followed by g ◦ σ has dilatation strictly less than Dil( f ). Then F(X) ⊂ Yn
whenever n is large enough. Indeed, the ends of F(X)which are not punctures
are contained in a compact subset of Y since they are surrounded by the union
of collars g◦σ(Xr\X). Thus the only way to go to infinity in the closure F(X)

relative to Y is via punctures of F(X) that are also punctures of Y . For every
such puncture p and every n ∈ N, a neighborhood of p in Y is contained in Yn .
This is because fn is quasiconformal and as such it cannot map punctures of
X to ends of Yn with finite modulus. Since Yn ↗ Y , the inclusion F(X) ⊂ Yn
holds for n large enough. But the inequality Dil(F) < Dil( f ) ≤ Dil( fn)
contradicts the hypothesis that fn is a Teichmüller embedding and hence has
minimal dilatation in its homotopy class.

If f is not conformal, then it is a Teichmüller embedding by Theorem 3.11,
andwe are done. Thus suppose that f is conformal but is not a slit mapping. By
Proposition 5.5, there exists an r > 0 and a conformal embedding g : Xr → Y
whose restriction to X is homotopic to f . By the above argument, we have
g(Xr/2) ⊂ Yn if n is large enough, and thus g(X) ⊂ Yn with complement
having non-empty interior. On the other hand, the restriction g|X : X → Yn
is conformal and homotopic to the Teichmüller embedding fn : X → Yn .
By Theorem 3.13, g|X is a slit mapping so that Yn\g(X) has empty interior,
contradiction. 
�

We come to the main result of this section, which is that every local maxi-
mum of m is the restriction of a slit mapping.

Theorem 5.8 Assume hypothesis (H). Let f be a local maximum of m with
m( f ) <∞, and let ̂f be the conformal extension of f to Xm( f ). Then ̂f is a
slit mapping.

Proof Let R = m( f ). We first show that the complement Y\̂f (XR) is hori-
zontal for some meromorphic quadratic differential on Y , and is in particular
an analytic graph. Let {x1, x2, . . .} be a dense subset of X .
Claim There exists an n ∈ N such that if g ∈ CEmb(X, Y, h) satisfies g(x j ) =
f (x j ) for every j ∈ {1, ..., n}, then m(g) ≤ m( f ).

Proof of Claim Suppose on the contrary that for every n ∈ N there exists
an element gn of CEmb(X, Y, h) satisfying gn(x j ) = f (x j ) for every
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j ∈ {1, ..., n} such that m(gn) > m( f ). As CEmb(X, Y, h) is compact,
every subsequence of {gn}∞n=1 has a subsequence converging to some g ∈
CEmb(X, Y, h). Any limit g agrees with f on the dense set {x1, x2, ....}, and
hence is equal to f . Thus gn → f with m(gn) > m( f ). This contradicts the
hypothesis that f is a local maximum of m. 
�

Let n be as in the claim, and let P = {x1, x2, . . . , xn}. Then for every
r > R, there is no conformal embedding g : Xr → Y homotopic to f rel
P . By Corollary 3.2 and Theorem 3.11, there exists a Teichmüller embedding
gr : Xr\P → Y\ f (P) homotopic to f rel P .

Let g be any limit of any subsequence of gr as r ↘ R. Then g : XR\P →
Y\ f (P) is a Teichmüller embedding by Lemma 5.4. Since ̂f is conformal
and homotopic to g rel P , Theorem 3.13 implies that ̂f is itself a slit map-
ping, considered as a map from XR\P to Y\ f (P). Therefore the complement
Y\̂f (XR) is a finite union of horizontal arcs for some meromorphic quadratic
differential on Y , possibly with simple poles on the set f (P).

Let Γ = Y\̂f (XR), let {y1, y2, ...} be a dense subset of the graph Γ minus
its vertices, and fix a Riemannian metric on Y .

Claim There exists a k ∈ N such that for every r > R and every ε > 0, there is
no conformal embedding g : Xr → Y homotopic to h whose image is disjoint
from the balls B(y1, ε), . . . , Bε(yk, ε).

Proof of Claim Suppose that for every k ∈ N there exist an rk > R, an εk > 0,
and a conformal embedding gk : Xrk → Y whose restriction to X is homotopic
to h such that gk(Xrk ) is disjoint from the balls B(y1, εk), . . . , B(yk, εk). We
may assume that rk → R and εk → 0. Let g be any limit of any subsequence
of the sequence {gk}. Then g(XR) is disjoint from the set {y1, y2, ...} and hence
from its closure Γ , so that ̂f −1 ◦ g : XR → XR is a conformal embedding
homotopic to the identity. If XR is not an annulus, then Lemma 2.1 implies that
g = ̂f and hence gk → ̂f . If XR is an annulus, thenwemay pre-compose each
gk by a rotation so that we still get gk → ̂f . Sincem(gk |X ) ≥ rk > R = m( f ),
this contradicts the hypothesis that f is a local maximum of m. 
�

Let k be as in the last claim, and let Q = {y1, . . . , yk}. For each ε > 0, let
Yε = Y\(B(y1, ε)∪· · ·∪B(yk, ε)). Let ιε : Yε → Y\Q be a homeomorphism
homotopic to the inclusion map, and let hε = ι−1ε ◦ ̂f . The embedding hε :
XR → Yε followed by the inclusion Yε ↪→ Y is homotopic to h. By the claim,
for every r > R, there is no conformal embedding g : Xr → Yε homotopic
to hε. Therefore, there is a Teichmüller embedding grε : Xr → Yε homotopic
to hε. Letting r ↘ R, we can extract a limiting Teichmüller embedding gε :
XR → Yε by Lemma 5.4.
Since Yε ↗ (Y\Q) as ε↘0, we can apply Lemma 5.7 and obtain a Teich-

müller embedding g : XR → Y\Q as a limit of a subsequence of {gε}. Since
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̂f : XR → Y\Q is homotopic to g, it is a slit mapping with respect to some
ψ ∈ Q+(Y\Q). Thus ψ is meromorphic on Y with at most simple poles on
Q. Moreover, the graph Γ = Y\̂f (XR) is horizontal for ψ . Since every point
of Q is contained in the interior of an edge of Γ , the quadratic differential
ψ cannot have simple poles on Q. Indeed, there is only one horizontal ray
emanating from any simple pole. Therefore, ψ is holomorphic on Y and the
map ̂f : XR → Y is an honest slit mapping. 
�

Once again, the hypothesis m( f ) < ∞ is not necessary unless Y is the
triply-punctured sphere.

As a consequence of Theorem 5.8, every conformal embedding which is not
a slit mapping can be approximated by a sequence of conformal embeddings
each of which extends by some amount.

Corollary 5.9 Assume hypothesis (H) and let g ∈ CEmb(X, Y, h). If g is not
a slit mapping, then there is a sequence {gn} converging to g inCEmb(X, Y, h)
such that gn extends to a conformal embedding of Xrn into Y for some rn > 0.

Proof If m(g) > 0, then we can take gn = g. If m(g) = 0 but g is not a
local maximum of m, then there exists a sequence gn → g with m(gn) > 0.
If m(g) = 0 and g is a local maximum of m, then g is a slit mapping by the
previous theorem. 
�

A strong converse to Theorem 5.8 holds due to Theorem 3.13.

Lemma 5.10 Assume hypothesis (H). Suppose that g : Xr → Y is a slit
mapping such that g|X is homotopic to h. Then g|X is a global maximum of
m.

Proof First observe that m(g|X ) ≥ r . Suppose that m( f ) ≥ m(g|X ) for some
element f of CEmb(X, Y, h) and let ̂f be the maximal extension of f . Then
̂f |Xr is homotopic to g. By Theorem 3.13, ̂f |Xr is a slit mapping. In particular,
the complement of ̂f (Xr ) has empty interior in Y . Therefore Xm( f )\Xr is
empty so that m( f ) ≤ r ≤ m(g|X ). 
�

Furthermore, the almost rigidity of slit mappings implies that the set of local
maxima of m is path-connected.

Lemma 5.11 Assume hypothesis (H). The set M of all local maxima of m is
homeomorphic to either a point, a compact interval, a circle, or a torus, and
m is constant on M.

Proof Suppose first that there is some f ∈ M such that m( f ) <∞. Then by
Theorem 5.8, the maximal extension ̂f is a slit mapping. By Lemma 5.10, f
is a global maximum of m. In particular, m(g) < ∞ for every g ∈ M and
thus every g ∈ M is a global maximum of m. In particular, m is constant on
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M , say equal to R. The map M → CEmb(XR, Y, h) defined by f �→ ̂f is a
homeomorphism with inverse g �→ g|X . By Theorem 1.4, the evaluation map
CEmb(XR, Y, h)→ Y sending f to f (x) is a homeomorphism onto its image
for every x ∈ XR , and its image is either a point, a compact interval, a circle,
or a torus.

Otherwise,m is constant equal to∞ on M . In this case M is homeomorphic
to CEmb(X∞, Y, h), which is the same as Aut0(Y ). This is either a point or a
torus (see Sect. 2.2). 
�

Theorem 5.8, Lemmas 5.10 and 5.11 together imply Theorem 1.5 from the
introduction. The fact that m has a connected plateau of local maxima easily
implies that the space CEmb(X, Y, h) is connected.

Proof of Theorem 1.6 Suppose that CEmb(X, Y, h) = E0 ∪ E1 where E0 and
E1 are disjoint non-empty closed sets. Then each of E0 and E1 is both compact
and open. Since m is upper semi-continuous, the restriction m|E j attains its
maximum at some f j ∈ E j . Then f j is a local maximum of m since E j is
open. By Lemma 5.11, f0 and f1 are both contained in a connected subset
M of CEmb(X, Y, h). But M = (M ∩ E0) ∪ (M ∩ E1) is disconnected.
Contradiction. 
�

6 The blob and its boundary

We say that a continuous map h : X → Y between any Riemann surfaces is
generic if the induced homomorphism π1(h) : π1(X, x) → π1(Y, h(x)) has
non-abelian image. This implies that X and Y are hyperbolic. Given such a
generic map h, let Map(X, Y, h) be the space of all continuous maps f : X →
Y homotopic to h. The following lemma shows that for every x ∈ X and every
f ∈ Map(X, Y, h), there is a well-defined way to lift the image point f (x) to
the universal cover of Y .

Lemma 6.1 Let h : X → Y be a generic map between Riemann surfaces. Let
H : X × [0, 1] → Y be a homotopy from h to some f ∈ Map(X, Y, h). Then
for every x ∈ X, the homotopy class rel endpoints of the path t �→ H(x, t)
does not depend on the choice of H.

Proof We use two standard facts about hyperbolic surfaces:

– every abelian subgroup of π1(Y, h(x)) is cyclic;
– every non-trivial element in π1(Y, h(x)) is the positive power of a unique
primitive element.

Let G be any other homotopy from h to f . By composing H with G run
backwards, we get a homotopy from h to itself, hence a map F : X× S1 → Y .
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Suppose that the loop γ (t) = F(x, t) is not trivial in π1(Y, h(x)). Then it is
equal to βk for some primitive element β and some k > 0.

Let α be any loop in X based at x . Then the map S1 × S1 → Y given
by (s, t) �→ F(α(s), t) induces a homomorphism of Z

2 into π1(Y, h(x)). The
image of this homomorphism is cyclic, and contains both [h◦α] and [γ ]. From
the existence and uniqueness of primitive roots in π1(Y, h(x)), it follows that
[h ◦ α] = β j for some j ∈ Z. Since α was arbitrary, we deduce that the
image of the homomorphism π1(h) : π1(X, x) → π1(Y, h(x)) is contained
in the cyclic group 〈β〉. This contradicts the hypothesis that h is generic. We
conclude that the loop γ (t) = F(x, t) is null-homotopic. Equivalently, the
paths t �→ H(x, t) and t �→ G(x, t) are homotopic rel endpoints. 
�
Definition 6.2 Let h : X → Y be a generic map between Riemann surfaces,
let f ∈ Map(X, Y, h) and let x ∈ X . We define liftx ( f ) to be the homotopy
class rel endpoints of the path t �→ H(x, t) in Y where H is any homotopy
from h to f . This is well-defined by Lemma 6.1. By definition, liftx ( f ) is an
element of the universal cover ˜Y of Y based at h(x). This universal cover is
isomorphic to D, but for our purposes it will be better to think of it as the set
of homotopy classes of paths in Y starting at h(x).

Remark 6.3 If h : X → Y is a cyclic map between Riemann surfaces, i.e.,
such that the image of π1(h) is an infinite cyclic subgroup C ≤ π1(Y, h(x)),
and Y is not a torus then a similar construction defines a lift fromMap(X, Y, h)
to the annulus cover A→ Y associated to C .

Lemma 6.4 Let h : X → Y be a generic map between Riemann surfaces,
where X is finite. Then liftx : Map(X, Y, h)→ ˜Y is continuous.

Proof Since Map(X, Y, h) is metrizable, it suffices to prove sequential conti-
nuity. Let fn, f ∈ Map(X, Y, h) be such that fn → f as n →∞. Let K ⊂ X
be a compact deformation retract of X containing x . Let ε > 0 be smaller
than the minimum of the injectivity radius of Y over f (K ) with respect to
the hyperbolic metric and let n be large enough so that | fn − f | < ε on K .
For every (ξ, t) ∈ K × [0, 1], let Fn(ξ, t) be the point at proportion t along
the unique shortest length geodesic between f (ξ) and fn(ξ) in Y . This gives
a continuous homotopy from f |K to fn|K . By composing the deformation
retraction X → K with Fn , we get a homotopy Gn from f to fn moving
points of K by distance at most ε.

Given any homotopy H from h to f , the concatenation H ∗ Gn (that is, H
followed byGn) is a homotopy from h to fn . Thus liftx ( fn) can be represented
as α∗βn where α is any representative of liftx ( f ) and βn(t) = Gn(x, t). Since
the geodesic βn is contained in the ball of radius ε centered at α(1) in Y , and
ε can be taken arbitrarily small, we have liftx ( fn)→ liftx ( f ) as n →∞. 
�
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We now get back to conformal embeddings and look at where a given point
can go under all conformal embeddings in a given homotopy class.

