
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VO L 9, NO. 2, APRIL-JUNE 2003 127

I l l u s t r a t i v e  I n t e r a c t i v e  S t i p p l e  R e n d e r i n g

Aidong Lu, Student Member, IEEE Computer Society, Christopher J. Morris, Joe Taylor, 
David S. Ebert, Member, IEEE, Charles Hansen, Member, IEEE,

Penny Rheingans, Member, IEEE Computer Society, and Mark Hartner

A bstract—Simulating hand-drawn illustration can succinctly express information in a manner that is communicative and informative. 
We present a framework for an interactive direct stipple rendering of volume and surface-based objects. By combining the principles of 
artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of 
scientific and medical data sets. We also introduce a  rendering mechanism that generates appropriate point lists at all resolutions 
during an automatic preprocess and modifies rendering styles through different combinations of these feature enhancements. The new 
system is an effective way to interactively preview large, complex volume and surface data sets in a  concise, meaningful, and 
illustrative manner. Stippling is effective for many applications and provides a  quick and efficient method to investigate both volume 
and surface models.

Index Terms—Nonphotorealistic rendering, volume rendering, scientific visualization, medical imaging, illustration, stippling. 

----------------------------------  ♦  ----------------------------------

1 Introduction

T hroughout history, archaeologists, surgeons, engineers, 
and other researchers have sought to represent the 

important scientific data that they have gathered in a 
manner that could be understood by others. Illustrations 
have proven to be an effective means to achieve this goal 
because they have the capability of displaying information 
more efficiently by omitting unimportant details. This 
refinement of the data is accomplished by directing 
attention to relevant features or details, simplifying com­
plex features, or exposing features that were formerly 
obscured [36]. This selective inclusion of detail enables 
illustrations to be more expressive than photographs and 
provides a feature based compression of the data.

Indeed, many natural science and medical publications 
use scientific illustrations in place of photographs because 
of the illustrations' educational, training, and communica­
tive utility [10]. Illustrations can represent a large amount of 
information in a relatively succinct manner, as shown in 
Figs. 2 and 3. Frequently, areas of greater emphasis are 
stippled to show detail, while peripheral areas are simply 
outlined to give context. The essential object elements (e.g., 
silhouettes, surface, and interior) can be combined to create 
a simple, clear, and meaningful image. By controlling the 
level of detail in this way, the viewer's attention can be

•  A. Lu, J. Taylor, and U.S. Ebert are with the Purdue U niversity Rendering 
and Perceptualization Lab, Purdue U niversity, West Lafayette, IN 47907. 
E-mail: lalu, jtaylor, ebertdl@ecn.purdue.edu.

•  C.J. M oris is w ith  the IBM  T.J. Watson Research Center, 19 Skyline Dr., 
Hawthorne, N Y  10532. E-mail: cjmorris@us.ibm.com.

•  C. Hansen and M . H artner are "with the Scientific Computing and Image 
Institute, School o f Computing, U niversity o f Utah, Salt Lake City, U T  
84112. E-mail: hansen@cs.utah.edu, hartner@sci.utah.edu.

•  P. Rheingans is "with the Computer Science and Electrical Engineering 
Department, U niversity o f Maryland-Baltimore County, Baltimore, M D  
21250. E-mail: rheingan@csee.umbc.edu.

M anuscript received 15 Nov. 2002; accepted 3 Dec. 2002.
fo r  information on obtaining reprints o f this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log N um ber S 10009-1102.

directed to particular items in the image. This principle 
forms the basis of our stipple rendering system.

Stipple drawing is a pen-and-ink illustration technique 
where dots are deliberately placed on a surface of 
contrasting color to obtain subtle shifts in value. Traditional 
stipple drawing is a time-consuming technique. However, 
points have many attractive features in computer-generated 
images. Points are the minimum element of all objects and 
have connatural features that make them suitable for 
various rendering situations, no matter whether surface or 
volume, concrete or implicit. Furthermore, points are the 
simplest and quickest element to render. By mimicking 
traditional stipple drawing, we can interactively visualize 
modestly sized simulations.

We previously introduced in [15] a nonphotorealistic 
rendering (NPR) stipple-based volume rendering system. 
When initially exploring an unknown volume data set, this 
system provides an effective means to preview this data 
and highlight areas of interest in an illustrative fashion. The 
system creates artistic rendering effects and enhances the 
general understanding of complex structures. Once these 
structures are identified, the user may choose additional 
complementary rendering techniques to generate a more 
detailed image of these structures. It is the use of NPR 
techniques that provides the stipple volume Tenderer with 
its interactivity and illustrative expressiveness. We refer to 
this type of NPR technique as illustrative rendering.

NPR is a powerful tool for making comprehensible, yet 
simple images of complicated objects. Over the past decade, 
the field of NPR has developed numerous techniques to 
incorporate artistic effects into the rendering process [8], 
[31]. Various approaches have been used, including pen- 
and-ink illustration, silhouette edges, and stroke textures. 
Most of the research in the field of nonphotorealistic 
illustration has concentrated on strokes, crosshatching, 
and pen and ink techniques [9], [18], [30] and most of the 
current research still concentrates on surface renderings, 
which requires surface geometry. We choose to directly

1077-2626/03/$ 17.00 © 2003 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ebertdl@ecn.purdue.edu
mailto:cjmorris@us.ibm.com
mailto:hansen@cs.utah.edu
mailto:hartner@sci.utah.edu
mailto:rheingan@csee.umbc.edu
mailto:tvcg@computer.org


128 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 9, NO, 2, APRIL-JUNE 2003

Fig. 1. This image shows color stipples with both distance color blending 
and tone shading.

render volume and surface data sets without any additional 
analysis of object or structure relationships within the data 
sets. Direct stippling rendering not only maintains all the 
advantages of NPR, but it also makes interactive rendering 
and illustration feasible on useful-sized data sets because of 
two attributes of points: fast rendering speed and innate 
simplicity.

For volume data sets, the volume resolution is initially 
adjusted for optimum stipple pattern rendering and point 
lists are generated corresponding to the gradient magnitude 
and direction. In our interactive stippling system, a 
rendering mechanism is introduced that incorporates 
several feature enhancements for scientific illustration. 
These enhancements include a new method for silhouette 
curve generation, varying point sizes, and stipple resolution 
adjustments based on distance, transparency, and lighting 
effects. By combining these feature enhancements, data sets 
can be rendered in different illustration styles, as can be 
seen in Fig. 1.

