168 research outputs found

    Categoricity, Open-Ended Schemas and Peano Arithmetic

    Get PDF
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages of open-ended arithmetic when it comes to establishing the categoricity of Peano Arithmetic and show that the critique is highly problematic. I argue that Pederson and Rossberg’s ontological criterion deliver the bizarre result that certain first order subsystems of Peano Arithmetic have a second order ontology. As a consequence, the application of the ontological criterion proposed by Pederson and Rossberg assigns a certain type of ontology to a theory, and a different, richer, ontology to one of its subtheories

    Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?

    Full text link
    Classical interpretations of Goedel's formal reasoning imply that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is essentially unverifiable. However, a language of general, scientific, discourse cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic is verifiably complete. We show how some paradoxical concepts of Quantum mechanics can be expressed, and interpreted, naturally under a constructive definition of mathematical truth.Comment: 73 pages; this is an updated version of the NQ essay; an HTML version is available at http://alixcomsi.com/Do_Goedel_incompleteness_theorems.ht

    Are the Barriers that Inhibit Mathematical Models of a Cyclic Universe, which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?

    Get PDF
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not been reflected in the Cauchy sequence that seeks to describe the behaviour of the physical process. We support our thesis by mathematical models of the putative behaviours of (i) a virus cluster; (ii) an elastic string; and (iii) a Universe that recycles from Big Bang to Ultimate Implosion, in which parity and local time reversal violation, and the existence of `dark energy' in a multiverse, need not violate Einstein's equations and quantum theory. We suggest that the barriers to modelling such processes in a mathematical language that seeks unambiguous communication are illusory; they merely reflect an attempt to ask of the language chosen for such representation more than it is designed to deliver

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism

    Get PDF
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. We then adopt what may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences

    Freedom, Anarchy and Conformism in Academic Research

    Get PDF
    In this paper I attempt to make a case for promoting the courage of rebels within the citadels of orthodoxy in academic research environments. Wicksell in Macroeconomics, Brouwer in the Foundations of Mathematics, Turing in Computability Theory, Sraffa in the Theories of Value and Distribution are, in my own fields of research, paradigmatic examples of rebels, adventurers and non-conformists of the highest caliber in scientific research within University environments. In what sense, and how, can such rebels, adventurers and non-conformists be fostered in the current University research environment dominated by the cult of 'picking winners'? This is the motivational question lying behind the historical outlines of the work of Brouwer, Hilbert, Bishop, Veronese, Gödel, Turing and Sraffa that I describe in this paper. The debate between freedom in research and teaching, and the naked imposition of 'correct' thinking, on potential dissenters of the mind, is of serious concern in this age of austerity of material facilities. It is a debate that has occupied some of the finest minds working at the deepest levels of foundational issues in mathematics, metamathematics and economic theory. By making some of the issues explicit, I hope it is possible to encourage dissenters to remain courageous in the face of current dogmasNon-conformist research, economic theory, mathematical economics, 'Hilbert's Dogma', Hilbert's Program, computability theory

    Structural Relativity and Informal Rigour

    Get PDF
    Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By bringing considerations of perturbations in modal space to bear on the debate, we will suggest that a promising option for representing current set-theoretic thought is given by formulating set theory using quasi-weak second-order logic. These observations indicate that the usual division of structures into \particular (e.g. the natural number structure) and general (e.g. the group structure) is perhaps too coarse grained; we should also make a distinction between intentionally and unintentionally general structures
    corecore