Definition 6.5 Let h : X → Y be a generic embedding between finite Rie-
mann surfaces and let x ∈ X . We define Blob(x, X, Y, h) to be the image of
CEmb(X, Y, h) by the map liftx from Definition 6.2. This is a subset of the
universal cover ˜Y of Y based at h(x). Given c ∈ ˜Y , we will write πY (c) for its
projection to Y , that is, the endpoint γ (1) of any representative γ ∈ c.

Our previous results imply that Blob(x, X, Y, h) is at most 1-dimensional
whenever CEmb(X, Y, h) contains a slit mapping.

Proposition 6.6 Let h : X → Y be a generic embedding between finite Rie-
mann surfaces and let x ∈ X. If CEmb(X, Y, h) contains a slit mapping, then
Blob(x, X, Y, h) is homeomorphic to a point or a compact interval.

Proof By Theorem 1.4, the evaluation map evx : CEmb(X, Y, h)→ Y send-
ing f to f (x) is a homeomorphism onto its image V (x). Moreover, V (x) is
either a point or a compact interval since Y is not a torus and h is not cyclic.
The restriction of the universal covering map πY : ˜Y → Y to Blob(x, X, Y, h)
is a homeomorphism onto its image V (x) with inverse liftx ◦ ev−1x . 
�

We will see that Blob(x, X, Y, h) is not much more complicated when
CEmb(X, Y, h) does not contain any slit mapping. Let us recall hypothesis
(H′) from the introduction:

– h : X → Y is a generic embedding between finite Riemann surfaces;
– ∂X �= ∅;
– CEmb(X, Y, h) is non-empty and does not contain any slit mapping.

Assume hypothesis (H′). Since CEmb(X, Y, h) is compact (Lemma 3.1)
and connected (Theorem 1.6), and since liftx is continuous (Lemma 6.4), the
set Blob(x, X, Y, h) is compact and connected for any x ∈ X . Our goal is
to show that the blob is homeomorphic to a closed disk (Theorem 1.7). The
strategy of the proof is to analyze the boundary of the blob. We will show
that every point in ∂ Blob(x, X, Y, h) is attained by a special kind of map in
CEmb(X, Y, h) which we call a slit mapping rel x .

Definition 6.7 Let h : X → Y be a topological embedding between finite
Riemann surfaces and let x ∈ X . We say that a map f ∈ Map(X, Y, h) is a
Teichmüller embedding rel x if the restriction f � : X\{x} → Y\{ f (x)} is a
Teichmüller embedding. A slit mapping rel x is a Teichmüller embedding rel
x which is conformal.

The distinction to make here is that the initial and terminal quadratic dif-
ferentials of f are allowed to have simple poles at x and f (x) respectively.
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For example, there are no slit mappings into the triply-punctured sphere, but
plenty of slit mappings relative to a point.

In order to characterize the boundary points of the blob, we first need a
standard construction for pushing a point around on a Riemann surface. To
paraphrase [11, p.97]: imagine placing your finger on a surface and pushing
it along a smooth path, dragging the rest of the surface along as you go. The
diffeomorphism obtained at the end is called a point-pushing diffeomorphism.

Lemma 6.8 Let Y be any Riemann surface and let γ : [0, 1] → Y be a
smooth immersion. There exists an isotopy H : Y × [0, 1] → Y through
quasiconformal diffeomorphisms such that H(y, 0) = y for every y ∈ Y and
H(γ (0), t) = γ (t) for every t ∈ [0, 1].
Proof First assume that γ embedded. Extend the vector field γ∗(∂/∂t) to a
smooth vector field V supported in a tubular neighborhood of γ ([0, 1]), and
define H to be the vector flow along V . For each t ∈ [0, 1], the map y �→
H(y, t) is a diffeomorphism which is the identity outside a compact set, hence
is quasiconformal.

If γ is not embedded, break it up into finitely many embedded subarcs γ j ,
then construct an isotopy Hj on each corresponding subinterval [a j−1, a j ]
using the above method. The isotopy H(y, t) is defined as H1(y, t) for t ∈
[a0, a1], then H2(H1(y, a1), t) for t ∈ [a1, a2] and so on, picking up where
we left off at each step. 
�

Given a smooth immersion γ : [0, 1] → Y into a Riemann surface and an
isotopy H as in Lemma 6.8, we say that y �→ Pγ (y) := H(y, 1) is a point-
pushing diffeomorphism along γ . By definition, Pγ is isotopic to the identity
and satisfies Pγ (γ (0)) = γ (1). Of course, Pγ depends on the specific choice
of H but its isotopy class rel γ (0) only depends on the homotopy class of γ
by the Birman exact sequence [11, Theorem 4.6].

Here are two elementary observations. If h : X → Y is a generic map
between Riemann surfaces and γ : [0, 1] → Y is an immersed curve such that
γ (0) = h(x), then liftx (Pγ ◦ h) = [γ ] by definition. Secondly, if two maps f
and g inMap(X, Y, h) are homotopic rel x , then obviously liftx ( f ) = liftx (g).
The converse is also true, as can be seen using point-pushing on Y . Thus liftx
detects when two homotopic maps are homotopic rel x .

We say that a map f ∈ Map(X, Y, h) realizes a point c ∈ ˜Y if liftx ( f ) = c.
We can now prove that points outside the blob are realized by Teichmüller
embeddings rel x , provided that there is some quasiconformal embedding in
the homotopy class of h.

Lemma 6.9 Let h : X → Y be a generic quasiconformal embedding between
finite Riemann surfaces, let x ∈ X, and let c ∈ ˜Y\Blob(x, X, Y, h). Then
there exists a unique Teichmüller embedding f rel x homotopic to h such that
liftx ( f ) = c.
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Proof Let γ : [0, 1] → Y be a smooth immersed curve in c, for example
the hyperbolic geodesic, and letPγ be a quasiconformal point-pushing diffeo-
morphism along γ . Then Pγ ◦ h is a quasiconformal embedding homotopic
to h such that liftx (Pγ ◦ h) = [γ ] = c. Let f � : X\{x} → Y\{γ (1)} be a
quasiconformal embedding homotopic to the restriction of Pγ ◦ h with mini-
mal dilatation (Corollary 3.2) and let f : X → Y be its extension. Since f is
homotopic to Pγ ◦ h rel x , we have liftx ( f ) = liftx (Pγ ◦ h) = c.

Suppose that f � is conformal. Then f ∈ CEmb(X, Y, h) so that c = liftx ( f )
belongs to Blob(x, X, Y, h), contrary to our assumption. By Theorem 3.11, f �

is a Teichmüller embedding, so that f is a Teichmüller embedding rel x .
If g is another Teichmüller embedding rel x homotopic to h such that

liftx (g) = c, then g is homotopic to f rel x . Thus the restrictions g� and
f � to X\{x} → Y\{γ (1)} are homotopic Teichmüller embeddings with an
essential puncture, and we conclude that g = f by Remark 4.3. 
�

We deduce that points on the boundary of the blob are realized by slit
mappings rel x .

Proposition 6.10 Assume (H′), let x ∈ X and let c ∈ ∂ Blob(x, X, Y, h). Then
there is a unique f ∈ CEmb(X, Y, h) such that liftx ( f ) = c. Moreover, f is a
slit mapping rel x. If ϕ and ψ are initial and terminal quadratic differentials
for f rel x, then ϕ has a simple pole at x and ψ has a simple pole at f (x).

Proof Since Blob(x, X, Y, h) is closed, c belongs to Blob(x, X, Y, h). Hence
there exists some f ∈ CEmb(X, Y, h) such that liftx ( f ) = c.

Let {cn}∞n=1 be a sequence in ˜Y\Blob(x, X, Y, h) such that cn → c as
n →∞. Then Y\{πY (cn)} converges to Y\{πY (c)} as n →∞, where we can
take markings to be the identity outside of a small neighborhood of πY (c). By
the previous lemma, there exists a Teichmüller embedding fn : X → Y rel
x homotopic to h such that liftx ( fn) = cn . By Lemma 5.4, we can extract a
subsequence of the restrictions f �n : X\{x} → Y\{πY (cn)} converging to a
Teichmüller embedding g : X\{x} → Y\{πY (c)} which is homotopic to the
restriction f � of f . As f � is conformal, it is a slit mapping by Theorem 3.13,
so that f is a slit mapping rel x . For any g ∈ CEmb(X, Y, h) realizing c,
we have that g is homotopic to f rel x . Hence g = f by Theorem 3.13 and
Remark 4.3.

Suppose that ψ does not have a pole at y. Then f is an honest slit mapping
from X to Y . But we assumed that CEmb(X, Y, h) does not contain any slit
mapping. Therefore ψ has a simple pole at f (x) and ϕ = f ∗ψ has a simple
pole at x . 
�

Assume hypothesis (H′) and let x ∈ X . Suppose that c ∈ ∂ Blob(x, X, Y, h)
and that f ∈ CEmb(X, Y, h) realizes c. We say that any quadratic differential
ψ ∈ Q+(Y\{ f (x)}) with respect to which f is a slit mapping rel x realizes c
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as well. Even though f is unique by Proposition 6.10, ψ need not be unique
up to scale (see Remark 3.14). Nevertheless, the set of quadratic differentials
realizing a given point c ∈ ∂ Blob(x, X, Y, h) is convex.

Lemma 6.11 Assume hypothesis (H′). Suppose thatψ0 andψ1 inQ+(Y\{y})
realize c ∈ ∂ Blob(x, X, Y, h) where y = πY (c). Then for every α, β > 0 the
quadratic differential αψ0 + βψ1 belongs to Q+(Y\{y}), realizes c, and has
a simple pole at y.

Proof Let f be the slit mapping realizing c. Then ψ := αψ0 + βψ1 is ≥ 0
along any arc in ̂Y\ f (X) so that f is a slit mapping rel x with respect to ψ . If
ψ does not have a pole at y, then f is a slit mapping from X to Y , contradicting
hypothesis (H′). 
�

We will see that any ψ ∈ Q+(Y\{πY (c)}) which realizes c tells us some-
thing about the shape of Blob(x, X, Y, h) near c.More precisely,ψ can be used
to find a regionU ⊂ ˜Y of forbidden values for themaps inCEmb(X, Y, h), that
is, disjoint from Blob(x, X, Y, h). The idea is that if we push πY (c) in some
directions, then a certain quantity goes up, while it cannot increase under
conformal embedding. This quantity is extremal length.

7 Extremal length of partial measured foliations

There are several equivalent ways to define the extremal length of a measured
foliation. We follow the approach developed in [15] and [16].

A map will be called almost-smooth if it is continuous and continuously
differentiable except perhaps at finitely many points.

Definition 7.1 A partial measured foliation F = {(Uj , v j )} j∈J on a Riemann
surface X is a collection of open sets Uj ⊂ X together with almost-smooth
functions v j : Uj → R satisfying

v j = ± vk + c jk

on Uj ∩ Uk , where c jk is locally constant. The set U = ⋃

j U j is called the
support of F . Since |dv j | = |dvk | onUj ∩Uk , these patch up to a well-defined
object |dv| on U called the transverse measure of F . The leaves of F are the
maximal connected subsets ofU on which each v j is locally constant. We will
write F or |dv| interchangeably.
Remark 7.2 This is much weaker that usual notion of measured foliation [12].
For one thing, the support does not have to be the complement of a finite set.
Moreover, the leaves are not required to be 1-dimensional submanifolds; they
can be thick. In practice, we will only deal with partial measured foliations
which are measured foliations on a subsurface.
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Remark 7.3 We could relax the regularity condition on the functions v j and
only assume that they belong to the Sobolev space W 1,2(Uj ). This would be
more natural from the point of view of quasiconformal maps. For the sake of
simplicity we will stick to the almost-smooth condition.

For example, if ϕ is a quadratic differential and Uj is a simply connected
domain on which ϕ does not have any singularities, then the function

v j (z) = Im
∫ z

z0

√
ϕ

is well-defined onUj up to an additive constant and sign. The resulting partial
measured foliation Fhϕ = |dv| = | Im√ϕ| is the horizontal foliation of ϕ.
Its leaves are the regular horizontal trajectories of ϕ.

The Dirichlet energy of a partial measured foliation F = |dv| with support
U is

Dir(F) :=
∫

U
|∇v|2dA

where the gradient ∇v (only defined up to sign) is computed with respect to
any conformal Riemannian metric on X with corresponding area form dA.
Alternatively, we can write

Dir(F) =
∫

U

(

∂v

∂x

)2

+
(

∂v

∂y

)2

dxdy

where z = x + iy is any conformal coordinate.
For example, if ϕ is a holomorphic quadratic differential on X and Fhϕ is

its horizontal foliation, then

Dir(Fhϕ) =
∫

X
|ϕ| = ‖ϕ‖

as can be seen by computing the Dirichlet energy in natural coordinates where
ϕ = dz2 and v(x + iy) = ± y + c.

A cross-cut on a Riemann surface X is a proper arc α : (0, 1) → X . Two
cross-cuts are homotopic if there is a homotopy through cross-cuts between
them. The height of a homotopy class c of closed curves or cross-cuts in X
with respect to a partial measured foliation F = |dv| is the quantity

height(c, F) := inf
α∈c

∫

α

|dv|,
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where the infimum is taken over all piecewise smooth curves α ∈ c, and where
|dv| is extended to be zero outside its support.

Given partial measured foliations F and G on a Riemann surface X , we say
that G dominates F if

height(c,G) ≥ height(c, F)

for every homotopy class c of closed curves or cross-cuts in X . Two partial
measured foliations are measure equivalent if they dominate each other, i.e.,
if they have the same heights.

Definition 7.4 The extremal length of a partial measured foliation F on a
Riemann surface X is defined as

EL(F, X) := inf {Dir(G) : G dominates F} .
This is not the standard definition of extremal length. However, if F is a

measured foliation (not partial) on a finite Riemann surface X , then EL(F, X)

is the norm of the unique holomorphic quadratic differential �(F, X) on X
with the sameheights as F (this is often taken as a definition). The existence and
uniqueness of �(F, X) is due to Hubbard and Masur [19], but what interests
us here is its minimizing property.