In this paper, we extend our previous work in volume 
stippling to a direct interactive stipple rendering system for 
both volumes and surfaces. We present several new 
features which improve the quality, speed, and usability 
of the stipple system. As with the volume rendering 
method, the surface stippling [16] uses actual points as 
geometry to achieve stipple rendered images. We also 
describe the use of the latest graphics hardware capabilities 
to accelerate the rendering by performing the silhouette 
rendering on the GPU and the stipple density enhancement 
calculations as a vertex program.

2 R elated  W ork

NPR has been an active area of research, with most of the 
work concentrating on generating images in various 
traditional styles. The most common techniques are sketch­
ing [34], pen-and-ink illustration [6], [27], [28], [36], 
silhouette rendering [18], [23], [25], [29], and painterly 
rendering [1], [4], Pen-and-ink rendering uses combinations

Fig. 2. Traditional manual stipple drawing of idol by artist George Robert 
Lewis [11].

of strokes (i.e., eyelashing and crosshatching) to create 
textures and shading within the image.

Lines, curves, and strokes are the most popular among 
existing NPR techniques. Praun et al. [24] presented a real­
time system for rendering of hatching strokes over arbitrary 
surfaces by building a lapped texture parameterization 
where the overlapping patches align to a curvature-based 
direction field. Ostromoukhov [21] illustrated some basic 
techniques for digital facial engraving by a set of black/ 
white and color engravings, showing different features 
imitating traditional copperplate engraving. Hertzmann [9] 
presented a method for creating an image with a hand 
painted appearance from a photograph and an approach to 
designing styles of illustration. He demonstrated a techni­
que for painting with long, curved brush strokes, aligned to 
the normals of image gradients, to explore the expressive 
quality of complex brush stokes. Winkenbach and Salesin 
[37] presented algorithms and techniques for rendering 
parametric free-form surfaces in pen and ink.

Fig. 3. Traditional manual stipple drawing of cicadidae by artist Gerald P. 
Hodge [11].

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



Deussen et al. [5] used points for computer generated 
pen-and-ink illustrations in simulating the traditional 
stipple drawing style. Their method first renders polygonal 
models into a continuous tone image and then converts 
these target images into a stipple representation. They can 
illustrate complex surfaces vividly. However, their method 
does not work for rendering volumes and is too slow for 
interactive rendering.

NPR techniques have only recently been applied to the 
visualization of three-dimensional (volume) data. Interrante 
developed a technique for using three-dimensional line 
integral convolution (LIC) using principal direction and 
curvature to effectively illustrate surfaces within a volume 
model [12], Treavett et al. also used illustration techniques 
to render surfaces within volumes [32], [33]. In both cases, 
the results were compelling, but the techniques are surface- 
based visualization techniques, rather than direct volume 
rendering techniques that can show not only surfaces, but 
also important details of the entire volume.

Several NPR techniques have recently been applied to 
volume rendering. Ebert and Rheingans [7] showed the 
power of illustrative rendering techniques for volume data; 
however, the renderer was based on ray-casting and too 
slow for interactivity or quick exploration of the data. Our 
current work builds upon enhancement concepts from that 
work. Furthermore, interactive volume rendering has 
garnered a significant amount of attention [19] and NPR 
methods have been applied to obtain interactive perfor­
mance while producing effective volume renderings [2], [3]. 
Treavett et al. [33] implemented artistic procedures in 
various stages of the volume-rendering pipeline. Techni­
ques such as brush strokes, control volumes, paint splatting, 
and others were integrated into their rendering system to 
produce a variety of artistic effects to convey tone, texture, 
and shape.

However, tone, texture, and shape can be effectively 
conveyed by simply controlling the placement and density 
of points. Though not a primary focus in illustrative 
rendering systems until recently, points have previously 
been used as rendering primitives. Levoy and Whitted [14] 
first demonstrated that points could be used as a display 
primitive and that a discrete array of points arbitrarily 
displaced in space, using a tabular array of perturbations, 
could be rendered as a continuous three-dimensional 
surface. Furthermore, they established that a wide class of 
geometrically defined objects, including both flat and 
curved surfaces, could be converted into points. The use 
of points as surface elements, or "surfels," can produce 
premium quality images which consist of highly complex 
shape and shade attributes, at interactive rates [22], [39].

The main difference between previous stipple and point 
rendering research and ours is that our system interactively 
renders volumes and surfaces with points instead of just 
surfaces with points. Within volume rendering, the closest 
related technique is splatting [38], [26], which traditionally 
does not incorporate the effectiveness of illustration 
techniques. More recently, Wilson et al. [35] presented a 
hybrid technique for interactive volume rendering using a 
combination of hardware accelerated direct volume render­
ing (DVR) and point-based rendering. Unlike pure

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING

hardware accelerated DVR, the hybrid approach is not 
limited by the size of the available texture memory. The 
hybrid technique differs from ours in that it does not use 
any NPR enhancements and only utilizes points at those 
locations where the volumetric data contains large amounts 
of error. In the remainder of this paper, we show the 
effectiveness of a simple point-based interactive stippling 
system and describe how a number of illustrative enhance­
ment techniques can be utilized to quickly convey im­
portan t characteristics for rapid preview ing and 
investigation of both volume and surface models.

3 T he S t ipple  R enderer

The clarity and smoothness displayed by stippling, coupled 
with the speed of hardware point rendering, makes 
stippling an effective tool for illustrative rendering. As 
with all scientific and technical illustration, this system 
must perform two key tasks. First, it must determine what 
to show, primarily by identifying features of interest. 
Second, the system must carry out a method for how to 
show identified features. The stipple renderer consists of a 
point-based system architecture that behaves as a volume 
and surface renderer and visually extracts various features 
of the data by selective enhancement of certain regions.

For volumes, volume gradients are used to provide 
structure and feature information. With this gradient 
information, other features can be extracted, such as the 
boundary regions of the structure. We can then illustrate 
these volumes using stippling techniques with a particular 
set of features in mind.

There are several issues specific to surfaces that must be 
handled, including back face culling and surface shading. 
Points alone could be rendered, but this would result in 
stipples representing both front and back facing surfaces 
being rendered. To prevent this, stipples that represent back 
facing surfaces are removed with a depth test by first 
rendering the entire surface object opaque. Unfortunately, 
even with back face culling, some geometry which would 
not have been rendered with hidden surface methods 
contributes stipples to the final image. Therefore, to achieve 
correct hidden surface removal, we displace the stipples by 
a small epsilon along the normal direction. We use the 
OpenGL polygon offset, which takes into account the 
orientation of the polygon when calculating this offset.

