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Abstract Disquotational theories of truth are often criticised for being too weak to
prove interesting generalisations about truth. In this paper we will propose a certain
formal theory to serve as a framework for a solution of the generalisation problem. In
contrast with Horwich’s original proposal, our framework will eschew psychological
notions altogether, replacing them with the epistemic notion of believability. The aim
will be to explain why someone who accepts a given disquotational truth theory Th,
should also accept various generalisations not provable in Th. The strategywill consist
of the development of an axiomatic theory of believability, one permitting us to show
how to derive the believability of generalisations from basic axioms that characterise
the believability predicate, together with the information that Th is a theory of truth
that we accept.

Keywords Truth · Minimalism · Generalisation problem

1 Horwichian MT and the generalisation problem

According to Horwich’s minimalism (see Horwich 1999), all the facts about truth can
be explained on the basis of the so-called ‘minimal theory’ (MT ). The axioms of this
theory are the instances of the following disquotational T-schema:

(T) < p > is true iff p

where the expression ‘< p >’ reads ‘the proposition that p’. Horwich claims that
the minimal theory fully characterises the content of the notion of truth. Moreover,
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Synthese

our understanding of this notion consists of our disposition to accept every (non-
paradoxical) instance of (T). The final upshot is that the concept of truth becomes
light and unproblematic, devoid of any deep nature for philosophers then to uncover.

One of the main concerns for the adherent of Horwichian minimalism is the
(so-called) generalisation problem. How can the minimalist account for generalities
involving the notion of truth? Consider, for example, the following statements:

(1) Every proposition of the form ‘ϕ → ϕ’ is true;
(2) For every ϕ, the negation of ϕ is true iff ϕ is not true;
(3) Every theorem of S is true (where S is some theory which we accept).

Objections have been made that Horwich’s minimal theory is too weak to prove
such generalisations (cf. Gupta 1993). The validity of this charge is not entirely clear,
with the main stumbling block being that Horwich has never precisely delineated the
collection of axioms of MT . Hence it is not possible to give an exact assessment of
their truth-theoretic strength. Nevertheless, it is instructive in this context to see how
effective disquotational theories can be in proving general statements of the envisaged
sort. On the one hand, it is a well-known fact that some disquotational theories are
weak in this respect. As an illustration, let LT be the language obtained by extending
LPA (the language of Peano arithmetic) with a new one-place predicate ‘T (x)’. The
expressions ‘SentLPA ’ and ‘SentLT ’ will be used to denote sentences of (respectively)
LPA and LT . Let I nd(LT ) be the set of all substitutions of the schema of induction
‘
(
ϕ(0) ∧ ∀x [ϕ(x) → ϕ(x + 1)]) → ∀xϕ(x)’ by formulas of LT . We define:

Definition 1

• T B = PA ∪ {T (�ϕ�) ≡ ϕ : ϕ ∈ SentLPA } ∪ I nd(LT ),
• UT B = PA ∪ {∀x1 . . . xn[T (�ϕ(x1 . . . xn)�) ≡ ϕ(x1 . . . xn)] : ϕ ∈ LPA} ∪

I nd(LT ),
• Theories like T B and UT B but with arithmetical induction only will be denoted
(respectively) as T B− and UT B−.

UT B (hence also T B) is a disquotational truth theory quite weak in proving truth-
theoretic generalisations. This is the content of the following theorem.

Theorem 2 For every arithmetical formula ϕ(x), if UT B � ∀x[ϕ(x) → T (x)], then
there is a natural number n such that P A � ∀x[ϕ(x) → Trn(x)].1

It immediately follows that (1) is not derivable in UT B, being that formulas of the
form ‘ϕ → ϕ’ have an arbitrarily large complexity. It also follows that for no theory
S, UT B � ∀ψ[PrS(ψ) → T (ψ)] (with ‘PrS(ψ)’ being an arithmetical formula
with the natural reading ‘ψ is provable in S’). The reason here is the same as before;
namely, that the syntactical complexity of theorems of S will be arbitrarily large. A

1 For the proof, see Halbach (2001, p. 1960). The expression ‘Trn(x)’ is an arithmetical truth predicate for
formulas of complexity not larger than n. The notion of complexity of a formula can be defined in various
ways (for example, it can be characterised as the height of the syntactic tree of a formula). We omit the
details, as they are not crucial here.
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different argument shows that (2)—the compositional principle for negation—is not
provable in UT B either.2

On the other hand, it is not the case that all disquotational theories are truth-
theoretically weak. As soon as we drop the typing restrictions, the situation changes
drastically, as witnessed by the following observation due to McGee (1992).