Theorem 7.5 (Theminimal normproperty) Let X be a finite Riemann surface,
let ϕ ∈ Q(X)\{0}, and let Fhϕ be the horizontal foliation of ϕ. Then

EL(Fhϕ, X) = Dir(Fhϕ) = ‖ϕ‖.
That is,

Dir(Fhϕ) ≤ Dir(G)

for every partial measured foliation G on X which dominates Fhϕ.

This is proved in [26, Theorem 3.2] (see also [39, Chapter VII]). There
the result is stated for partial measured foliations G whose support has a
discrete complement, but this hypothesis is not used anywhere in the proof.
The idea of the proof is to look at the vertical foliation Fvϕ which splits up
into rectangles, cylinders andminimal components. If λ is a vertical leaf which
is a cross-cut or a closed curve, then

∫

λ
dFhϕ = height(λ,Fhϕ) ≤ ∫

λ
dG.

There is a similar inequality for minimal components, but one needs to pick
a horizontal transversal and do a surgery on vertical leafs to obtain closed
curves. The result is obtained by integrating these 1-dimensional inequalities
against the leaf space and applying the Cauchy–Schwarz inequality. This is a
sophisticated version of the so-called “length-area argument”.
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7.1 Pushing forward

If f : X → Y is an almost-smooth embedding between Riemann surfaces
and F = {(Uj , v j )} j∈J is a partial measured foliation on X , then the push-
forward f∗F = {( f (Uj ), v j ◦ f −1)} j∈J is a partial measured foliation on
Y . This justifies our preference for partial measured foliations over measured
foliations: we will push them forward by conformal embeddings.

Remark 7.6 The notion of heights induces a topology on the set of (measure
equivalence classes of) partial measured foliations on a finite Riemann surface.
The reader should be warned that the push-forward operator is not continuous
with respect to that topology [24, Example 4.4].

A standard calculation shows that Dirichlet energy increases by a factor at
most K under almost-smooth K -quasiconformal embeddings [2, p. 14]. As a
consequence, extremal length increases by a factor atmost K under suchmaps.
In particular, extremal length does not increase under conformal embeddings.

Lemma 7.7 Let f : X → Y be an almost-smooth K -quasiconformal embed-
ding between finite Riemann surfaces and let ϕ ∈ Q(X)\{0}. Then

EL( f∗Fhϕ, Y ) ≤ K EL(Fhϕ, X).

Proof Let ζ = σ + iτ be a conformal coordinate on f (X) and let z = x + iy
be a conformal coordinate at f −1(ζ ). Since f is K -quasiconformal, we have

dxdy = det(d f −1)dσdτ ≥ K−1‖d f −1‖2dσdτ.
Let v(z) = Im

∫ z
z0

√
ϕ so that |dv| = | Im√ϕ| = Fhϕ. We compute

Dir( f∗|dv|) =
∫

f (X)

|∇(v ◦ f −1)(ζ )|2 dσdτ

=
∫

f (X)

|(d f −1)(∇v)( f −1(ζ ))|2 dσdτ

≤
∫

f (X)

‖d f −1‖2|(∇v)( f −1(ζ ))|2 dσdτ

≤ K
∫

f (X)

det(d f −1)|(∇v)( f −1(ζ ))|2 dσdτ

= K
∫

X
|(∇v)(z)|2 dxdy = K Dir(|dv|).

It follows that

EL( f∗|dv|, Y ) ≤ Dir( f∗|dv|) ≤ K Dir(|dv|) = K EL(|dv|, X),
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where the last equality holds by Theorem 7.5. 
�
Remark 7.8 Itwould be desirable to have this for any partialmeasured foliation
F on X , but one runs into a difficulty: it is not clear that f∗G dominates f∗F if
G dominates F . See Lemma 7.10 for a similar statementwhich sounds obvious
but is not entirely straightforward.

The previous inequality is sharp as the case of Teichmüller embeddings
illustrates.

Lemma 7.9 Let f : X → Y be a Teichmüller embedding of dilatation K with
initial and terminal quadratic differentials ϕ and ψ . Then f∗Fhϕ is measure
equivalent to Fhψ on Y and we have

EL(Fhψ, Y ) = EL( f∗Fhϕ, Y ) = K EL(Fhϕ, X).

Proof WehaveFhψ = f∗Fhϕ on f (X) since f (x+iy) = Kx+iy in natural
coordinates. Moreover, since Y\ f (X) is a finite union of horizontal arcs and
points, the integral of Fhψ is zero along any piece of curve contained in this
set. For any piecewise smooth curve α in Y , we thus have

∫

α

dFhψ =
∫

α

χ f (X)dFhψ +
∫

α

χY\ f (X)dFhψ

=
∫

α

d f∗Fhϕ +
∫

α

χY\ f (X)dFhψ

=
∫

α

d f∗Fhϕ

whereχA is the characteristic function of the set A. ThereforeFhψ and f∗Fhϕ

aremeasure equivalent, which implies that they have the same extremal length.
By Lemma 7.7, the inequality

EL( f∗Fhϕ, Y ) ≤ K EL(Fhϕ, X)

holds and by Theorem 7.5 we have EL(Fhψ, Y ) = ‖ψ‖ and EL(Fhϕ, X) =
‖ϕ‖. We also have ‖ψ‖ = K‖ϕ‖ since f stretches horizontally by a factor K
and f (X) has full measure in Y . Putting everything together, we get

‖ψ‖ = EL(Fhψ, Y ) = EL( f∗Fhϕ, Y ) ≤ K EL(Fhϕ, X) = K‖ϕ‖ = ‖ψ‖
and hence equality holds. 
�

We will need a sufficient condition for when the push-forwards of a mea-
sured foliation by two homotopic embeddings are measure equivalent. We say
that an embedding f : X → Y between finite Riemann surfaces is tame if
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it is almost-smooth and extends to a continuous map ̂f : ̂X → ̂Y which is
piecewise smooth along ∂X . For example, every Teichmüller embedding is
tame.

Lemma 7.10 Let f, g : X → Y be homotopic tame embeddings between
finite Riemann surfaces and let ϕ ∈ Q+(X). Then f∗Fhϕ and g∗Fhϕ are
measure equivalent on Y .

It is important that we take ϕ inQ+(X) and not just inQ(X)\{0}. We want
the transverse measure of each boundary component to be zero.

Proof Let F = Fhϕ. By symmetry, it suffices to show that f∗F dominates
g∗F . Let α be a piecewise smooth closed curve or cross-cut in Y . Given ε > 0,
we have to find a closed curve or cross-cut β homotopic to α such that

∫

β

g∗F ≤
∫

α

f∗F + ε. (2)

If α is contained in f (X), then we can just take β = g◦ f −1(α). The difficulty
is when α intersects Y\ f (X).

If
∫

α
f∗F = ∞ there is nothing to show, so assume the integral is finite.

Then there is only a finite number n of components of f −1(α) which are
essential in X in the sense that they cannot be homotoped into an arbitrarily
small neighborhhood of ∂X ∪ Ẋ . Let δ = ε/(8n) and let X δ be ̂X minus a δ-
neighborhood of ∂X∪ Ẋ in themetric |ϕ|. Themap g◦ f −1 : f (X δ)→ g(X δ)

can be extended to an almost-smooth homeomorphism H : Y → Y homotopic
to the identity (see [27, Lemma 2]).

We will take β to be a modified version of H(α). First, each inessential
component of H(α)∩g(X) can be homotopedwithin g(X) to an arc contained
in g(X\X δ) having arbitrarily small transverse measure with respect to g∗F .
Even if there are infinitely many such inessential components, we can make
sure that their total transverse measure is at most ε/2. Let γ be the curve
obtained after having done this.

Next, we homotope each essential component c of γ ∩ g(X\X δ), within
g(X\X δ), to an arc having transverse measure at most 2δ, while keeping
endpoints fixed. This is possible since the height of each component of X\X δ

is δ. Moreover, no matter how many times g−1(c) winds around the annular
component of X\X δ in which it is contained, we can push this winding part
toward ∂X ∪ Ẋ . In doing so, the transverse measure of the winding part tends
to zero and is thus eventually less than δ, for a total of at most 2δ. There are
2n such components—two for each essential component of γ ∩ g(X)—for a
total transverse measure of (2n)(2δ) = ε/2.

Let β be the curve obtained after having done these twomodifications. Then
inequality (2) holds since β\g(X) has measure zero, β∩g(X\X δ) contributes
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at most ε/2 + ε/2 = ε, and β ∩ g(X δ) is the image by g ◦ f −1 of a subset
of α so its transverse measure with respect to g∗F is at most the transverse
measure of α with respect to f∗F . 
�

8 The blob is semi-smooth

In this section, we show that each quadratic differential realizing a point on the
boundary of Blob(x, X, Y, h) determines a vector normal to the blob and vice
versa. We use this to prove that the blob satisfies a certain regularity condition
near its boundary which we call semi-smoothness. We first need the following
formula for the derivative of extremal length [14, Theorem 8].

Theorem 8.1 (Gardiner’s formula) Let S be a finite Riemann surface and let
F be a measured foliation on S. Then the function9 Z �→ EL(F, Z) is diffe-
rentiable on T (S). Its derivative at Z ∈ T (S) in the direction μ ∈ TZT (S)
is

2〈μ, ϕ〉 (3)

where ϕ ∈ Q(Z) is the unique quadratic differential such thatFhϕ is measure
equivalent to F.

We apply this formula along a curve Zt = Y\{γ (t)} for some analytic path
γ : I → Y , where Y is a finite hyperbolic surface. It is implicit here that the
change of marking Z0 → Zt is given by point-pushing along γ . In this case,
the pairing 〈μ, ϕ〉 is proportional to the real part of the residue of ϕ in the
direction of γ ′(0). See [28] for a similar but more general calculation.

Lemma 8.2 Let Y be a finite hyperbolic surface, let γ : (−1, 1) → Y be an
analytic arc and let Zt = Y\{γ (t)}. Then the derivative μ of Zt at t = 0
satisfies

〈μ, q〉 = −π Re[Resγ (0)(q · γ ′(0))] (4)

for every q ∈ Q(Z0).

Proof Wemay assume that γ is embedded by restricting to a subinterval. Since
γ is analytic, the vector field γ∗(∂/∂t) can be extended to a holomorphic vector
field v on an embedded round disk D ⊂ Y centered at y = γ (0). Let E be
another round disk of smaller radius centered at y and let φ be a smooth bump
function which is equal to 1 on E and 0 outside D. Then φv is a smooth
vector field defined on all of Y . Let �t be the time-t flow for φv and let
ν(t) = ∂�t/∂�t . Then for small enough t , we have �t (γ (0)) = γ (t) by

9 This is a slight abuse of notation. Recall that a point in T (S) is an equivalence class ofmarking
f : S → Z , which we may assume is almost-smooth. By the expression EL(F, Z) we really
mean EL( f∗F, Z).
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push

Fig. 6 Pushing a simple pole of a quadratic differential in a mostly vertical direction increases
the extremal length of its horizontal foliation

construction so the derivative μ to the path t �→ Y\{γ (t)} at t = 0 coincides
with ν′(0) = ∂(φv). We compute

∫

Z0

μq =
∫

D
q∂(φv) =

∫

D\E
q∂(φv) =

∫

D\E
∂(φqv)

= − i

2

∫

∂(D\E)

φqv = i

2

∫

∂E
qv = −π Resy(qv).

The equality from the first line to the second is by Green’s theorem and the
change of sign in the next equality comes from reversing orientation on ∂E .
To conclude the proof, recall that 〈μ, q〉 = Re

∫

Z0
μq by definition. 
�

Let Y be a finite hyperbolic surface and let y ∈ Y . If ψ ∈ Q(Y\{y}) has
a simple pole at y, then there exists a tangent vector v ∈ TyY (unique up
to rescaling) such that Resy(ψv) < 0. We say that v is vertical for ψ . For
example, if ψ = 1

z dz
2 then v = − ∂

∂z is vertical at 0 since

Res0(ψv) = 1

2π i

∮ −1
z

dz = −1.

A vector w ∈ TyY is mostly vertical for ψ if Re[Resy(ψw)] < 0. If v is
vertical and λ ∈ C then λv is mostly vertical if and only if Re λ > 0. Thus
the mostly vertical vectors are those that make an angle less than π/2 with
the vertical direction (here angles are measured with respect to the Riemann
surface structure on Y , not the cone metric coming from |ψ |).

If we push y in a mostly vertical direction, then the extremal length ofFhψ

will increase according to equations (3) and (4), at least for small time |t | < δ.
The intuition for this is that if we push in mostly vertical directions, we stretch
the leaves of Fhψ and compress them together, thereby increasing Dirichlet
energy (see Fig. 6).

Wewill need amore uniform statementwhere δ can be chosen independently
of the direction.We can do this as long as we restrict to a compact set of angles.
Given a point y ∈ Y and a tangent vector v ∈ TyY , let γv : R → Y be the
hyperbolic geodesic such that γ ′v(0) = v. We will push y along these specific
paths.
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Lemma 8.3 Let Y be a finite hyperbolic surface and let y ∈ Y . Suppose that
ψ ∈ Q(Y\{y}) has a simple pole at y and let v ∈ TyY be vertical for ψ . Then
for every θ0 ∈ (0, π

2 ) there exists a number δ > 0 such that

EL(Fhψ, Y\{γeiθv(t)}) > EL(Fhψ, Y\{y})
for every θ ∈ [−θ0, θ0] and every t ∈ (0, δ).

Proof Suppose not and let F = Fhψ . Then there exist convergent sequences
tn↘0 and θn → θ∞ ∈ [−θ0, θ0] as n →∞ such that

EL(F, Y\{γeiθn v(tn)}) ≤ EL(F, Y\{y})
for every n ∈ N.

For w ∈ TyY let μw be the derivative of the path t �→ Y\{γw(t)} at t = 0.
Then μeiθn v → μeiθ∞v as n → ∞ by equation (4). Since Z �→ EL(F, Z) is
differentiable at Z = Y\{y} we have that

EL(F, Y\{γeiθn v(tn)})− EL(F, Y\{y})
tn

→ 2〈μeiθ∞v, ψ〉

as n →∞. But the left-hand side is non-positive for each n while

2〈μeiθ∞v, ψ〉 = −2π Re[Resy(ψeiθ∞v)] = −2π cos(θ∞)Resy(ψv) > 0.