To effectively generate renderings of both volume and 
surface data sets at interactive rates, the system has two 
main components: a preprocessor and an interactive point 
renderer with feature enhancement.

4 P r epr o c essin g

Before interactive rendering begins, the preprocessor auto­
matically generates an appropriate number of stipple points 
for each object element based on its characteristics. This 
preprocessing stage handles a number of calculations that 
do not depend on viewpoint or enhancement parameters, 
including the calculation of volume gradient direction and 
magnitude (surface normals), the initial estimation of 
stipple density from object resolution, and the generation

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



EEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL, 9, NO, 2, APRIL-JUNE 2003130

Fig. 4. Initial point generation in voxel using a Poisson disc 
approximation.

of an initial point distribution. Additionally, for volumes, 
the voxel values and gradients are all normalized.

4.1 Gradient Processing for Volumes
Gradient magnitude and direction are essential in feature 
enhancement techniques, especially when rendering CT 
data [11], Some feature enhancements are significantly 
affected by the accuracy of the gradient direction, especially 
our light enhancement. Noisy volume data can create 
problems in generating correct gradient directions. Addi­
tionally, first and second derivative discontinuity in voxel 
gradients can affect the accuracy of feature enhancements. 
Therefore, we use Neumann et al.'s [20] improved gradient 
estimation method for volume data. Their method approx­
imates the density function in a local neighborhood with a 
three-dimensional regression hyperplane whose four-di­
mensional error function is minimized to get the smoothed 
data set and estimated gradient at the same time.

4.2 Initial Point Generation
In several illustrative applications, units (such as points, 
particles, or strokes) are distributed evenly after random 
initialization. Due to constantly changing scenes, these 
individual units are redistributed in every frame. This 
process is very time-consuming and leads to issues with 
frame-to-frame coherence. To alleviate this problem, we 
approximate a Poisson disc distribution to initially position 
a maximum number of stipples. After this preprocessing 
step is performed and the stipple positions are determined, 
any processing that is subsequently performed (i.e., feature 
enhancements, motion) simply adjusts either the number of 
stipples that are drawn within each voxel/polygon or their 
respective size. The maximum number of stipples for each 
voxel or polygon is also adjusted per frame based on 
distance and shading enhancements. We always select the 
stipples that will be drawn from a pregenerated list of 
stipples for each voxel or polygon, therefore maintaining 
frame-to-frame coherence for the points.

For volume models, we generate stipples near the 
gradient plane for the voxels whose gradient magnitude is 
above a user specified threshold according to the statistics 
of the gradient magnitude distribution. We place stipples 
randomly, around the center of the voxel, between two 
planes, pi and p2, that are parallel to the tangent plane, pO, 
and are separated by a distance chosen by the user, as 
shown in Fig. 4. Next, we adjust the point locations in this 
subvolume so that they are relatively equally spaced, 
approximating the even distribution of points in a stipple 
drawing.

The surface-based approach uses an analogous method, 
generating the initial points for each polygon randomly 
within the polygon and then redistributing them to 
approximate a Poisson disc distribution.

4.3 Initial Resolution Adjustm ent
When viewing an entire data set, as the object's size 
increases, each element's (voxel for volume or polygon for 
surface) screen projection is reduced. Even if we assign at 
most one point per element, areas with high gradient 
magnitude still appear too dark. We define N miu. as the 
maximum number of stipples that each element can contain 
during the rendering process. After reading the data set, we 
approximately calculate the maximum projection of an 
element on the screen and set its maximum number of 
points to be equal to the number of pixels in the projection 
area. This reduces redundant point generation and im­
proves the stippling pattern in the resulting images. Also, 
for surfaces, considering the polygon's area in generating 
the maximum number of stipples ensures that the stipple 
pattern is independent of the object tessellation.

5 F e a tu r e  E n h a n c e m e n t s

Scientific illustration produces images that are not only 
decorative, but also serve science [10]. Therefore, the 
rendering system must produce images accurately and 
with appropriately directed emphasis. To meet this require­
ment, we have explored several feature enhancements in an 
attempt to simulate traditional stipple illustrations. These 
feature enhancements are based on specific characteristics 
of a particular element: Whether it is part of a boundary or 
silhouette, its spatial position in relation to both the entire 
object and the entire scene, and its level of illumination due 
to a light source. In particular, silhouette curves (common in 
stipple drawings) are very useful for producing outlines of 
boundary regions and significant lines along interior 
boundaries and features.

To enable the use of all of our feature enhancements, 
each element has the following information stored in a 
data structure: number of points, gradient (volumes) or 
surface normal (surfaces), element scalar data value, point 
size, and a point list containing the x, y, z location of 
each point. Our feature enhancements, calculated on a per 
frame basis, determine a point scaling factor according to 
the following sequence: boundary, silhouette, resolution, 
light, distance, and interior. For different data sets, we 
select a different combination of feature enhancements to 
achieve the best effect.

The point count per voxel/polygon, 7], is the product of 
the maximum point count, and the selected enhance­
ment factors described in the following sections. Except for 
the boundaries and silhouettes enhancement for volume 
data sets, all other feature enhancements are subtractive. All 
feature enhancements are applied to volume models, while 
all except boundary, silhouette, and interior enhancements 
are applied to surface models. The equations used for each 
feature enhancement are shown in Table 1 and a more 
detailed description of the equations can be found in [15].

5.1 Boundaries and Silhouettes
In traditional stipple drawings, boundaries are usually 
represented by a high concentration of stipples that cluster 
on surfaces. In a scalar volume, the gradient of a voxel is a 
good indication of whether the voxel represents a 
boundary region. Boundary and silhouette enhancements

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 131

TABLE 1
Feature Enhancement Equations

Feature
Enhancement

Equatio
Volume

1
Surface

Boundary n = v 4 . ( k « + f c „ .  ( i r i i * . - ) ) -

Silhouettes T . =  vt .  (k .c + k „  .  (1 -  (IVV7, ■ E\))“"  ) -

Resolution * ( iv v i  ■«!)*-.
Distance i„  =  1 +  (*)«*- r d =  1 +  « )•*■
Interior T, =  I IV V X " -

IJghling T, =  1 -  (Z • VV’i)* " 7} = 1 -  ( tf  • t ) k'*

vi is the scalar voxel data value, VF, is the voxel gradient vector, E  is the eye vector, I  is the light vector, 2  is the object's depth coordinate, Dmm. is 
the near plane depth coordinate, (-a.  a) is the depth range in the volume, and ks are user adjustable parameters.

are determined using volume illustration techniques [7]. 
Several additional user defined factors determine the range 
and sharpness of the boundary enhancement as well as the 
relative effect of the data and gradient values on the 
calculation.