Theorem 3 Let P AT be Peano arithmetic formulated in LT . Let ϕ be an arbitrary
sentence of LT . Then there is a sentenceψ of LT such that P AT � ϕ ≡ (T (ψ) ≡ ψ).

In other words, every LT sentence is provably (in PAT ) equivalent to some sub-
stitution of Tarski’s disquotational schema. In particular, this includes sentences of
LT corresponding to (1)–(3). Therefore (1)–(3) will be provable in some untyped
disquotational truth theories.

At best, McGee’s result shows that disquotational theories are not doomed at the
start: it is theoretically possible for some set of well-motivated disquotational axioms
to be truth-theoretically strong. However, it still remains unclear whether it is anything
more than a mere theoretical possibility. The crucial question remains: Is there any
one set of disquotational axioms which is both well-motivated and truth-theoretically
strong? It is worth observing that the untyped disquotational theories which were
actually proposed in the literature (with some philosophical motivation offered) do
not fare well in this respect.3

In effect, the minimalist owes us an answer to the question of why—if at all—we
are entitled or perhaps obliged to accept various generalisations involving the notion
of truth. Does his disquotational truth theory prove generalisations such as (1)–(3)?
And, if it does not, how can it help us to arrive at them? In a nutshell, this is the
generalisation problem.

A useful way of framing the challenge has been suggested by Ketland (2005),
who introduced the concept of conditional epistemic obligation. Ketland starts with
the intuition that if we accept some base arithmetical theory S (formulated in LPA),
then we are obliged to accept various further statements, possibly unprovable in S
itself. Here Ketland’s emphasis is on reflection principles; the relevant definition is
introduced below. The acronyms (GR), (UR) and (LR) stand for global, uniform and
local reflection respectively.

Definition 4

(GR) ∀ψ ∈ LPA [PrS(ψ) → T (ψ)].
(UR) ∀x [PrS(ψ(x))) → ψ(x)], for all ψ(x) ∈ LPA.
(LR) PrS(ψ) → ψ , for all ψ ∈ SentLPA .

2 The simplest proof known to me uses compactness: given a finite subset Z of axioms ofUT B, a model of
Z can be built which does not satisfy the compositional principle for negation. Hence, adding the negation
of (2) to UT B produces a consistent theory.
3 PT B and PUT B are examples of such untyped disquotational theories. Their axioms contain substitu-
tions of disquotational schemas (the local or the uniform) by positive formulas—formulas of LT in which
every occurrence of ‘T ’ lies in the scope of even number of negations. However, it is known that none of
them proves compositional principles for truth. For more information about these theories, see Halbach
(2009) and Cieśliński (2011).
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According to Ketland, when accepting S, we are epistemically obliged to accept
reflection principles for S in all three versions. Since none of the reflection principles
is provable in S,4 the natural explanation of our conditional epistemic obligation sug-
gests itself: namely, that all three principles become theorems as soon as appropriate
truth axioms are added. However, the prospects for finding well-motivated disquota-
tional axioms producing this effect look dim. Therefore, the disquotationalist faces the
dilemma. Paraphrasing Ketland, either he strengthens his axioms, thereby rejecting
disquotationalism, or he offers some non-truth-theoretic analysis of the conditional
epistemic obligation.5

Indeed, it is my opinion that Ketland’s concept of conditional epistemic obligation
can be fruitfully applied not just to reflection principles, but also to the compositional
principles governing the behaviour of the truth predicate. Consider T B as a starting
point. For every arithmetical sentenceψ , we can easily establish in T B that T (¬ψ) ≡
¬T (ψ). The recognition of this fact carries a conditional epistemic obligation: given
that we accept T B, we should also accept the general compositional principle for
negation (restricted, in this context, to arithmetical sentences only), even though—as
it happens—it is not provable in T B itself. How can the disquotationalist account for
this without compromising his philosophical standpoint? That is the question.6

In recent years Paul Horwich has made two attempts to deal with the challenge.
They will be presented and briefly discussed in the next section.