This is a contradiction. 
�
Let us introduce some more terminology. Given z ∈ C, v ∈ TzC\{0},

θ ∈ (0, π), and δ > 0, we denote by �(v, θ, δ) the open angular sector based
at z with radius δ and angle θ on either side of v. In symbols,

�(v, θ, δ) =
{

z + teiφ
v
|v| : φ ∈ (−θ, θ) and t ∈ (0, δ)

}

.

Definition 8.4 Let B ⊂ C be closed. A vector v ∈ TzC with z ∈ B is normal
to B if v �= 0 and if there are angular sectors arbitrarily close to half-disks
pointing in the direction of v which are disjoint from B. More precisely, v is
normal to B if v �= 0 and if for every θ ∈ (0, π

2 ), there exists a δ > 0 such
that �(v, θ, δ) ∩ B = ∅.

See Fig. 7 for some examples. Note that conformal homeomorphisms pre-
serve normal vectors. Thus the definition extends to any Riemann surface.
Furthermore, instead of Euclidean rays we can use geodesic rays for any con-
formal Riemannian metric (for example the hyperbolic metric if the surface is
hyperbolic).
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Fig. 7 A closed subset of the plane and some of its normal vectors. There is no normal vector
at the inward corner and several normal vectors at outward corners

We are ready to prove that any quadratic differential realizing a point on the
boundary of the blob determines a vector normal to the blob.

Proposition 8.5 (Vertical vectors are normal) Assume hypothesis (H′). Let
x ∈ X, let c ∈ ∂ Blob(x, X, Y, h) and suppose that ψ ∈ Q+(Y\{πY (c)})
realizes c. If v ∈ Tc˜Y is vertical for π∗Yψ , then v is normal toBlob(x, X, Y, h).

Proof Let f ∈ CEmb(X, Y, h) be the slit mapping rel x realizing c provided
by Proposition 6.10. Let y = πY (c) = f (x), let g : X\{x} → Y\{y} be the
restriction of f , let G = Fhψ on Y\{y}, let ϕ = g∗ψ and let F = Fhϕ on
X\{x}. Also let w = dπY (v) so that w is vertical for ψ at y.
Fix θ0 ∈ (0, π

2 ). By Lemma 8.3, there exists a δ > 0 such that for every
θ ∈ [−θ0, θ0] and every t ∈ (0, δ) we have

EL(G, Y\{γeiθw(t)}) > EL(G, Y\{y}).
Since g is a slit mapping, G is measure equivalent to g∗F on Y\{y} by
Lemma 7.9. We also have EL(G, Y\{y}) = ‖ψ‖ = ‖ϕ‖ = EL(F, X\{x})
by Theorem 7.5, so the above inequality translates to

EL(g∗F, Y\{γeiθw(t)}) > EL(F, X\{x}). (5)

Fix θ ∈ [−θ0, θ0] and t ∈ (0, δ). Let P be a quasiconformal point-pushing
diffeomorphism along γeiθw([0, t]). Recall that the left-hand side of (5) really
stands for the extremal length of (P ◦ g)∗F since P : Y\{y} → Y\{γeiθw(t)}
is our change of marking by convention (see footnote 9).

Suppose that there is a conformal embedding M : X\{x} → Y\{γeiθw(t)}
homotopic to P ◦ g. Then by Corollary 5.9, either M is a slit mapping or it is
homotopic to a conformal embedding which extends analytically to the ideal
boundary. In either case, M is homotopic to a tame conformal embedding N .
By Lemma 7.10, N∗F and (P ◦ g)∗F are measure equivalent on Y\{γeiθw(t)}
which means that

EL(N∗F, Y\{γeiθw(t)}) = EL((P ◦ g)∗F, Y\{γeiθw(t)}) > EL(F, X\{x}).
On the other hand, EL(N∗F, Y\{γeiθw(t)}) ≤ EL(F, X\{x}) by Lemma 7.7.
We conclude that no such M exists.
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Equivalently, the concatenation of c with γeiθw([0, t]) does not belong to
Blob(x, X, Y, h). Since this holds for every θ ∈ [−θ0, θ0] and every t ∈
(0, δ), the open hyperbolic sector of radius δ‖v‖

˜Y (the norm is with respect
to the hyperbolic metric) and angle θ0 on either side v in ˜Y is disjoint from
Blob(x, X, Y, h). Thus v is normal to Blob(x, X, Y, h), as θ0 ∈ (0, π

2 ) was
arbitrary. 
�

As a corollary, we obtain the converse of Proposition 6.10.

Corollary 8.6 Assume hypothesis (H′) and let x ∈ X. If f : X → Y is a slit
mapping rel x homotopic to h, then liftx ( f ) ∈ ∂ Blob(x, X, Y, h).

Proof Let c = liftx ( f ). Since f is conformal, c belongs to Blob(x, X, Y, h).
Let ψ be a terminal quadratic differential for f rel x . If ψ does not have a
simple pole at y = f (x) then f is a slit mapping, contradicting the assumption
that CEmb(X, Y, h) does not contain any. Thus ψ has a simple pole at y so
that there exists a vector v ∈ Tc˜Y which is vertical for π∗Yψ . We can apply the
same reasoning as in the proof of Proposition 8.5 to conclude that v is normal
to Blob(x, X, Y, h). In particular, c ∈ ∂ Blob(x, X, Y, h). 
�

Wewill also prove the converse of Proposition 8.5, namely that every vector
normal to Blob(x, X, Y, h) is vertical with respect to some realizing quadratic
differential. The first step is to strengthen Lemma 8.3 by allowing the point
y ∈ Y and the quadratic differentialψ to vary inside a compact set. We have to
be a little more careful about how to compare two surfaces Y\{y1} and Y\{y2}
for y1, y2 ∈ Y though.

Remark 8.7 Let S be a finite hyperbolic surface and let s ∈ S. Given Y ∈ T (S)
and y ∈ Y , there is no canonical way to define a marking S\{s} → Y\{y}.
However, if b ∈ Y is some basepoint, ˜Y is the universal cover of Y based at
b, and f : S\{s} → Y\{b} is a fixed marking, then point-pushing provides a
continuous map Θ : ˜Y → T (S\{s}) as follows. We can represent any c ∈ ˜Y
by a smooth immersed curve γ : [0, 1] → Y with γ (0) = b. Let Pγ be a
quasiconformal point-pushing diffeomorphism along γ , then define Θ(c) as
the marked surface Pγ ◦ f : S\{s} → Y\{πY (c)} in T (S\{s}). We use these
markings implicitly below.

Lemma 8.8 Let Y be a finite hyperbolic surface. Let θ0 ∈ (0, π
2 ) and let K

be a compact set of pairs (c, ψ) where c ∈ ˜Y and ψ ∈ Q(Y\{πY (c)}) has a
simple pole at πY (c). There exists a number δ > 0 such that ∀(c, ψ) ∈ K,
∀θ ∈ [−θ0, θ0] and ∀t ∈ (0, δ) we have

EL(Fhψ, Y\{γeiθv(t)}) > EL(Fhψ, Y\{πY (c)})
where v is the vertical vector for ψ at πY (c) rescaled to have norm 1 with
respect to the hyperbolic metric.
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Proof The idea of the proof is the same as for Lemma 8.3. If the statement
fails, then there exist convergent sequences tn↘0, (cn, ψn) → (c, ψ) ∈ K ,
θn → θ ∈ [−θ0, θ0] such that

EL(Fhψn, Y\{γeiθn vn (tn)}) ≤ EL(Fhψn, Y\{πY (cn)})

for every n ∈ N, where vn is the unit vertical vector for ψn at πY (cn). Since
ψn → ψ as n →∞ we have that vn → v where v is the unit vertical vector
for ψ at πY (c). If μn denotes the derivative of the path t �→ Y\{γeiθn vn (t)} at
t = 0 and μ the derivative of t �→ Y\{γeiθv(t)} at t = 0, then μn → μ as
n →∞ since θn → θ and vn → v. In the limit, we have

2〈μ,ψ〉 = −2π Re[ResπY (c)(ψeiθv)] = −2π cos(θ)Re[ResπY (c)(ψv)] > 0.

The difference with Lemma 8.3 is that the measured foliations Fhψn are not
constant, so we are looking at a sequence of functions rather than a single one.

Let b ∈ Y be our basepoint for the universal cover πY : ˜Y → Y . Recall
that any c ∈ ˜Y determines a marking fc : Y\{b} → Y\{πY (c)}. Thus the
measured foliations Fn = f ∗cn (F

hψn) and F = f ∗c (Fhψ) all live on the same
surface S = Y\{b}. Moreover Fn → F inmeasure since (cn, ψn)→ (c, ψ) as
n →∞. Given ameasured foliationG on S and Z ∈ T (S), let�(G, Z) be the
quadratic differential on Z whose horizontal foliation is measure equivalent
to G. By Hubbard–Masur [19], the mapMF(S)×T (S)→ T ∗T (S) sending
(G, Z) to �(G, Z) is continuous. Thus the function

Z �→ ΛG(Z) := EL(G, Z) = ‖�(G, Z)‖

depends continuously on G. Furthermore, its derivative

(Z , ν) �→ dZΛG(ν) = 2〈ν,�(G, Z)〉

is continuous on TT (S) and depends continuously on G.
Let {xn}∞n=1 and {yn}∞n=1 be sequences in R

k such that xn → 0, yn → 0 and
yn−xn
|yn−xn | → v as n →∞. Suppose that gn, g : Rk → R are C1 functions such
that gn → g and dgn → dg uniformly on compact sets as n →∞. Then

gn(yn)− gn(xn)

|yn − xn| → dg(v)

as n →∞. One can show this using the fundamental theoremof calculus along
the line segment between xn and yn for instance. By the previous paragraph,
this criterion applies to the extremal length functions ΛFn and ΛF on T (S)
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(which is diffeomorphic to some R
k) to conclude that

EL(Fhψn, Y\{γeiθn vn (tn)})− EL(Fhψn, Y\{πY (cn)})
tn

→ 2〈μ,ψ〉

as n → ∞. This is a contradiction, since left-hand side is non-positive for
every n ∈ N while the right-hand side is positive. 
�

The next observation that we need is that that any non-zero limit of a
sequence of terminal quadratic differentials is a terminal quadratic differential
for the limiting Teichmüller embedding.

Lemma 8.9 Let h : X → Y be a generic embedding between finite Riemann
surfaces and let x ∈ X. Let fn : X → Y be a Teichmüller embedding rel
x homotopic to h with unit norm terminal quadratic differential ψn. Suppose
that liftx ( fn) converges to some c ∈ ˜Y . Then there is a Teichmüller embedding
f rel x homotopic to h with unit norm terminal quadratic differential ψ such
that fn → f and ψn → ψ as n →∞ after passing to a subsequence.

Proof Let Kn be the dilatation of fn . By hypothesis, the marked surface
Θ(liftx ( fn)) converges to Θ(c) in the Teichmüller space T of Y minus a
point, where Θ : ˜Y → T is the map from Remark 8.7. In particular, the
sequence Kn is bounded so we may assume it converges to some K ≥ 1. By
Lemma 5.4, there is a Teichmüller embedding f rel x homotopic to h such
that fn → f after passing to a subsequence.

Let cn = liftx ( fn). The set {c}∪ {cn}∞n=1 is compact in ˜Y and so is its image
by Θ in T . Since the set of unit cotangent vectors over a compact set in T is
compact, there is a quadratic differentialψ ∈ Q(Y\πY (c)) such thatψn → ψ

after passing to a subsequence. We have to show thatψ is a terminal quadratic
differential for f .

Let ϕn be the initial quadratic differential of fn corresponding to ψn . We
may assume that ϕn converges to some ϕ ∈ Q+(X\{x}) since its norm 1/Kn
is bounded above and below. Suppose that z0 ∈ X\{x} is not a zero of ϕ. Then
there is a compact simply connected neighborhood U of z0 on which ϕ does
not vanish. If n is large enough, then ϕn does not have any zeros in U either.
If V = f (U ), then ψ and ψn do not have zeros in V when n is large enough.
We can choose square roots consistently so that

√
ϕn →√

ϕ uniformly on U
and

√
ψn →√

ψ uniformly on V . Then for every z ∈ U and every n we have

∫ fn(z)

fn(z0)

√

ψn = Kn Re

(∫ z

z0

√
ϕn

)

+ i Im

(∫ z

z0

√
ϕn

)
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since fn restricted to X\{x} is a Teichmüller embedding of dilatation Kn with
respect to ϕn and ψn . Taking the limit as n →∞ we get

∫ f (z)

f (z0)

√

ψ = K Re

(∫ z

z0

√
ϕ

)

+ i Im

(∫ z

z0

√
ϕ

)

which means that f is locally of Teichmüller form with respect to ϕ

and ψ . 
�
Lastly, we will need the fact that the set of vectors which are vertical for

some realizing quadratic differential at a given point is convex.

Lemma 8.10 Assume hypothesis (H′). Let x ∈ X, let c ∈ ∂ Blob(x, X, Y, h)
and suppose that ψ0, ψ1 ∈ Q+(Y\{πY (c)}) realize c. If v0 and v1 are vertical
for ψ0 and ψ1 respectively at y = πY (c), then there exist α, β > 0 such that
v0 + v1 is vertical for αψ0 + βψ1.

Proof Take α = −|v0||v1| Resy(ψ1v1) and β = −|v1||v0| Resy(ψ0v0). A calculation
shows that Resy((αψ0 + βψ1)(v0 + v1)) ≤ 0. By Lemma 6.11, the quadratic
differential αψ0 + βψ1 has a simple pole at y. This implies that v0 + v1 �= 0
and hence that Resy((αψ0 + βψ1)(v0 + v1)) < 0. 
�

We are now able to show that normal vectors are vertical.

Proposition 8.11 (Normal vectors are vertical) Assume (H′) and let x ∈ X.
Suppose that v is normal toBlob(x, X, Y, h) at some point c. Then there exists
a quadratic differential ψ ∈ Q+(Y\πY (c)) realizing c such that v is vertical
for π∗Yψ .