By making the stipple placement denser in voxels of high 
gradient, boundary features are selectively enhanced. The 
silhouette enhancement factor is constructed in a manner 
similar to the boundary enhancement factor in areas 
oriented orthogonally to the view plane, forming a 
silhouette edge. The boundary enhancement factor for a 
voxel is a function of the voxel's scalar data value and the 
voxel's gradient magnitude. The silhouette enhancement is 
a function of voxel's scalar data value and the dot product 
of the voxel's gradient vector and the eye vector. Using the 
boundary and silhouette enhancement factors, we can 
effectively render the outline of the features in the volume. 
Therefore, points are dense on the outline of the objects, 
while sparse on other boundaries and in the interior. Fig. 5 
shows an abdominal CT volume data set rendered with 
stipples. Boundary areas, particularly those in silhouette, 
are enhanced, showing these features clearly.

5.2 Resolution
Traditionally, the number of stipples used to shade a given 
feature depends on the viewed resolution of that feature. By 
using a resolution factor, we can prevent stipple points

Fig. 5. Abdomen rendered with volume stipple renderer shows boundary 
and silhouette enhancements.

from being too dense or sparse. The resolution factor 
adjusts the number of points in each voxel or polygon and 
produces the effect that the features become larger and 
clearer when the object moves closer to the viewpoint. It 
also helps increase rendering performance by eliminating 
unnecessary rendering of distant points.

We compute the resolution enhancement differently 
based on whether an element projects larger than or smaller 
than a user specified minimum screen coverage area (two to 
nine pixels). If the element's projection is large enough to 
generate a stipple pattern, the resolution enhancement is a 
function of the element's z value and the object's minimum 
z value, both relative to the near plane. A user defined 
parameter determines the relative effect of the resolution 
enhancement. In Fig. 6, the same model is viewed at three 
different distances, but the resulting stipple density is the 
same for each. Fig. 7 shows a similar result of resolution 
enhancement for the polygonal Stanford bunny model.

When the projection of a rendering element becomes too 
small, creating a stipple pattern is not practical and we must 
select an appropriate percentage of the elements to achieve 
a consistent gray-level image as the object decreases in size. 
We achieve this consistency by slightly adjusting the 
number of stipples to be drawn. A random probability 
value is assigned to each voxel or polygon to affect the 
stipple number. The stipple numbers are calculated by the 
weighted sum of the current maximum stipple number and 
the random value. The two weights change, corresponding 
to the location of the center of the object. The effect is that 
the current maximum stipple number is always the

Fig. 6. Resolution enhancement of the leg volume data set.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



132 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 9, NO. 2, APRIL-JUNE 2003

Fig. 7. This image shows the multiscale resolution enhancement where 
polygons become smaller than one pixel. The system automatically 
adjusts the stipples to provide a  consistent appearance.

dominant factor, but the random value becomes more and 
more important when the object is moved further away 
from the view point.

Another technique that is used to avoid frame to frame 
incoherency is the use of density determined point

intensity. We interpret a fractional density value as the 
intensity of the point to be drawn, whereas the previous 
coherency technique interpreted such a value as a prob­
ability. Using the probabilistic technique, three consecutive 
elements with densities equal to one third would likely 
produce two empty elements and one element with a single 
fully intense stipple. The second technique would produce 
stipples with intensity equal to one third in all three 
elements. Fig. 8 and Fig. 9 show the effects of point intensity 
and probability based resolution enhancement.

5.3 Distance
In resolution enhancement, we use the location of the whole 
object in the scene. The location of different elements within 
the overall volume presents a different challenge. Distance 
is an important factor that helps us understand the 
relationship between elements within an object. As in 
traditional illustration, we can enhance depth perception by 
using the position of an element within the object's 
bounding box to generate a factor that modifies both the 
point count and the size of the points. The distance 
enhancement factor is, therefore, a function of the relative 
depth of the element within the object's bounding box. A

Fig. 8. Another example of the resolution enhancement applied to a  statue model. The first image has no enhancement, the second image has point 
intensity added for anti-aliasing, the third image has resolution enhancement, and the fourth image is with color.

Fig. 9. Another example of the resolution enhancement applied to a hand model. The left hand has no enhancement, the middle image has point 
intensity added for anti-aliasing, and the right image has resolution enhancement.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING 133

Fig. 10. Engine block rendered with volume stipple renderer: (a) shows boundary and silhouette enhancement, a s  well as silhouette curves and 
(b) distance attenuation of the engine block volume.

user defined parameter determines the strength of the 
effect. Fig. 10 shows an example of distance attenuation. 
Comparing the right image to the left, it is clear that more 
distant parts of the volume contain fewer and smaller 
points. This is most apparent in the back, right section of the 
engine block.

5.4 Interior
Point rendering is transparent in nature, allowing back­
ground objects to show through foreground objects. By 
doing explicit interior enhancement, we exaggerate this 
effect, allowing us to observe more detail inside the 
volume. Generally speaking, the point count of the outer 
volume elements should be smaller than that of the 
interior to allow the viewing of interior features. While 
there are several ways to implement this enhancement, 
we achieve this effect by varying the number of points 
based on the gradient magnitude of a voxel, thus 
achieving a better transparency effect.

The interior enhancement is also a function of a user 
defined parameter that controls the falloff of the transpar­
ency enhancement. With this factor, the voxels with lower 
gradient magnitude become more transparent. In addition, 
point sizes are adjusted by the transparency factor. In 
Fig. 11, the density of the leaves changes from sparse to 
dense when the gradient magnitude changes from low to

Fig. 11. Stipple rendering of bonsai tree volume, (a) Without interior 
enhancement, (b) with interior enhancement.

high. The structure of the tree is more evident with interior 
enhancement.

5.5 Lighting
When lighting the volume, only the front oriented voxels 
(where the gradient direction is within a specified number of 
degrees of the eye direction) are rendered. The light 
enhancement factor is a simple modification to the Lamber­
tian diffuse illumination of the Blinn-Phong model. A user 
defined parameter adjusts the strength of the enhancement. 
For voxels which are front facing with respect to the light 
direction, we use the light enhancement factor to adjust the 
number of stipples to be drawn. For voxels which are back 
facing with respect to the light direction, we draw the current 
maximum number of stipples.

