894 research outputs found

    Non-photorealistic volume rendering using stippling techniques

    Get PDF
    Journal ArticleSimulating hand-drawn illustration techniques can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct volume illustration system that simulates traditional stipple drawing. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical datasets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess, and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume datasets in a concise, meaningful, and illustrative manner. Volume stippling is effective for many applications and provides a quick and efficient method to investigate volume models

    Illustrative interactive stipple rendering

    Get PDF
    Journal ArticleAbstract-Simulating hand-drawn illustration can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct stipple rendering of volume and surface-based objects. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical data sets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume and surface data sets in a concise, meaningful, and illustrative manner. Stippling is effective for many applications and provides a quick and efficient method to investigate both volume and surface models

    Curvature-based transfer functions for direct volume rendering: methods and applications

    Get PDF
    Journal ArticleDirect volume rendering of scalar fields uses a transfer function to map locally measured data properties to opacities and colors. The domain of the transfer function is typically the one-dimensional space of scalar data values. This paper advances the use of curvature information in multi-dimensional transfer functions, with a methodology for computing high-quality curvature measurements. The proposed methodology combines an implicit formulation of curvature with convolution-based reconstruction of the field. We give concrete guidelines for implementing the methodology, and illustrate the importance of choosing accurate filters for computing derivatives with convolution. Curvature-based transfer functions are shown to extend the expressivity and utility of volume rendering through contributions in three different application areas: nonphotorealistic volume rendering, surface smoothing via anisotropic diffusion, and visualization of isosurface uncertainty

    Perceptually Uniform Construction of Illustrative Textures

    Full text link
    Illustrative textures, such as stippling or hatching, were predominantly used as an alternative to conventional Phong rendering. Recently, the potential of encoding information on surfaces or maps using different densities has also been recognized. This has the significant advantage that additional color can be used as another visual channel and the illustrative textures can then be overlaid. Effectively, it is thus possible to display multiple information, such as two different scalar fields on surfaces simultaneously. In previous work, these textures were manually generated and the choice of density was unempirically determined. Here, we first want to determine and understand the perceptual space of illustrative textures. We chose a succession of simplices with increasing dimensions as primitives for our textures: Dots, lines, and triangles. Thus, we explore the texture types of stippling, hatching, and triangles. We create a range of textures by sampling the density space uniformly. Then, we conduct three perceptual studies in which the participants performed pairwise comparisons for each texture type. We use multidimensional scaling (MDS) to analyze the perceptual spaces per category. The perception of stippling and triangles seems relatively similar. Both are adequately described by a 1D manifold in 2D space. The perceptual space of hatching consists of two main clusters: Crosshatched textures, and textures with only one hatching direction. However, the perception of hatching textures with only one hatching direction is similar to the perception of stippling and triangles. Based on our findings, we construct perceptually uniform illustrative textures. Afterwards, we provide concrete application examples for the constructed textures.Comment: 11 pages, 15 figures, to be published in IEEE Transactions on Visualization and Computer Graphic

    Nanoscale topography and wear of ceramic interfaces and their effect on macroscale friction

    Get PDF
    500 years ago, Leonardo da Vinci systematically investigated the relation between the frictional force and normal force. Da Vinci concluded that the frictional force is proportional to the normal force. The proportionality constant that links the frictional force and normal force is defined as the coefficient of friction (CoF). Although the CoF is an empirical number that resulted from da Vinci’s experiments and does not explain the fundamental origin of friction, this simple relation between frictional force and normal force successfully captures most dry sliding friction behavior between macroscopic objects. However, when the sliding surfaces strongly adhere to each other or are atomically smooth, the proportionality between frictional force and normal force may breakdown and, in this case, the frictional force is proportional to the area of real contact. John Frederick Archard proposed a simple multiple-contacts model in which the cross-sectional area of the contact points is increased linearly with applied load when the contact points are plastically deformed. More analytical models have been proposed, such as the Greenwood and Williamson (GW) model and Persson’s contact theory, to quantify the area of real contact at multi-asperity interfaces. Experimentally it remains challenging to access and measure the area of real contact hidden from view by the contacting objects. To quantify the area of real contact, numerical methods, such as the boundary element method, have been developed. The calculation of contact mechanics either by analytical or numerical methods provides further insight into the formation of contacts which leads to friction. In this thesis, we investigate the interplay between friction, surface topography, capillary adhesion and third body formation at macroscopic sliding interfaces between ceramic materials

    Surface Shape Perception in Volumetric Stereo Displays

    Get PDF
    In complex volume visualization applications, understanding the displayed objects and their spatial relationships is challenging for several reasons. One of the most important obstacles is that these objects can be translucent and can overlap spatially, making it difficult to understand their spatial structures. However, in many applications, for example medical visualization, it is crucial to have an accurate understanding of the spatial relationships among objects. The addition of visual cues has the potential to help human perception in these visualization tasks. Descriptive line elements, in particular, have been found to be effective in conveying shape information in surface-based graphics as they sparsely cover a geometrical surface, consistently following the geometry. We present two approaches to apply such line elements to a volume rendering process and to verify their effectiveness in volume-based graphics. This thesis reviews our progress to date in this area and discusses its effects and limitations. Specifically, it examines the volume renderer implementation that formed the foundation of this research, the design of the pilot study conducted to investigate the effectiveness of this technique, the results obtained. It further discusses improvements designed to address the issues revealed by the statistical analysis. The improved approach is able to handle visualization targets with general shapes, thus making it more appropriate to real visualization applications involving complex objects
    • …
    corecore