Proof Let Vc ⊂ Tc˜Y denote the set of vectors which are vertical for the
pull-back of some quadratic differential realizing c. By Lemma 6.11 and
Lemma 8.10, Vc is convex. Moreover Vc ∪ {0c} is closed by Lemma 8.9.
Suppose that v is not in Vc. Then there is an open half-plane H through the
origin in Tc˜Y containing Vc such that v is not in the closure H . Let cn be a
sequence converging to c along the geodesic ray r which is normal to H at c.
Since r makes an angle strictly less than π/2 with v and since v is normal to
Blob(x, X, Y, h), we may assume that cn is not in Blob(x, X, Y, h) for any n.
Let fn be the Teichmüller embedding rel x realizing cn provided by Lemma 6.9
and let ψn be its terminal quadratic differential, normalized to have norm 1.

We may assume that ψn converges to some ψ ∈ Q+(Y\πY (c)) and that
fn converges to a slit mapping f rel x with terminal quadratic differen-
tial ψ by Lemma 8.9. Indeed, the limit f is conformal since c belongs to
Blob(x, X, Y, h). If ψ is holomorphic at πY (c), then f is a slit mapping on X ,
contrary to the assumption that CEmb(X, Y, h) does not contain any. There-
fore ψ has a simple pole at πY (c), which implies that ψn has a simple pole at
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Fig. 8 The point c is
eventually contained in the
sector of angle θ and radius δ
about the vector wn φ

w

r

c

cn

wn

H

θ

δ

πY (cn) for all but finitely many indices. Let wn be the unit vertical vector for
π∗Yψn at cn . Then wn converges to the unit vertical vector w for π∗Yψ at c. We
have w ∈ Vc ⊂ H . We will see that this yields a contradiction.

Let φ ∈ (0, π
2 ] be the angle betweenw and the line ∂H , and let θ = π

2 − φ
2 .

By Lemma 8.8, there exists a number δ > 0 such that ∀n ∈ N, ∀α ∈ [−θ, θ ]
and ∀t ∈ (0, δ) we have

EL(Fhψn, Y\{πY (γeiαwn
(t))}) > EL(Fhψn, Y\{πY (cn)}).

On the other hand, since wn → w, the angle between wn and the geodesic
between cn and c converges to the angle between w and the ray opposite to r ,
that is, to π

2 − φ < θ . Thus if n is large enough then c belongs to the open
hyperbolic sector of radius δ and angle θ on either side of wn (Fig. 8) so that

EL(Fhψn, Y\{πY (c)}) > EL(Fhψn, Y\{πY (cn)}).
Let ϕn be the initial quadratic differential of fn corresponding to ψn and let

Kn > 1 be the dilatation of fn . By Lemma 7.9, Fhψn is measure equivalent
to ( fn)∗Fhϕn on Y\πY (cn). If we let Pn : Y\{πY (cn)} → Y\{πY (c)} be the
change of marking given by point-pushing, we get

EL((Pn ◦ fn)∗Fhϕn, Y\{πY (c)}) = EL((Pn)∗Fhψn, Y\{πY (c)})
> EL(Fhψn, Y\{πY (cn)})
= Kn EL(Fhϕn, X\{x})
> EL(Fhϕn, X\{x})

when n is large enough, by the above inequality and Lemma 7.9. However,
since f andPn◦ fn are homotopic tame embeddings from X\{x} to Y\{πY (c)}
and f is conformal, we have

EL((Pn ◦ fn)∗Fhϕn, Y\{πY (c)}) = EL( f∗Fhϕn, Y\{πY (c)})
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≤ EL(Fhϕn, X\{x})
by Lemmas 7.10 and 7.7. This is a contradiction, fromwhich we conclude that
v belongs to Vc. 
�

We finally come to the main result of this section, which is that the blob is
semi-smooth.

Definition 8.12 A closed subset B ⊂ C is semi-smooth if

– for every z ∈ ∂B, the set of normal vectors to B at z is non-empty and
convex;

– any non-zero limit of vectors normal to B (not necessarily at the same
point) is normal to B.

For example, a 2-dimensional manifold M ⊂ C with C1 boundary is semi-
smooth, as is any convex set with non-empty interior. A line segment is not
semi-smooth because at interior points the set of normal vectors is not convex.

Theorem 8.13 (The blob is semi-smooth) Assume hypothesis (H′). Then
Blob(x, X, Y, h) is semi-smooth for any x ∈ X.

Proof For every c ∈ ∂ Blob(x, X, Y, h) the set of vectors which are normal to
Blob(x, X, Y, h) at c coincides with the set Vc of vectors which are vertical for
the pull-back of some quadratic differential realizing c, according to Proposi-
tions 8.5 and 8.11. The set Vc is non-empty by Proposition 6.10 and convex by
Lemma 6.11 and Lemma 8.10. Suppose that {cn}∞n=1 ⊂ ∂ Blob(x, X, Y, h)
is such that cn → c, that vn is vertical for π∗Yψn where ψn realizes cn ,
and that vn → v �= 0 as n → ∞. By Lemma 5.4 we can rescale ψn and
pass to a subsequence such that it converges to some ψ realizing c. We have
Resc((π∗Yψ)v) ≤ 0 since Rescn ((π

∗
Yψn)vn) < 0 for every n. Moreover, ψ

must have a simple pole at πY (c) for otherwise CEmb(X, Y, h)would contain
a slit mapping. This means that Resc((π∗Yψ)v) �= 0. Therefore v is vertical for
π∗Yψ , hence normal to Blob(x, X, Y, h) by Proposition 8.5. 
�

9 The blob is a disk

In this section, we complete the proof of Theorem 1.7 which says that the blob
is homeomorphic to a closed disk under hypothesis (H′). We first prove that
every semi-smooth set is a manifold.
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Fig. 9 The cone of normal
vectors N0 and the angles α
and β

0

B

i

β

N0

φ

Theorem 9.1 (The aquatic theorem) Every closed semi-smooth subset of C

is a 2-dimensional manifold with boundary.

Proof Let B be a closed semi-smooth set. Every interior point of B has a neigh-
borhood homeorphic to an open subset of C, namely the interior of B. Thus
we only have to show that every boundary point z ∈ ∂B has a neighborhood
homeomorphic to a half-disk. By applying an isometry of the plane, we may
assume that z = 0 and that the vector i bissects the cone N0 of vectors normal
to B at 0. Let φ be half the angle of N0, let α = φ + π

2 and let β = π − α

(Fig. 9).

Since B is semi-smooth, we have φ < π
2 and hence β > 0. Moreover,

for every θ ∈ (0, α) there exists a δ > 0 such that the open angular sector

�(i, θ, δ) is disjoint from B (notation is as in the previous section). We now
show the existence of closed sectors pointing downwards contained in B.

Claim For every θ ∈ (0, β), there exists a δ > 0 such that the closed angular
sector �(−i, θ, δ) is contained in B.

Proof of Claim Suppose not. Then there exists a θ ∈ (0, β) and a sequence
δn↘0 for which the corresponding angular sector Sn = �(−i, θ, δn) intersects
the complement of B for every n. Let Dn be a closed disk in Sn disjoint from
B. Slide the center of Dn in a straight line towards 0 until the disk first hits B,
and let D∗n be the resulting disk. The intersection points of D∗n with B all lie on
the half of ∂D∗n which is closest to 0. Let zn be any point in this intersection.
Then zn is on the boundary of B and the unit vector vn pointing from zn to the
center of D∗n is normal to B (Fig. 10). Since Sn shrinks to 0, we have zn → z.
Each vector vn makes an angle at most θ + π

2 with the downward direction.
Therefore, the vectors vn can only accumulate onto vectors forming an angle
at least β−θ with the cone N0. This contradicts the hypothesis that every limit
of normal vectors is normal. 
�
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Fig. 10 Bubbles floating to
the surface of B
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Let θ+ ∈ (0, α), let S+ = �(i, θ+, δ+) be disjoint from B, let θ− ∈
(0, β), and let S− = �(−i, θ−, δ−) be contained in B. Let I ⊂ S+ be a
compact horizontal segment symmetric about the vertical line through 0 and
lying entirely above S−. We define a map p : I → ∂B as follows. For z ∈ I ,
let z fall straight down until it first hits B, and let p(z) be this first hitting point
(Fig. 11). Note that p(x + iy) = x + iq(x, y) for some function q so that p
is injective.

Claim The map p is continuous on some subinterval J ⊂ I centered at the
midpoint of I .

Proof of Claim It is easy to see that p is continuous at the midpoint p−1(0).
This is because p keeps the x-coordinate unchanged and moreover, p(z) is
below S+ and above S−. Thus the y-coordinate of p(z) converges to 0 as
z → p−1(0).

Let 0 < ε < β/2. By semi-smoothness, there exists a δ > 0 such that if
w ∈ ∂B is within distance δ of 0, then every vector in Nw is within angle
φ + ε of the upward direction. For every w ∈ ∂B with |w| < δ, let vw be the
bisector of Nw and let φw be half the angle of Nw. For every θ+w ∈ (0, φw+ π

2 )

there is an open sector S+w = �(vw, θ+w , δ+w) disjoint from B by definition of
Nw. Since

φ + ε = α − π

2
+ ε < α + β − π

2
= α

2
<

π

2
≤ φw + π

2
,

wemay choose θ+w so that S+w contains the vertical direction in its span. By the

previous Claim, there is also a closed sector S−w = �(−vw, θ−w , δ−w) contained
in B for every θ−w ∈ (0, π

2−φw). The angle that−vw makeswith the downward
direction is equal to the angle that vw makes with the vertical direction, which
is at most φ + ε − φw hence strictly less than π

2 − φw. Thus we may choose
θ−w so that S−w contains the downward direction in its interior (Fig. 11).

By continuity of p at p−1(0), there is a closed interval J ⊂ I centered at
p−1(0) such that p(J ) is contained in the ball of radius δ about 0. Let z ∈ J , let
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Fig. 11 The vertical
projection p is akin to rain
falling on the surface of B.
The projection is continuous
(in fact Lipschitz) by the
squeeze theorem

S+

S−

S+
w

S−
w

z

p(z)

w = p(z), and let S+w and S−w be angular sectors as described in the previous
paragraph. Also let K ⊂ S+w be a compact horizontal segment crossing the
vertical line through w and lying entirely above S−w . By construction, the
vertical segment from z to w intersects B only at w. Since B is closed, we
may assume that the rectangle with bottom edge K and upper edge L ⊂ I is
disjoint from B, by making K shorter if necessary. For every ζ ∈ L , the image
p(ζ ) is thus squeezed between S+w and S−w , so that p is continuous at z. 
�
Thus p(J ) is the graph of a continuous function. Let 0 < δ < |J |/2. For

every z ∈ J with |x | < δ, draw the open vertical segment of length 2δ centered
at p(z), and letUδ be the union of those segments. The continuity of p implies
that Uδ is open.

Claim If δ is small enough, then the component of Uδ\p(J ) above p(J ) is
disjoint from B and the component below p(J ) is contained in B.

Proof of Claim If δ is small enough, then the component C+ of Uδ\p(J )
above p(J ) lies below J itself. By definition of p, for every z ∈ J the open
vertical segment between z and p(z) is disjoint from B, so that C+ is disjoint
from B.

For the component lying below p(J ), we use the same idea as in the proof of
the first Claim. Suppose that the result does not hold. Then there is a sequence
δn↘0 such that for every n, there is a closed disk Dn contained in the com-
ponent of Uδn\p(J ) below p(J ). Slide the center of Dn upwards until the
disk first hits B, and let D∗n be this hitting disk. Every intersection point of
D∗n with B is on the upper half of ∂D∗n . Let zn be any point in that intersec-
tion. Then zn is on the boundary of B and the unit vector vn pointing from
zn towards the center of D∗n is normal to B. As n → ∞, we have zn → 0.
Moreover, the vectors vn only accumulate onto vectors forming an angle at
least π

2 with the upwards direction at 0, hence outside N0. This contradicts the
semi-smoothness of B at 0. 
�

By this last claim, if δ is small enough then Uδ ∩ B is equal to the union of
Uδ ∩ p(J ) with the component of Uδ\p(J ) below p(J ). This neighborhood
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of z in B is clearly homeomorphic to the rectangle (−δ, δ)× (0, δ], which in
turn is homeomorphic to a half-disk. Thus B is a 2-manifold with boundary.
�

Since Blob(x, X, Y, h) is semi-smooth under appropriate hypotheses, it is
a 2-manifold with boundary.

Corollary 9.2 Assume hypothesis (H′). Then Blob(x, X, Y, h) is a compact,
connected, 2-manifold with boundary for any x ∈ X.

Proof Blob(x, X, Y, h) is compact and connected because CEmb(X, Y, h)
is (Lemma 3.1 and Theorem 1.6) and liftx is continuous (Lemma 6.4). It
is semi-smooth by Theorem 8.13, hence a 2-manifold with boundary by
Theorem 9.1. 
�

In particular, the blob is the closure of its interior. We use this to show
that the blob depends continuously on parameters. We first need to define a
topology on closed subsets of a space.

Let S be a topological space and let CL(S) be the hyperspace of closed
subsets of S. The Fell topology on CL(S) is the topology generated by neigh-
borhoods of the form N (K ,U), where K ⊂ S is compact, U is a finite
collection of open subsets of S, and N (K ,U) is the set of A ∈ CL(S) such
that A ∩ K = ∅ and A ∩U �= ∅ for every U ∈ U .

Theorem 9.3 (Fell [13]) For any topological space S, the hyperspace CL(S)
is compact. If S is locally compact, then CL(S) is Hausdorff.

If S is first-countable and Hausdorff, then a sequence {An} ⊂ CL(S) con-
verges to A ∈ CL(S) if and only if

– for every a ∈ A, there exist an ∈ An such that an → a;
– for every sequence {an} with an ∈ An , if {an} accumulates onto a ∈ S,
then a ∈ A.

We use the Fell topology on closed subsets of ˜Y ∼= D where Y is a finite
hyperbolic surface. To prove convergence, we mostly rely on Fell’s compact-
ness theorem and the above criterion for sequences.

It is fairly clear that the blob depends upper semi-continuously on para-
meters. The same holds for its boundary.