Surface objects use an analogous technique. The lighting 
factor potentially reduces the number of points drawn per 
polygon for each frame. The reduction in the number of 
points provides perceived shading based on the number of 
stipples. Fig. 12 shows the effect of shading on the stipple 
placement. Note the details which become visible with 
shading in the dragon on the right.

To achieve compelling lighting effects for the volume 
data sets presents several challenges. Since structures often 
overlap in the volume, it can still be difficult to identify to 
which structure a point belongs in complex scenes. Also, the 
problem of capturing both the inner and outer surfaces at 
the same time, while their gradient directions are opposite, 
must be correctly handled. These issues can all significantly 
reduce the quality of the lighting effects.

5.6 Silhouette Curves
Manual stipple drawings frequently contain outlines and 
other curves which supplement the shading cues provided 
by the stipples. These silhouette curves are generally drawn 
at two places: the outline of the objects and obvious interior 
curves. Different silhouette techniques are implemented for 
volume and surface objects. With volumetric models, 
searching for potential silhouette curves in the vicinity of 
each voxel could easily create a performance bottleneck by

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



134 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 9, NO, 2, APRIL-JUNE 2003

Fig. 12. Stipple rendering of dragon, (a) has no shading, while (b) has lighting enhancement added.

requiring a search in, at least, the 3 x 3 x 3  subspace around 
each voxel. We have implemented this more exhaustive 
search, as well as an alternative technique using the 
Laplacian of Gaussian operator (LoG) as a volumetric edge 
detection technique.

This LoG edge detection technique provides virtually 
identical results and simplifies the boundary computation, 
so it is much faster to calculate per frame. In a preprocess, 
we compute the LoG value for each voxel, then, during 
rendering, we determine the silhouette voxels using a 
criteria based on the scalar data value, the gradient 
magnitude, the gradient direction, the eye vector, and 
several user defined parameters. To "sketch" silhouette 
curves, the voxels that satisfy these conditions have a line 
segment drawn through the center of the voxel in the 
direction of cross product of the voxel gradient and the eye 
vector (VV; x E). Silhouette curves can be rendered at 20 to 
30 frames per second and significantly improve image 
quality. Fig. 13 shows the effectiveness of silhouette curves 
in highlighting structures, especially the bones of the foot.

Silhouette rendering for surface-based objects should be 
handled differently. We have incorporated two different 
approaches to silhouette rendering in our stippling system. 
The first approach is based on Raskar and Cohen's method 
for interactive silhouette lines [25]. They describe a simple 
method for displaying image-based silhouettes using 
standard OpenGL hardware. Their method involves

(a) (b)

Fig. 13. Stipple rendering of the foot volume, (a) Without silhouette 
curves, (b) with silhouette curves.

rendering front-facing polygons into the depth buffer, 
while back-facing polygons are rendered in wireframe 
mode with a slight offset and a depth test set to equal, 
yielding silhouette lines of uniform thickness.

When the object occupies a large portion of the image, 
thicker silhouette lines give a better result. However, when 
the object is moved away from the viewpoint, the silhouette 
lines should become thinner to give a consistent appear­
ance. We use the object's bounding sphere to scale the 
silhouette line width based on the object's distance from the 
camera. The radius, which is orthogonal to the viewing 
direction, is projected onto the screen. The relative size 
provides a scaling factor for the silhouette thickness. Fig. 14 
shows an example of the Stanford bunny rendered without 
silhouettes (left) and with silhouettes (right). The two 
smaller silhouette bunnies show the effects of thinning the 
silhouettes. The top-most has the thinning enabled, whereas 
the bottom smaller bunny uses the same pixel size as the 
larger object.

Our second approach is to use a standard "toon" shader 
silhouette approach and the vertex programmability exten­
sion to OpenGL. Surfaces whose normals are nearly 
perpendicular to the eye vector will have intensity near 
1.0, thus producing a silhouette. Fig. 15 shows an example 
of the Stanford bunny rendered using this technique with 
silhouette curves.

(a) (b)

Fig. 14. (a) shows stipples without silhouette edges, (b) has image- 
based silhouettes enabled. The smaller bunnies demonstrate the 
silhouette thinning method.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING

Fig. 15. This image shows our toon shading vertex program silhouette 
method.

5.7 Color
We have extended the monochrome pen and ink technique 
of stippling to use colored points, similar to the traditional 
painting technique of pointillism. For incorporating tone 
shading and distance color blending [7], we use the HLS 
(hue, lightness, and saturation) color model [13] to blend 
between warm and cool colors according to the element's 
orientation with respect to the light direction and position 
with respect to the viewer. We use an HLS to RGB color 
palette and a texture palette, which stores indices into the 
color palette, similar to the techniques in Lum and Ma [17] 
to improve the performance. In Fig. 1, the skin and the 
bones of the foot are rendered with different colors. To 
increase the contrast, silhouette curves were rendered in 
white. Fig. 16 shows the color blending from red to blue.

6 Use r  Interaction

We have developed a two-level user-interface for the stipple 
rendering system. Expert users can control each of the 
parameters of the enhancement equations directly to 
achieve their desired effect. To simplify the use of the 
system for nonexpert users, we have also developed a more 
intuitive, higher-level user interface with several sliders that 
each affect multiple feature enhancement parameters. For 
example, the gradient slider allows the user to control the 
emphasis placed on boundary regions within the data. 
Adjusting this slider changes the amount of the enhance­
ments that depend on the gradient magnitude. The 
sharpness slider allows the user to select the sharpness of 
the feature enhancements by controlling the exponent of the 
feature enhancement equations. The orientation slider 
allows the user to choose how much enhancement to 
include based on the orientation of the object (light and 
silhouette enhancement). The distance slider, interior 
slider, and color slider are self-explanatory.

7  Hardw are A cceleration

We have implemented GPU-based stipple rendering en­
hancements for both volume and surface models as well as 
the previously mentioned silhouette enhancement for sur­
face-based objects and will continue to explore moving 
more of our calculations to the vertex processing unit of the 
GPU. We have been able to increase the performance of the 
stipple renderer by implementing all of the stipple

135

Fig. 16. This image shows color rabbit with tone shading.

enhancements on the GPU using the vertex program 
extension of OpenGL on the Nvidia GeForce3. Our volume 
model implementation was written using Nvidia's Cg 
shading language, while the surface model implementation 
was directly written using the hardware instruction set. The 
conversion of the enhancement functions to the vertex 
program hardware instruction set is simple, with the 
standard trick for converting conditionals to vertex pro­
grams (compute both paths and select one of the results). 
The vertex programs currently use a relatively small 
number of instructions, which allows for future enhance­
ments for stippling to be computed with vertex programs. 
Compared to software stipple rendering only, the current 
performance increase ranges from 0 percent to almost 
100 percent. The larger the model, the greater the speedup. 
With silhouette rendering added, depending on the view, 
the vertex program enhancements can be as much as 
50 percent faster than software stipple rendering (with 
hardware silhouettes).

When the computations are done in software, the density 
for a given element is calculated and only the number of 
stipples (vertices) that are to be drawn are sent to the 
hardware. When the computations are done in the vertex 
program, every potential stipple (vertex) for a given 
element is sent to the GPU and the density calculation is 
performed per stipple. Stipples rejected by any of the 
enhancements are eliminated from further processing by 
adding a large offset to the homogeneous z coordinate of 
the vertex and depth culling them. Although this vertex 
program calculation is faster for reasonable values of Nm,u., 
it requires redundant calculations compared to the software 
(CPU) implementation because the density calculations are 
performed once per stipple (vertex) instead of once per 
element (voxel or triangle). This redundancy, however, 
removes the dependency within the set of potential stipples 
for a given element on a single calculation (density 
calculation). Independent stipple calculation can be utilized 
for even greater performance on the latest, and future, 
generations of graphics boards that feature multiple parallel 
vertex processing pipelines.

8 P erform ance

We are able to interactively render reasonably sized volume 
and surface data sets using illustrative enhancement with

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



136 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 9, NO. 2, APRIL-JUNE 2003

TABLE 2
Running Times (Frames per Second) for Different Data Sets

Dataset
Name

Resolution/  
Polygons

Stipple O) 
No Vertex Program

(fps)

ily
VP Speedup 

(percent)

Stipple & Silt 
No Vertex Program

(frs)

ouette 
VP Speedup 

(percent}
iron 64x64x64 30.0 51.5% 29.9 54.3%
head 256x256x113 4.0 69.6% 3.5 57.3%

engine 256x256x128 4.0 90.5% 3.6 71.5%
leg 341x341x93 5.0 56.3% 4.6 45.9%

lobster 301x324x56 8.7 11.1% 7.5 10.0%.
foot 256x256x256 5.9 54.7% 5.0 46.4%

aneurysm 256x256x256 15.1 34.1% 12.1 26.2%
bonsai 256x256x256 4.3 8.0% 3.9 8.0%.
horse 13,352 60.39 0.0% 30.19 0.0%

low-res dragon 45106 30.4 5.4% 15.24 2.4%.
bunny 69451 20.07 50.1% 11.89 1.2%

skeleton 1 124018 12.08 71.0% 7.53 34.9%
skeleton2 522567 2.60 78.8% 1.50 29.3%

hand 654666 2.07 93.2% 1.32 42.4%
dragon 871414 1.50 99.3% 0.91 44.0%

our system on modern PCs. Performance results of our 
stipple system are presented in Table 2. These running 
times were gathered from a dual processor Intel Xeon
2.2 GHz computer with a Geforce 3 Ti 500 display card. The 
preprocessing time varies from seconds to a minute. The 
total number of point primitives in a typical volume data set 
ranges from 5,000 to 2,000,000 and the silhouette curves 
range from 1,000 to 300,000.

For surface models, silhouette rendering currently 
occupies a significant portion of the rendering time. Vertex 
programs can speed up the stipple rendering by up to 
100 percent, depending on the model. Both of our silhouette 
techniques for surface objects enhance the quality of the 
final images and show a range of artistic styles that can be 
conveyed with the stipple rendering system. The frame 
rates can be improved by further reducing cache exchange 
and floating-point operations.

Nonetheless, the measured frame rate does provide the 
user with a level of interactivity necessary for exploring and 
illustrating various regions of interest within the volume 
data sets. Through the use of sliders, the user is able to 
quickly adjust the parameters to select the desired feature 
enhancement and its appropriate level. The user is able to 
rotate, translate, and zoom in or out of the object while 
maintaining consistent shading. The system has very good 
temporal rendering coherence with only very subtle 
temporal aliasing occurring during rotation near silhouette 
edges and illuminated boundaries as new points are added 
based on the silhouette and illumination enhancement 
factor. We have implemented a simple partial opacity point 
rendering to fade the points, alleviating this problem.

9 C o nclusio ns  and F uture W o rk

We have developed an interactive stippling system that 
combines the advantages of point based rendering with the 
expressiveness of the stippling illustration style into an 
effective interactive illustration system for both volumes 
and surfaces, as can be seen in Fig. 17. This system utilizes 
techniques from both hand drawn illustration and volume 
rendering to create a powerful new environment in which

to visualize and interact with data. Our system demon­
strates that stippling effectively illustrates complex volume 
and surface data in a simple, informative manner that is 
valuable, especially for initial object investigation and data 
previewing. For these situations, the stipple renderer can be 
used to determine and illustrate regions of interest. These 
illustrated regions can then be highlighted when traditional 
rendering methods are later used for more detailed 
exploration and analysis. Initial feedback from medical 
researchers shows they are enthusiastic about the useful­
ness of the system for generating images for medical 
education and teaching anatomy and its relation to 
mathematics and geometry to children.

Many new capabilities have recently become available on 
modern graphics hardware that could significantly improve 
the performance of our system. Programmable vertex 
shaders allow us to move many of our feature enhance­
ments onto the graphics card. This is especially true for 
those that are view dependent. Preprocessed points can be 
stored as display lists or vertex arrays in the graphics card's 
memory, which avoids the expensive vertex download each

Fig. 17. Head volume with silhouette, boundary, and distance enhance­
ment and silhouette curves.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.



time a frame is rendered. Vertex programs can be used to 
evaluate the thresholds of feature enhancements by taking 
advantage of the fact that we are using vertices rather than 
polygons. Thresholding involves simple formulae and can 
be easily implemented in a vertex program. When a vertex 
falls below the enhancement threshold its coordinates can 
be modified to a position off screen, effectively culling it. 
This culling technique is not possible, in general, for 
polygons since there is currently no connectivity informa­
tion available in vertex programs.

We plan to extend our work to improve the interactivity 
of the system and compare the performance to other NPR 
volume Tenderers to assess the effectiveness of using a 
point-based rendering system. We will continue to explore 
additional feature enhancement techniques. Additionally, it 
may be interesting to investigate the implementation of a 
stipple renderer using a texture-based volume rendering 
architecture which modulates the alpha values per-pixel in 
the fragment shader portion of the pipeline. The stipple 
volume renderer is available at: http://shay.ecn.purdue. 
edu /  purpl /  projects/dl_stipple.htm.