Lemma 9.4 Suppose that h : X → Y is a generic embedding between
finite Riemann surfaces. Then Blob(z, Z , Y, h) and ∂ Blob(z, Z , Y, h) depend
upper semi-continuously on Z\{z} ∈ T (X\{x}). More precisely, suppose
that Zn\{zn} → Z\{z} in T (X\{x}), that Blob(zn, Zn, Y, h) → A in
CL(˜Y ), and that ∂ Blob(zn, Zn, Y, h) → B in CL(˜Y ) as n → ∞. Then
A ⊂ Blob(z, Z , Y, h) and B ⊂ ∂ Blob(z, Z , Y, h).
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Proof Let c ∈ A. By hypothesis there exist cn ∈ Blob(zn, Zn, Y, h) such that
cn → c as n →∞. Let fn ∈ CEmb(Zn, Y, h) be such that liftzn ( fn) = cn . Let
σ�
n : Z\{z} → Zn\{zn} be the quasiconformal homeomorphism homotopic to

the change of marking with minimal dilatation Kn and let σn : Z → Zn be
its extension. By hypothesis, Kn → 1 as n → ∞. By Lemma 3.1, we may
pass to a subsequence such that fn ◦ σn converges to a conformal embedding
f : Z → Y homotopic to h. Then

liftz( f ) = lim
n→∞ liftz( fn ◦ σn) = lim

n→∞ liftzn ( fn) = lim
n→∞ cn = c,

so that c ∈ Blob(z, Z , Y, h).
Now let c ∈ B and let cn ∈ ∂ Blob(zn, Zn, Y, h) be such that cn → c. By

Proposition 6.10, there exists a slitmapping fn rel zn from Zn toY homotopic to
h such that liftzn ( fn) = cn . By Lemma 8.9, we can pass to a subsequence such
that fn converges to some slit mapping f rel z from Z to Y . Then liftz( f ) = c
so that c ∈ Blob(z, Z , Y, h). Moreover, y ∈ ∂ Blob(z, Z , Y, h) by Corol-
lary 8.6. 
�

We do not know if the blob moves continuously in general, but it does when
there are no slit mappings at the limiting parameters.

Lemma 9.5 Assume hypothesis (H′) and let x ∈ X. If Xn\{xn} → X\{x}
in T (X\{x}) as n → ∞, then Blob(xn, Xn, Y, h) → Blob(x, X, Y, h) and
∂ Blob(xn, Xn, Y, h)→ ∂ Blob(x, X, Y, h) in CL(˜Y ) as n →∞.

Proof By compactness of CL(˜Y ), it suffices to prove that if Blob(xn, Xn, Y, h)
converges to some closed set A and ∂ Blob(xn, Xn, Y, h) converges to
some closed set B as n → ∞, then A = Blob(x, X, Y, h) and B =
∂ Blob(x, X, Y, h).

We prove convergence of the blobs first. By Lemma 9.4, the inclusion
A ⊂ Blob(x, X, Y, h) holds. We claim that the interior of Blob(x, X, Y, h)
is contained in A. Let c be in the interior of Blob(x, X, Y, h) and suppose that
there is an infinite set J ⊂ N such that c is not contained in Blob(xn, Xn, Y, h)
for every n ∈ J . Then for every n ∈ J , there exists a Teichmüller embedding
fn rel xn with liftxn ( fn) = c. After passing to a subsequence in J , we get that
fn → f for some Teichmüller embedding f rel x by Lemma 8.9. We have
liftx ( f ) = c by continuity of liftx . By Corollary 8.6, c is in the complement
of the interior of Blob(x, X, Y, h). This is a contradiction, which means that c
is contained in Blob(xn, Xn, Y, h) for all but finitely many indices, and hence
c ∈ A. Since A is closed and Blob(x, X, Y, h) is the closure of its interior, we
have Blob(x, X, Y, h) ⊂ A and hence A = Blob(x, X, Y, h).
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ByLemma9.4,wehave B ⊂ ∂ Blob(x, X, Y, h). Let c ∈ ∂ Blob(x, X, Y, h).
Let U be any connected neighborhood of c in ˜Y . We claim that if n is large
enough, then U intersects both the complement of Blob(xn, Xn, Y, h) and
the interior of Blob(xn, Xn, Y, h). Suppose on the contrary that U is con-
tained in Blob(xn, Xn, Y, h) for every n in an infinite set J ⊂ N. Then
U ⊂ A = Blob(x, X, Y, h), which is nonsense since c is on the boundary
of Blob(x, X, Y, h). Similarly, suppose thatU is contained in the complement
of Blob(xn, Xn, Y, h) for every n in an infinite set J ⊂ N. Then for every
z ∈ U and every n ∈ J there is a Teichmüller embedding fn : Xn → Y
rel xn homotopic to h such that liftxn ( f ) = z. By Lemma 5.4, fn converges
to a Teichmüller embedding f rel x after passing to a subsequence. Then
liftx ( f ) = z so that z ∈ ∂ Blob(x, X, Y, h) by Corollary 8.6. This is a contra-
diction, which proves the claim. Let n be large enough so thatU intersects both
the interior and the complement of Blob(xn, Xn, Y, h). Since U is connected,
it also intersects ∂ Blob(xn, Xn, Y, h). SinceU can be chosen arbitrarily small,
this shows that c ∈ B. 
�

Similarly, nested families of blobs move continuously. In what follows,
{Xr }r∈[0,∞] is a 1-parameter family of enlargements of X as in Sect. 5, andm
is the associated modulus of extension.

Lemma 9.6 Let h : X → Y be a generic embedding between finite Riemann
surfaces, let R be the maximum of m on CEmb(X, Y, h), and let x ∈ X. Then
the maps r �→ Blob(x, Xr , Y, h) and r �→ ∂ Blob(x, Xr , Y, h) are continuous
on the interval [0, R].
Proof We may assume that R > 0 since otherwise there is nothing to show.
If r ∈ [0, R) and ρ → r , then Blob(x, Xρ, Y, h) → Blob(x, Xr , Y, h)
and ∂ Blob(x, Xρ, Y, h) → ∂ Blob(x, Xr , Y, h) by Lemma 9.5, since
CEmb(Xr , Y, h) does not contain any slit mapping. It remains to prove
continuity at r = R. By compactness of the hyperspace CL(˜Y ) and
Lemma 9.4, it suffices to show that if rn↗R, if Blob(x, Xrn , Y, h) → A,
and if ∂ Blob(x, Xrn , Y, h) → B as n → ∞, then A ⊃ Blob(x, XR, Y, h)
and B ⊃ ∂ Blob(x, XR, Y, h). By Proposition 5.5, every element of
CEmb(XR, Y, h) is a slit mapping10 so that Blob(x, XR, Y, h) is homeomor-
phic to a point or an interval (Proposition 6.6). Let c ∈ Blob(x, XR, Y, h) =
∂ Blob(x, XR, Y, h). Then c ∈ Blob(x, Xrn , Y, h) for every n. Indeed, since
rn ≤ R there is a canonical inclusion Xrn ⊂ XR which means that
CEmb(XR, Y, h) ⊂ CEmb(Xrn , Y, h) and similarly for the blobs. It fol-
lows that c ∈ A. Let U be a connected neighborhood of c in ˜Y . Then U
intersects Blob(x, Xrn , Y, h) since c ∈ Blob(x, Xrn , Y, h). Thus U intersects

10 This is unlessY is the triply-punctured sphere, inwhich case R = ∞ so thatCEmb(XR, Y, h)
contains only one element anyway by Lemma 2.2.
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the interior of Blob(x, Xrn , Y, h) because Blob(x, Xrn , Y, h) is the closure
of its interior. Suppose that U is contained in Blob(x, Xrn , Y, h) for every
n in an infinite set J ⊂ N. Then U is contained in A and hence in
Blob(x, XR, Y, h). This is absurd since Blob(x, XR, Y, h) has empty inte-
rior. Thus U intersects ∂ Blob(x, Xrn , Y, h) for all large enough n and hence
c ∈ B. 
�

We use continuity to show that the blob has no holes and is thus homeo-
morphic to a closed disk, under hypothesis (H′).

Proof of Theorem 1.7 We will show that the complement of Blob(x, X, Y, h)
is connected, which is sufficient in view of Corollary 9.2. Let z1 and z2 be any
two points in˜Y\Blob(x, X, Y, h). Let R be themaximumvalue of themodulus
of extension m. Note that z1 and z2 are contained in ˜Y\Blob(x, Xρ, Y, h) for
every ρ ∈ [0, R] as the blobs are nested. Let r be the infimum of the set of ρ ∈
[0, R] such that z1 and z2 are in the same component of ˜Y\Blob(x, Xρ, Y, h).
The set of such ρ is non-empty since Blob(x, XR, Y, h) is a point or a compact
interval, and hence has connected complement.

Suppose that z1 and z2 are in different components of ˜Y\Blob(x, Xr , Y, h).
Then r < R. In particular, Blob(x, Xr , Y, h) is a compact 2-manifold so that
each boundary component of Blob(x, Xr , Y, h) is a simple closed curve. Let
C1 be the component of ∂ Blob(x, Xr , Y, h) surrounding z1, let C2 be the
one surrounding z2, and let γ be a simple closed curve in the interior of
Blob(x, Xr , Y, h) separating C1 from C2. For all ρ close enough to r we
have that ∂ Blob(x, Xρ, Y, h) is disjoint from γ . On the other hand, there
is a sequence ρn↘r such that z1 and z2 belong to the same component of
˜Y\Blob(x, Xρn , Y, h). Let αn be a path in ˜Y\Blob(x, Xρn , Y, h) connecting
z1 and z2. For every n, αn intersects γ , say atwn . Since γ is compact, we may
pass so a subsequence so thatwn → w for somew ∈ γ . Noww is in the interior
of Blob(x, Xr , Y, h). Let U be an open disk centered at w whose closure is
contained in the interior of Blob(x, Xr , Y, h). Since Blob(x, Xρn , Y, h) →
Blob(x, Xr , Y, h) as n →∞, the open setU must intersect Blob(x, Xρn , Y, h)
for all large enough n. Since wn ∈ γ \Blob(x, Xρn , Y, h) and since γ ∪ U is
connected, the intersection of γ ∪U with ∂ Blob(x, Xρn , Y, h) is non-empty.
Let ζn be in the intersection. After passing to a subsequence, ζn converges to
some point ζ in γ ∪U . This is a contradiction since ∂ Blob(x, Xρn , Y, h)→
∂ Blob(x, Xr , Y, h) as n →∞ but γ ∪U is disjoint from ∂ Blob(x, Xr , Y, h).
Therefore z1 and z2 belong to the same component of ˜Y\Blob(x, Xr , Y, h).

Suppose that r > 0. Let γ be a path joining z1 to z2 in ˜Y\Blob(x, Xr , Y, h).
Since γ is compact and Blob(x, Xρ, Y, h) depends continuously on ρ, the two
are disjoint for all ρ sufficiently close to r . Then z1 and z2 belong to the
same component of ˜Y\Blob(x, Xρ, Y, h) for all ρ < r sufficiently close to
r , which contradicts the minimality of r . We conclude that r = 0 and that z1
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and z2 belong to the same component of ˜Y\Blob(x, X0, Y, h). Since z1 and
z2 were arbitrary, the complement of Blob(x, X, Y, h) = Blob(x, X0, Y, h) is
connected. Thus Blob(x, X, Y, h) is homeomorphic to a closed disk. 
�

10 The deformation retraction

The goal of this section is to prove that CEmb(X, Y, h) is contractible under
(H′), which is the main case of Theorem 1.2. Recall that (H′) stands for the
hypothesis that h : X → Y is a generic embedding between finite Riemann
surfaces (hence X and Y are hyperbolic), X has non-empty ideal boundary,
and CEmb(X, Y, h) is non-empty and does not contain any slit mapping.

Fix once and for all a countable dense set {x1, x2, x3, ...} of distinct points
in X and a universal covering map πY : D → Y . For each n ∈ N, let bn ∈ D be
such that πY (bn) = h(xn) and define a lift Ln = liftxn : Map(X, Y, h) → D

as in Sect. 6. For each f ∈ Map(X, Y, h), Ln( f ) is the endpoint of the lift
of t �→ H(xn, t) based at bn , where H is any homotopy from h to f . Let
Blob(x j ) = L j (CEmb(X, Y, h)).

Let us also fix some F ∈ CEmb(X, Y, h) which maximizes the modulus
of extension m from Sect. 5. Note that m(F) > 0 by the hypothesis that
CEmb(X, Y, h) does not contain any slit mapping. It follows that L1(F) does
not lie on the boundary of Blob(x1) by Proposition 6.10. We will construct a
(strong) deformation retraction of CEmb(X, Y, h) into {F}.

Given any f ∈ CEmb(X, Y, h), we define a sequence of paths γn : [0, 1] →
D inductively as follows. Let G[1] : D → Blob(x1) be the Riemann map with
G[1](0) = L1(F) and G[1]′(0) > 0, and let

γ1(t) =
{

L1( f ) if t ∈ [0, 1/2)
G[1]((2− 2t)G[1]−1(L1( f ))) if t ∈ [1/2, 1].

In words, γ1 stays at L1( f ) for half the time and then moves at constant
speed along the conformal ray towards the “center” L1(F) of Blob(x1). In
particular, γ1(t) belongs to Blob(x1) for every t ∈ [0, 1] so that there exists
some g ∈ CEmb(X, Y, h) such that L1(g) = γ1(t).

Let n ≥ 2. Suppose that paths γ1, . . . γn−1 have been defined in such a way
that

– the points πY (γ1(t)), . . . , πY (γn−1(t)) are distinct for every t ∈ [0, 1];
– γ j is constant on the interval [0, 2− j ] for every j ∈ {1, . . . , n − 1};
– γ j (0) = L j ( f ) and γ j (1) = L j (F) for every j ∈ {1, . . . , n − 1}.
Then let

X [n] = X\{x1, . . . , xn−1}, Y [n, t] = Y\{πY (γ1(t)), . . . , πY (γn−1(t))},
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and let h[n, t] = P[n, t] ◦ h where P[n, t] : Y → Y is a multi-point-pushing
diffeomorphism chosen so that L j (h[n, t]) = γ j (t) for every j ∈ {1, . . . , n−
1} and every t ∈ [0, 1]. The embedding h[n, t] is generic for every t . Define

E[n, t] = CEmb(X [n], Y [n, t], h[n, t]) and Blob[n, t] = Ln(E[n, t]).
Weassume that E[n, t] is non-empty for every t ∈ [0, 1] as part of the induction
hypothesis. Note that Blob[n, t] is either a closed disk or a point. Indeed, if
E[n, t] contains a slit mapping then it is homeomorphic to a point or an interval
by Theorem 1.4. But since h[n, t] has an essential puncture, there is at most
one slit mapping in E[n, t] by Remark 4.3. If E[n, t] does not contain any
slit mapping, then Blob[n, t] is a closed disk by Theorem 1.7. Also, since we
chose the paths γ1, . . . , γn−1 to be constant on [0, 21−n], the set Blob[n, t]
does not change for t in that interval. The next step is to choose a conformal
center for Blob[n, t].
Lemma 10.1 For every t ∈ [0, 1] there is is a unique map g[n, t] maximizing
m within E[n, t]. The map t �→ g[n, t] is continuous, constant on [0, 21−n],
and satisfies g[n, 1] = F.