Acknow ledgm ents

This material is based upon work supported by the US 
National Science Foundation under grants: NSF ACI- 
0081581, NSF ACI-0121288, NSF IIS-0098443, NSF ACI- 
9978032, NSF MRI-9977218, NSF ACR-9978099, and the US 
Department of Energy's VIEWS program. Some data sets 
used in this paper come from the web page: h ttp :// 
www.gris.uni-tuebingen.de/areas/scivis/volren /  datasets/ 
datasets.html.

R e fer en c es
[1] E. Akelman, "Im plicit Surface Pain ting /' Proc. Implicit Surfaces '98. 

pp. 63-68, 1998.
[2] B. Csebfalvi and M.E. GroIIer, "Interactive Volume Rendering 

Based on a 'Bubble M o d e l'/ ' Proc. GI 2001, pp. 209-216, June 2001.
[3] B. Csebfalvi, I.. M roz, H. Hauser, A. Konig, and M.E. GroIIer, 

"Fast Visualization of Object C ontours by Non-Photorealistic 
Volume Rendering," Computer Graphics Forum, vol. 20, no. 3, 
pp. 452-460, Sept. 2001.

[4] C. Curtis, S. Anderson, J. Seims, K. Fleischer, and D. Salesin, 
"Com puter-G enerated W atercolor," Proc. SIG G RA PH  1997, Com­
puter Graphics Proc., A nn . Conf. Series, pp. 421-430, Aug. 1997.

[5] O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte, "Floating 
Points: A M ethod for C om puting Stipple Drawings," Computer 
Graphics Forum, vol. 19, no. 3, Aug. 2000.

[6] O. Deussen and T. Strothotte, "Com puter-G enerated Pen-and-ink 
Illustration of Trees," Proc. A C M  SIG G RA PH  2000, Computer 
Graphics Proc., A nn . Conf. Series, pp. 13-18, July 2000.

[7] D. Ebert and P. Rheingans, "Volume Illustration: Non-Photo- 
realistic Rendering of Volume M odels," Proc. IEEE Visualization
2000, pp. 195-202,'Oct. 2000.

[8] B. Gooch and A. Gooch, Non-Photorealistic Rendering. A.K. Peters,
2001.

[9] A. H ertzm ann, "Painterly Rendering w ith Curved Brush Strokes 
of M ultiple Sizes," Proc. SIG G RA PH  98. Computer Graphics Proc.. 
A nn. Conf. Series, pp. 453-460, July 1998.

[10] The Guild Handbook o f Scientific Illustration. E. Hodges, ed. John 
W iley & Sons, 1989. '

[I I] K. Hohne and R. Bernstein, "Shading 3D-Images from CT Using 
Gray Level Gradients," IEEE Trans. Medical Imaging, vol. 5, no. 1, 
pp. 45-47, Oct. 1986.

[12] V. Interrante, "Illustrating Surface Shape in Volume Data via 
Principal Direction-Driven 3D Line Integral C onvolution," Proc.

LU ET AL.: ILLUSTRATIVE INTERACTIVE STIPPLE RENDERING

SIG G RAPH  '97. Computer Graphics Proc.. A nn . Conf. Series, pp. 109­
116, Aug. 1997.

[13] S. Feiner, J. Foley, A. van Dam, and J. Hughes, Computer Graphics, 
Principles and Practice. Addison-Wesley, 1990.

[14] M. Levoy and T. Whitted, "The Use of Points as a Display 
Primitive," Technical Report 85-022, Univ. of North Carolina- 
Chapel Hill Computer Science Dept., Jan. 1985.

[15] A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen, "Non- 
Photorealistic Volume Rendering Using Stippling Techniques," 
Proc. IEEE Visualization 2002, pp. 211-218, Oct. 2002.

[16] A. Lu, J. Taylor, M. Hartner, D. Ebert, and C. Hansen, "Hardware- 
Accelerated Interactive Illustrative Stipple Drawing of Polygonal 
Objects," Proc. VM V2002: Vision. M odeling, and Visualization. 
pp. 61-68, Nov. 2002.

[17] E. Lum and K. Ma, "Hardware-Accelerated Parallel Non-Photo- 
realistic Volume Rendering," Proc. Second In t'l Sym p. N on- 
Photorealistic Anim ation and Rendering, pp. 67-ff, 2002.

[18] K. Ma and V. Interra nte, "Extracting Feature Lines from 3D 
Unstructured Grids," Proc. IEEE Visualization '97. pp. 285-292, 
Nov. 1997.

[19] L. Mroz and H. Hauser, "RTVR—A Flexible Java Lbrary for 
Interactive Volume Rendering," Proc. IEEE Visualization 2001, 
pp. 279-286, Oct. 2001.

[20] L. Neumann, B. Csebfalvi, A. Konig, and E. GroIIer, "Gradient 
Estimation in Volume Data Using 4D Linear Regression," 
Computer Graphics Forum, vol. 19, no. 3, pp. 351-358, Aug. 2000.

[21] V. Ostromoukhov, "Digital Facial Engraving," Proc. SIG G RAPH  
'99. Computer Graphics Proc.. A nn . C onf Series, pp. 417-424, Aug. 
1999.

[22] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, "Surfels: Surface 
Elements as Rendering Primitives," Proc. A C M  SIG G RA PH  2000, 
Computer Graphics Proc., A nn . Con. Series, pp. 335-342, July 2000.

[23] M. Pop, C. Duncan, G. Barequet, M. Goodrich, W. Huang, and S. 
Kumar, "Efficient Perspective-Accurate Silhouette Computation 
and Applications," Proc. 17th A nn . Symp. Computational Geometry, 
pp. 60-68, 2001.

[24] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, "Real-Time 
Hatching," Proc. A C M  SIG G RA PH  2001, Computer Graphics Proc., 
A nn. C onf Series, pp. 579-584, Aug. 2001.

[25] R. Raskar and M. Cohen, "Image Precision Silhouette Edges," 
Proc. 1999 A C M  Symp. Interactive 3D Graphics, pp. 135-140, Apr.
1999.

[26] S. Rusinkiewicz and M. Levoy, "QSplat: A Multiresolution Point 
Rendering System for Large Meshes," Proc. SIG G RA PH  2000. 
pp. 343-352, 2000.