Proof The map m is upper semi-continuous on the compact space E[n, t]. It
thus attains its maximum at some g[n, t] say with value R. By Proposition 5.5,
the maximal extension of g[n, t] is a slit mapping from XR\{x1, . . . , xn−1}
to Y [n, t]. By Remark 4.3, the map g[n, t] is unique since it sends a puncture
to a puncture. Any limit of the maximal extension of g[n, t] as t → s is a
slit mapping from XR\{x1, . . . , xn−1} to Y [n, s] by Lemma 5.4 and thus its
restriction to X [n] maximizes m in E[n, s] by Lemma 5.10. Thus g[n, t] →
g[n, s] as t → s. The paths γ j for j ∈ {1, . . . , n − 1} are all constant on
[0, 21−n] so g[n, t]does not change on that interval. Finally, since Fmaximizes
m on CEmb(X, Y, h), it maximizes m on the subset E[n, 1] as well, and we
have g[n, 1] = F . 
�

Let G[n] : D → Blob[n, 0] be the Riemann map normalized in such a way
that G[n](0) = Ln(g[n, 0]) and G[n]′(0) > 0. Then let

γn(t) =

⎧

⎪

⎨

⎪

⎩

Ln( f ) if t ∈ [0, 2−n)
G[n]((2− 2nt)G[n]−1(Ln( f ))) if t ∈ [2−n, 21−n)
Ln(g[n, t]) if t ∈ [21−n, 1].

This means that γn stays put at Ln( f ) for some time, then travels along the
conformal ray towards the center of Blob[n, 0] = Blob[n, 21−n], and then
follows the center for the rest of the time. It is possible that Blob[n, 0] is a
point if Ln−1( f ) is in the boundary of Blob[n − 1, 0]. In that case we let
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G[n] : D → Blob[n, 0] be the constant map, i.e., we keep γn constant on
[0, 21−n]. By construction we have πY (γn(t)) ∈ Y [n, t] which means that the
points πY (γ1(t)), . . . , πY (γn−1(t)), πY (γn(t)) are distinct for every t ∈ [0, 1].
Moreover the path γn is constant on the interval [0, 2−n]. Finally, E[n + 1, t]
is non-empty since γn(t) ∈ Blob[n, t] for every t ∈ [0, 1]. This finishes the
induction scheme.

We now show that the paths {γn} automatically define a path from f to F
inside the space CEmb(X, Y, h).

Lemma 10.2 For every t ∈ [0, 1], there exists a unique ft ∈ CEmb(X, Y, h)
such that Ln( ft ) = γn(t) for every n ∈ N. The map t �→ ft is continuous and
satisfies f0 = f and f1 = F.

Proof Observe that E[n, t] is a non-empty closed subset of CEmb(X, Y, h)
and is thus compact. Therefore, for each t ∈ [0, 1], the nested intersection
⋂∞

n=1 E[n, t] is non-empty. Any two functions in the intersection agree on
the dense set {x1, x2, ...} and hence on all of X . Therefore, there is a unique
function ft in the intersection.Moreover, ft varies continuouslywith t . Indeed,
if g is any limit of any subsequence of ft as t → s, then for every n ∈ N we
have

g(xn) = lim
t→s

ft (xn) = lim
t→s

πY (γn(t)) = πY (γn(s)) = fs(xn)

so that g = fs . It follows that ft → fs as t → s. By construction we have
Ln( f ) = γn(0) and Ln(F) = γn(1) for every n ∈ N so that f0 = f and
f1 = F . 
�
We thus have amap H : CEmb(X, Y, h)×[0, 1] → CEmb(X, Y, h) defined

by H( f, t) = ft . This map is such that

– t �→ H( f, t) is continuous for every f ∈ CEmb(X, Y, h);
– H( f, 0) = f and H( f, 1) = F for every f ∈ CEmb(X, Y, h);
– H(F, t) = F for every t ∈ [0, 1].
The last point holds because if f = F , then every path γn is constant and
hence ft = F for every t . It remains to prove that H is continuous in both
variables.

Lemma 10.3 Suppose that for every n ∈ N, the path γn ∈ Map([0, 1],D)

depends continuously on f ∈ CEmb(X, Y, h), where each space is equipped
with the compact-open topology. Then the map H defined above is continuous.

Proof If for every n ∈ N the map ( f, t) �→ H( f, t)(xn) is continuous, then H
is continuous. This is because of the compactness of CEmb(X, Y, h) and the
fact that {x1, x2, . . .} is dense in X (the proof is the same as in Lemma 10.2).
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ck(xk)
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Fig. 12 A piece of a curve with a finger about to collapse

Since H( f, t)(xn) = ft (xn) = πY (γn(t)), it thus suffices that ( f, t) �→ γn(t)
be continuous. This condition is equivalent to the requirement that f �→ γn is
continuous since [0, 1] is locally compact Hausdorff (see [31, p.287]). 
�

Since the map f �→ L1( f ) is continuous and the Riemann map G[1]
is continuous, it is easy to see that f �→ γ1 is continuous. We proceed by
induction for the rest. Let n ≥ 2 and suppose that the maps f �→ γ j are all
continuous for j = 1, ..., n − 1. We will prove that the map f �→ G[n] is
continuous, which obviously implies that f �→ γn is continuous. We use the
following theorem of Radó, a proof of which is given in [32, p.26].

Theorem 10.4 (Radó) Let (Dk, wk) and (D, w) be topological closed disks
in C, each with a marked point in the interior. Suppose that wk → w and that
Dk → D in the Fell topology. Suppose also that there are parametrizations
ck : S1 → ∂Dk and c : S1 → ∂D such that ck → c uniformly. Then the
normalized Riemann map (D, 0) → (Dk, wk) converges uniformly on D to
the normalized Riemann map (D, 0)→ (D, w).

By a slight generalization11 of Lemma 9.4, the maps ( f, t) �→ Blob[n, t]
and ( f, t) �→ ∂ Blob[n, t] are upper semi-continuous in t . Moreover, they are
continuous at every ( f, t) for which E[n, t] does not contain any slit mapping
by Lemma 9.5. But if E[n, t] contains a slit mapping, then Blob[n, t] =
∂ Blob[n, t] is a single point and thus upper semi-continuity at ( f, t) implies
continuity. ByLemma10.1, the conformal center Ln(g[n, t]) ofBlob[n, t] also
depends continuously on ( f, t). The only thing that remains to be checked is
that the boundary ∂ Blob[n, t] can be parametrized as to converge uniformly.

Definition 10.5 Let {ck}∞k=1 be a sequence of simple closed curves in ̂C. We
say that {ck}∞k=1 has a collapsing finger if after passing to a subsequence, there
exist xk, yk, zk, wk ∈ S1 in cyclic order and x, y ∈ ̂C with x �= y such that
ck(xk)→ x , ck(yk)→ y, ck(zk)→ x , and ck(wk)→ y.

The definition is illustrated in Fig. 12. We now show that collapsing fingers
are the only obstructions to uniform convergence of simple closed curves.

11 The codomain Y [n, t] is not fixed but depends continuously on ( f, t). The results of Sect. 9
generalize easily to this situation.
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Lemma 10.6 Let ck and c be simple closed curves in ̂C such that ck(S1)
converges to c(S1) in the Fell topology. If {ck}∞k=1 does not have any collapsing
finger, then we can reparametrize ck such that ck → c uniformly.

Proof By the Jordan–Schoenflies Theorem, c can be extended to a homeo-
morphism ĉ : ̂C → ̂C. Then ĉ−1 ◦ ck(S1) → S1 in the Fell topology and
the sequence {ĉ−1 ◦ ck}∞k=1 does not have any collapsing finger. Moreover, if
σk : S1 → S1 is a homeomorphism such that ĉ−1◦ck ◦σk converges uniformly
to the inclusion map S1 ↪→ C, then ck ◦ σk converges uniformly to c. We may
thus assume that c is the inclusion map S1 ↪→ C.

If k is large enough, then ck(S1) is disjoint from 0 and∞. We claim that
if k is large enough, then the winding number of ck around the origin is ±1.
Since ck is simple, its winding number is either −1, 0, or 1. Suppose the
claim is false. Then after passing to a subsequence, the winding number of
ck is 0 for every k. Let arg(ck) = ck/|ck | and let Arg(ck) : S1 → R be
a lift of arg(ck) under the universal covering map R → S1. This lift exists
because the winding number is zero. Let [ak, bk] be the image of Arg(ck).
Since ck(S1) converges to S1, it follows that the image arg(ck)(S1) converges
to S1 as well, and hence lim infn→∞ bk − ak ≥ 2π . Thus if k is large enough,
then bk − ak > π . Let xk and zk in S1 be such that Arg(ck)(xk) = ak and
Arg(ck)(zk) = min(bk, ak + 2π). Also let yk ∈ xkzk and wk ∈ zkxk be such
that

Arg(ck)(yk) = Arg(ck)(wk) = ak + π.

Since ck(S1) → S1, we may pass to a subsequence so that ck(xk), ck(zk),
ck(yk), and ck(wk) converge to some x , y, z, andw in S1. Then x = z, y = w,
and x �= y, i.e. {ck}∞n=1 has a collapsing finger. This is a contradiction, which
proves the claim.

If the winding number of ck around the origin is −1, then we reverse the
parametrization so that it becomes+1. Let ζ k1 < ζ k2 < · · · < ζ kk be a partition
of S1 into k congruent arcs. Since ck has winding number 1, we can find
ξ k1 < ξ k2 < · · · < ξ kk in S

1 such that arg(ck)(ξ kj ) = ζ kj for every j ∈ {1, . . . , k}.
Let σk : S1 → S1 be any homeomorphism such that σk(ζ kj ) = ξ kj for every
j ∈ {1, . . . , k}. We claim that ck ◦ σk converges uniformly to the inclusion
map c : S1 ↪→ C.

To simplify notation, we assume that ck was parametrized correctly from the
start, i.e. we assume that for every k � 0 and every j ∈ {1, . . . , k}, we have
arg(ck)(ζ kj ) = ζ kj . If ck does not converge uniformly to c, then there exists
an ε > 0 and an infinite set J ⊂ N such that for every k ∈ J , there exists a
yk ∈ S1 such that |ck(yk)− yk | ≥ ε. Since S1 is compact and ck(S1)→ S1, we
can pass to a subsequence such that yk → x and ck(yk)→ y for some x and
y in S1. Note that |y − x | ≥ ε and in particular y �= x . Let j ∈ {1, . . . , k} be
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such that ζ kj ≤ yk < ζ kj+1, where we define ζ kk+1 = ζ k1 . Then let xk = ζ kj and

zk = ζ kj+1. Also let wk ∈ {ζ k1 , . . . , ζ kk } be the closest point to y which comes

after zk but before xk in the cyclic order on S1. We have ck(xk) = xk → x ,
ck(yk) → y, ck(zk) = zk → x , and ck(wk) = wk → y. In other words, the
sequence {ck}∞k=1 has a collapsing finger, which is a contradiction. Therefore,
ck converges uniformly to c. 
�

To conclude the proof that H is continuous, we show that ∂ Blob[n, t] does
not have any collapsing fingers. The reason for this is that the blobs Blob[n, t]
are uniformly semi-smooth, meaning that any non-zero limit of a sequence of
vectors normal to some blob is normal to the limiting blob12. Now if therewas a
collapsing finger somewhere, then we would see two normal vectors pointing
opposite to each other in the limit, which is forbidden by the definition of
semi-smoothness.

Lemma 10.7 Suppose that ( fk, tk)→ ( f, t) inCEmb(X, Y, h)×[0, 1]. Then
∂ Blob[n, tk] converges to ∂ Blob[n, t] without collapsing fingers.
Proof Let Bk = Blob[n, tk], B = Blob[n, t], ck = ∂Bk , and c = ∂B. Suppose
that after passing to a subsequence we can find xk, yk, zk, wk ∈ ck in cyclic
order and x, y ∈ c with x �= y such that xk, zk → x and yk, wk → y. Rotate
and translate the picture in such a way that x = 0 and that the upward direction
i bisects the cone N0 of vectors normal to B at 0.

By the proof of Theorem 9.1, there exists a rectangle Q centered at 0 with
sides parallel to the coordinate axes such that Q∩c is the graph of a continuous
function. Since y �= 0, we can shrink Q so that it does not contain y. Let δ > 0
be such that the vertical δ neighborhood Uδ of Q ∩ c is contained in Q. Then
Q\Uδ is compact and disjoint from c. Let k be large enough so that xk and
zk are in Q, yk and wk are not in Q, and ck is disjoint from Q\Uδ . Then of
the three subarcs xk yk , ykzk , and zkwk of ck , at least two must cross the same
vertical side S of Q. This implies that S\Bk is disconnected. Hence there is
an open subinterval I of S\Bk whose highest point is contained in Bk . Let D
be a closed round disk centered on I and contained in C\Bk . Move the center
of D upwards until the boundary of the translated disk D∗ first hits Bk . Any
intersection point pk of D∗ with Bk is on the top half of ∂D∗. Moreover, the
unit vector vk based at pk and pointing in the direction of the center of D∗ is
normal to Bk (Fig. 13).