[27] M. Salisbury, C. Anderson, D. Lischinski, and D. Salesin, "Scale- 
Dependent Reproduction of Pen-and-ink Illustrations," Proc. 
SIG G R A P H  '96, Com puter Graphics Proc., A n n . Conf. Series, 
pp. 461-468, Aug. 1996.

[28] M. Salisbury, M. Wong, J. Hughes, and D. Salesin, "Orientable 
Textures for Image-Based Pen-and-ink Illustration," Proc. SIG­
G R AP H  '97, Computer Graphics Proc., A nn . Conf. Series, pp. 401-406, 
Aug. 1997.

[29] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder, "Silhouette 
Clipping," Proc. SIG G RA PH  '00, Computer Graphics Proc., A nn. 
Conf. Series, pp. 327-334, July 2000.

[30] S. Strassmann, "Hairy Brushes," Proc. SIG G RA PH  '8b, Computer 
Graphics Proc., A nn. Conf. Series, pp. 225-232, Aug. 1986.

[31] T. Strothotte and S. Schlechtweg, Non-Photorealistic Computer 
Graphics: M odeling, Rendering and A nim ation . San Francisco: 
Morgan Kaufmann, 2002.

[32] S. Treavett and M. Chen, "Pen-and-ink Rendering in Volume 
Visualisation," Proc. IEEE Visualization 2000, pp. 203-210, Oct.
2000.

[33] S. Treavett, M. Chen, R. Satherley, and M. Jones, "Volumes of 
Expression: Artistic Modelling and Rendering of Volume Data­
sets," Proc. Computer Graphics In t'l 2001, pp. 99-106, July 2001.

[34] M. Visvalingam, "Sketch-Based Evaluation of Line Filtering 
Algorithms," Proc. GI Science, Oct. 2000.

[35] B. Wilson, K. Ma, and P. McCormick, "A Hardware-Assisted 
Hybrid Rendering Technique for Interactive Volume Visualiza­
tion," Proc. Volum e Visualization and Graphics Symp. 2002. Oct.
2002.

[36] G. Winkenbach and D. Salesin, "Computer-Generated Pen-and- 
ink Illustration," Proc. SIG G RA PH  '94, Computer Graphics Proc., 
A nn. Conf. Series, pp. 91-100, July 1994.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

http://shay.ecn.purdue
http://www.gris.uni-tuebingen.de/areas/scivis/volren


138 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL, 9, NO, 2, APRIL-JUNE 2003

[37] G. Winkenbach and D. Salesin, "Rendering Parametric Surfaces in 
Pen and Ink," Proc. SIG G RAPH  '96, Computer Graphics Proc., A nn. 
Conf. Series, pp. 469-476, Aug. 1996.

[38] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, "EWA Volume 
Splatting," Proc. IEEE Visualization 2001, pp. 29-36, Oct. 2001.

[39] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, "Surface 
Splatting," Proc. SIG G RAPH  2001. Computer Graphics Proc.. A nn. 
Conf. Series, pp. 371-378, Aug. 2001.

Aidong Lu received the BS and MS degrees in 
computer science from Tsinghua University in 
1999 and 2001, respectively. Currently, she is a 
graduate student at Purdue University. Her 
research interests are computer graphics and 
visualization. She is a  student member of the 
IEEE Computer Society.

C hristopher J . Morris received the MS degree 
in computer science from the University of 
Maryland-Baltimore County in 2001, where his 
focus was in scientific visualization. Previously, 
he received the MS in mechanical engineering 
from Stanford University in 1998, where his 
interests included robotics and engineering de­
sign. He is an employee in the Visual Technology 
Group at the IBM T.J. Watson Research Center. 
His current research interests include volume 

rendering, nonphotorealistic rendering, and parallel systems.

Jo e  Taylor received the BS degree in computer 
engineering from Purdue University in 2001. He 
is currently a graduate student at Purdue 
University. His research interests are computer 
graphics and visualization.

C harles Hansen received the BS degree in 
computer science from Memphis State Univer­
sity in 1981 and the PhD degree in computer 
science from the University of Utah in 1987. He 
is an associate professor of computer science at 
the University of Utah. From 1997 to 1999, he 
was a  research associate professor in computer 
science at Utah. From 1989 to 1997, he was a 
technical staff member in the Advanced Comput­
ing Laboratory (ACL) located at Los Alamos 

National Laboratory, where he formed and directed the visualization 
efforts in the ACL. He was a Bourse de Chateaubriand PostDoc Fellow 
at INRIA, Rocquencourt, France, in 1987 and 1988. His research 
interests include large-scale scientific visualization, parallel computer 
graphics algorithms, massively parallel processing, 3D shape repre­
sentation, and computer vision. He is a  member of the IEEE and the 
IEEE Computer Society.

Penny R heingans received the PhD degree in 
computer science from the University of North 
Carolina, Chapel Hill, and the AB degree in 
computer science from Harvard University. She 
is an assistant professor of computer science at 
the University of Maryland Baltimore County. Her 
current research interests include uncertainty in 
visualization, multivariate visualization, volume 
visualization, information visualization, percep­
tual and illustration issues in graphics, dynamic 

and interactive representations and interfaces, and the experimental 
validation of visualization techniques. She is a  member of the IEEE 
Computer Society.

Mark Hartner graduated in the summer of 2002 
with the BS degree in computer engineering. He 
is a  researcher for the Scientific Computing and 
Imaging Institute at the University of Utah. His 
primary interests include high performance 
computing and scientific visualization.

David S. Ebert received the PhD degree from > For m ore information on th is or any com puting topic, p lease visit
the Computer and Information Science Depart- our Digital Library at http://computer.org/publications/dlib. 
ment at The Ohio State University in 1991. He is 
an associate professor in the School of Electrical 
and Computer Engineering at Purdue University.
His research interests are scientific, medical, 
and information visualization, computer gra­
phics, animation, and procedural techniques.
Dr. Ebert performs research in volume render­
ing, nonphotorealistic visualization, minimally 

immersive visualization, realistic rendering, procedural texturing, model­
ing, and animation, modeling natural phenomena, and volumetric 
display software. He has also been very active in the graphics 
community, teaching courses, presenting papers, chairing the ACM 
SIGGRAPH '97 Sketches program, cochairing the IEEE Visualization 
'98 and '99 Papers program, serving on the ACM SIGGRAPH Executive 
Committe and serving as an associate editor for the IEEE Transactions 
on Visualization and Computer Graphics. He is a member of the IEEE 
and the IEEE Computer Society.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

http://computer.org/publications/dlib