Since we can choose Q to be arbitrarily small, we can arrange so that
pk → 0. Then the normal vectors vk accumulate onto vectors pointing towards
the lower half-plane at 0. This is a contradiction since the cone of normal
vectors N0 is contained in the upper half-plane. 
�
12 The proof of this is a straightforward generalization of Theorem 8.13
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Fig. 13 If the sequence of
blobs has a collapsing finger,
then we can find a sequence
of normal vectors which
accumulate to a vector which
is not normal to the limiting
blob

Bk

Q

zk

yk

xk

wk

vk

S

pk

Thus by Lemma 10.6, the boundary of Blob[n, t] can be parametrized in
a way that depends uniformly continuously on ( f, t). By Theorem 10.4, this
implies that the RiemannmapG[n] : D → Blob[n, t] depends uniformly con-
tinuously on ( f, t). Therefore the path γn depends uniformly continuously on
f , and hence H is continuous by Lemma 10.3. This shows that CEmb(X, Y, h)
is contractible under hypothesis (H′).

More generally, CEmb(X, Y, h) is contractible whenever h is generic and
CEmb(X, Y, h) is non-empty. The proof for ∂X = ∅ is in Sect. 2.2 and if
CEmb(X, Y, h) contains a slit mapping then this follows from Theorem 1.4.

11 The remaining cases

In this section, we complete the proof of Theorem 1.2, that is, we describe the
homotopy type of CEmb(X, Y, h)when h is not generic, always assuming that
CEmb(X, Y, h) is non-empty. As before, we let {x1, x2, x3, . . .} be a dense set
of distinct points in X .

11.1 h is cyclic but not parabolic

Suppose that h : X → Y is cyclic but not parabolic and that Y is hyperbolic.
This case is analogous to the case where h is generic. We only provide an
outline of the proof.

If CEmb(X, Y, h) contains a slit mapping, then it is homeomorphic to a cir-
cle by Theorem 1.4. So we may assume that CEmb(X, Y, h) does not contain
any slit mapping. Form the annulus cover πA : A → Y corresponding to the
image of π1(h). We can define a continuous map liftx1 :Map(X, Y, h) → A
in a similar fashion as in Sect. 6. Let Blob(x1, X, Y, h) be the image of
CEmb(X, Y, h) by liftx1 . This Blob(x1, X, Y, h) is compact and connected
since CEmb(X, Y, h) is, according to Lemma 3.1 and Theorem 1.6. All
of the results from Sects. 6, 8 and 9 pertaining to the local geometry
of Blob(x1, X, Y, h) extend to the current setting. The conclusion is that
Blob(x1, X, Y, h) is a 2-dimensional manifold with boundary.
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Let {Xr }r∈[0,∞] be a 1-parameter family of enlargements of X as in
Sect. 5, let m be the associated modulus of extension, and let R be the ma-
ximum value of m. By Proposition 5.5 and Theorem 1.4, CEmb(XR, Y, h)
is homeomorphic to a circle via the evaluation map. It follows that
Blob(x1, XR, Y, h) is homeomorphic to a circle so that its complement in
A has two connected components. By a similar argument as in the proof of
Theorem 1.7, the complement of Blob(x1, X, Y, h) has two connected com-
ponents as well. Since Blob(x1, X, Y, h) is a planar 2-dimensional manifold
with two boundary components, it is homeomorphic to a closed annu-
lus.

Let D be any deformation retraction of Blob(x1, X, Y, h) into the circle
Blob(x1, XR, Y, h). The strategy after this step is the same as in Sect. 10.
Given f ∈ CEmb(X, Y, h), we let γ1(t) = liftx1( f ) for t ∈ [0, 1/2) and
γ1(t) = D(liftx1( f ), 2t − 1) for t ∈ [1/2, 1]. The map h[1, t] : X\{x1} →
Y\πA(γ1(t)) obtained by composing h with point-pushing along πA ◦ γ1 is
now generic so that we can construct the next paths γ2, γ3, . . . in the same
way as in the previous section. The end result is a deformation retraction of
CEmb(X, Y, h) into the circle CEmb(XR, Y, h).

11.2 Y is the punctured disk

Let h : X → D\{0} be a non-trivial (hence parabolic) embedding. By
Montel’s theorem, any sequence in CEmb(X,D\{0}, h) has a subsequence
converging locally uniformly to either an element in CEmb(X,D\{0}, h)
or to a constant map into D. As h is non-trivial, the only possible con-
stant limit is 0. Thus the set of f ∈ CEmb(X,D\{0}, h) which map x1
outside of a fixed open neighborhood of 0 is compact. Since D\{0} acts
by multiplication on CEmb(X,D\{0}, h), the image V (x1) of the evalua-
tion map at x1 is equal to a punctured disk rD\{0} for some r ∈ (0, 1).
By a slight modification of Proposition 6.10, for every y1 ∈ ∂V (x1)
there is a unique f ∈ CEmb(X,D\{0}, h) such that f (x1) = y1. We
do not need to lift here: if two maps f, g ∈ Map(X,D\{0}, h) agree at
x1 they are homotopic rel x1 because the pure mapping class group of
the twice-punctured disk is trivial. Thus the inverse image of ∂V (x1) =
{z ∈ D : |z| = r} in CEmb(X,D\{0}, h) is homeomorphic to a
circle.

Given any f ∈ CEmb(X,D\{0}, h), let γ1 : [0, 1] → D\{0} be cons-
tant equal to f (x1) on [0, 1/2) followed by the radial ray from f (x1)
to r f (x1)/| f (x1)| on [1/2, 1]. Note that the map h[1, t] : X\{x1} →
D\{0, γ1(t)} (notation as in Sect. 10) is generic for every t ∈ [0, 1],
so we can construct the next paths γ2, γ3, . . . as before. This gives a
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deformation retraction of CEmb(X,D\{0}, h) into the circle of slit mappings
rel x1.

11.3 Y is the disk

Suppose thatY is the unit diskD. Consider themapD → Aut0(D)which sends
a ∈ D to the automorphism Ma(z) = z−a

1−āz . We have a homeomorphism

CEmb(X,D, h)→ D× CEmb(X\{x1},D\{0},Mh(x1) ◦ h�)

given by f �→ ( f (x1),M f (x1) ◦ f ), where h� : X\{x1} → D\{h(x1)} is
the restriction of h. Since D is contractible, CEmb(X,D, h) is homotopy
equivalent to the second factor. Note that h is trivial and Mh(x1) ◦ h� is
parabolic, with codomain the once-punctured disk. By the previous case,
CEmb(X\{x1},D\{0},Mh(x1) ◦ h�) is homotopy equivalent to S1. Thus
CEmb(X,D, h) is homotopy equivalent to a circle, which in turn is homo-
topy equivalent to the unit tangent bundle of D.

11.4 X is the disk

Suppose that X = D and that Y �= D is hyperbolic. Here h is trivial so we may
drop it from the notation. We first define a map from the unit tangent bundle
T 1Y to CEmb(D, Y ) as follows. Given v ∈ T 1

y Y , let Dv ⊂ Y be the largest
embedded ball centered at y in the hyperbolic metric, and let Fv : D → Dv
be the Riemann map with Fv(0) = y and F ′v(0) = λv for some λ > 0. The
map v �→ Fv is an embedding from T 1Y to CEmb(D, Y ). We will construct a
deformation retraction of CEmb(D, Y ) into the image of that map.

Given f ∈ CEmb(D, Y ), let v ∈ T 1Y be the unique vector such that
f ′(0) = λv for some λ > 0. Then let r ∈ (0, 1] be the largest number such
that f (rD) ⊂ Dv and let f †(z) = f (r z). Then F−1v ◦ f † : D → D is a
conformal embedding which fixes the origin and has positive derivative there.

Let g : D → D be a conformal embeddingwith g(0) = 0 and g′(0) > 0. For
every t ∈ (0, 1], define ρt = inf{ρ > 0 : g(tD) ⊂ ρD} and gt (z) = g(t z)/ρt .
By Koebe’s distortion theorem [5, p.33] we have

t

(1+ t)2
≤ ρt

|g′(0)| ≤
t

(1− t)2

and it follows that gt → id as t → 0.
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We define a deformation retraction of CEmb(D, Y ) into {Fv : v ∈ T 1Y } by
the formula

H( f, t) =
{

z �→ f ((1− (1− r)2t)z) if t ∈ [0, 1/2)
Fv ◦ g(2−2t) if t ∈ [1/2, 1]

where r, f † and v are defined in terms of f as above and g = F−1v ◦ f †.

11.5 h is trivial

Suppose that X �= D, that Y �= D is hyperbolic, and that h is trivial. Given
f ∈ CEmb(X, Y, h), let D f ⊂ Y be the smallest topological disk containing
the image of f . We can define D f by filling the holes of f (X). Then let
F : D → D f be the Riemann map with F(0) = f (x1) and F−1( f (x2)) > 0.
We thus obtain an embedding

CEmb(X, Y, h)→ CEmb(D, Y )×W

defined by f �→ (F, F−1◦ f ), whereW is the set of all conformal embeddings
from X toD sending x1 to 0 and x2 to a positive real number. There is an obvious
left inverse

CEmb(D, Y )×W → CEmb(X, Y, h)

given by (G, g) �→ G ◦ g.
By the previous subsection, there is a deformation retraction H1 from

CEmb(D, Y ) into a subset homeomorphic to T1Y . As for W , it is homeo-
morphic to the quotient CEmb(X\{x1},D\{0}, g�)/S1 where g : X → D

is any embedding with g(x1) = 0, g� is the restriction of g, and S1 acts
by multiplication. Section 11.2 provides a deformation retraction H2 of W
into a singleton. Therefore CEmb(X, Y, h) deformation retracts into a subset
homeomorphic to T 1Y via the formula ( f, t) �→ H1(F, t) ◦ H2(F−1 ◦ f, t).

11.6 h is parabolic

Suppose that h : X → Y is parabolic, where Y is hyperbolic and not the once-
punctured disk. Let p be the puncture around which h wraps non-trivially.
Given f ∈ CEmb(X, Y, h), we define a disk D f ⊂ Y ∪ {p} by filling the
holes of f (X) in Y ∪ {p}. Then we define F : D → D f to be the Riemann
map with F(0) = p and F−1( f (x1)) > 0. This yields an embedding

CEmb(X, Y, h)→ CEmb(D\{0}, Y,G�)×W
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defined by f �→ (F, F−1 ◦ f ), where G� is the restriction of some embedding
G : D → Y ∪ {p} satisfying G(0) = p and W is the set of all conformal
embeddings g : X → D\{0} such that g(x1) > 0 which are homotopic to
F−10 ◦ f0 for any f0 ∈ CEmb(X, Y, h). The first factor deformation retracts
into a circle by Sect. 11.4 whereas the second factor deformation retracts into
a point by Sect. 11.2. By applying the left inverse of the above embedding (the
composition map), we get a deformation retraction of CEmb(X, Y, h) into a
circle.

It remains to treat the cases where Y is not hyperbolic. In those cases, we can
quotient CEmb(X, Y, h) by the action of Aut0(Y ) to reduce to the hyperbolic
case.

11.7 Y is a torus

Suppose that Y is a torus. Then CEmb(X, Y, h) is homeomorphic to

Aut0(Y )× CEmb(X\{x1}, Y\{h(x1)}, h�)

where h� : X\{x1} → Y\{h(x1)} is the restriction of h. Recall that Aut0(Y )

is homeomorphic to Y itself.
If h is trivial, then h� is parabolic and its codomain is a hyperbolic sur-

face. Section 11.6 shows that CEmb(X\{x1}, Y\{h(x1)}, h�) is then homotopy
equivalent to S1. This means that CEmb(X, Y, h) is homotopy equivalent to a
3-dimensional torus, or the unit tangent bundle of Y .

If h is non-trivial, then h� is generic so that CEmb(X\{x1}, Y\{h(x1)}, h�)

is contractible. Thus CEmb(X, Y, h) is homotopy equivalent to Aut0(Y ) ≈ Y .

11.8 Y is the sphere with at most 2 punctures

Suppose that Y is the Riemann sphere ̂C. Let P = {x1, x2, x3}. Then

CEmb(X, Y, h) ≈ Aut0(Y )× CEmb(X\P, Y\h(P), h�)

where h� : X\P → Y\h(P) is the restriction of h. Observe that h is
automatically trivial and that h� is generic. Thus CEmb(X, Y, h) is homo-
topy equivalent to Aut0(Y ). We stated in Sect. 2.2 that Aut0(̂C) is homotopy
equivalent to the unit tangent bundle of ̂C. Here is a proof. First, Aut0(̂C) is
homeomorphic to the set of triples (a, v, b)where a, b ∈ ̂C are distinct and v ∈
TâC is non-zero. The homeomorphism is given by f �→ ( f (0), f ′(0), f (∞)).
This set of triples deformation retracts into T̂C\0 (the complement of the zero
section in the tangent bundle of ̂C) by moving the point b along the spherical
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geodesic to the antipode of a. Now T̂C\0 clearly deformation retracts into the
unit tangent bundle T 1

̂C.
Suppose that Y is the Riemann sphere minus a point. Then we can repeat

the same trick with P = {x1, x2} instead. Again, h is trivial and its restriction
h� : X\P → Y\h(P) is generic. ThusCEmb(X, Y, h) is homotopy equivalent
to Aut0(C). The latter is homeomorphic to the complement of the zero section
in TC. This deformation retracts onto the unit tangent bundle of C (which
deformation retracts further into a circle).

Suppose that Y is the Riemann sphere minus two points. Then we can
puncture at one point to factor out the action of Aut0(Y ). That group is
homeomorphic to S1 × R, hence homotopy equivalent to S1. If h is trivial,
then its restriction h� : X\{x1} → Y\{h(x1)} is a parabolic embedding into
a hyperbolic surface and CEmb(X\{x1}, Y\{h(x1)}, h�) is homotopy equiv-
alent to S1 by Sect. 11.6. Thus CEmb(X, Y, h) is homotopy equivalent to
S1 × S1, which is in turn homotopy equivalent to the unit tangent bundle
of Y . If h is non-trivial, then it is cyclic. In this case, h� is generic so that
CEmb(X\{x1}, Y\{h(x1)}, h�) is contractible and CEmb(X, Y, h) is homo-
topy equivalent to S1.

The reader can check that we have exhausted all possibilities for the embed-
ding h : X → Y , which concludes the proof of Theorem 1.2. The latter
obviously implies Theorem 1.1.
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