2 Horwich’s two solutions

First attempt In Horwich (1999) an attempt is made to strengthen the minimal theory
in such a way that it proves by itself the desired generalisations. This strengthening
involves modifying the proof techniques available to us in MT . In Horwich’s words:

It is plausible [. . .] that there is a truth-preserving rule of inference that can take
us from set of premises attributing to each proposition some property F, to the
conclusion that all propositions have F. (Horwich 1999, p. 137)

4 Both (UR) and (LR) permit us to prove the consistency of S and, as such, are unprovable in S by Gödel’s
second incompleteness theorem. (GR) is formulated in LT , not in LPA , but even if we add the truth predicate
and extend S with some natural disquotational truth axioms, the chances are high that (GR) will remain
unprovable.
5 Cf. Ketland (2005, p. 80). Although Ketland’s discussion concerns conservative truth theories, in my
opinion his remarks apply just as well to disquotational theories of truth in general, not necessarily
conservative ones.
6 Admittedly, in other places Ketland formulates his criticism in a different manner. Thus, arguing against
Tennant, he writes: “Part of the point of the articles by Feferman, Shapiro and myself was to show how to
prove reflection principles […] As far as I can see, in the absence of the sort of truth-theoretic justification
given by Feferman, Shapiro and myself, Tennant’s proposal is that the deflationist may assume these
principles without argument.” (Ketland 2005, p. 85) Here the emphasis is on justifying the independent
sentences (namely, reflection principles), not on explaining of why they should be accepted. In this paper
I am not going to consider this quite different version of the anti-deflationary argument. Let me say only
that I do not consider it successful, mainly due to the serious doubts concerning the justificatory value of
truth-theoretic proofs. See Cieśliński (2015, p. 81ff) for more in this direction.
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It seems that Horwich proposes the introduction of a new rule, very similar to the
well-known ω-rule applied in arithmetical contexts. Assuming that we accept all the
sentences obtained from ϕ(x) by substituting an arbitrary numeral for the variable x ,
the ω-rule permits us to accept the general statement ‘∀xϕ(x)’. The quoted passage
hints at a similar strategy. If for each proposition ϕ, F(ϕ) can be derived in our theory,
then we are entitled to conclude that ∀ϕF(ϕ).

I will not discuss this idea in detail, referring the reader to Raatikainen (2005) for a
convincing criticism. Themain thrust of Raatikeinen’s remarks is that any rule invoked
to solve the generalisation problem should be practical. In other words, there does not
seem to be much point in generalisations being provable in a given theory of truth if
we, as human beings, are never able to produce such proofs. After all, we somehow do
reach generalisations about truth and any adequate explanatory account should take
this fact into consideration. Unfortunately, the system with the ω-rule does not satisfy
this basic feasibility condition. The rule in question requires infinitely many premises
and for this reason its practical utility is close to null.7 Indeed, I am inclined to think
that it is a very serious worry.

Second attempt Horwich’s second solutionwas originally proposed inHorwich (2001)
and elaborated on in Horwich (2010). Unlike in the previous case, the current proposal
involves leaving the proof machinery of MT intact (it remains thoroughly classical);
the idea is just to use it together with a certain additional premise. Horwich emphasises
that, apart fromMT , theminimalist is permitted to uses additional ‘truth-free’ assump-
tions in his explanations. For example, we can explain why we accept ‘<Elephants
have trunks> is true’ as soon as we enlarge MT with a truth-free assumption ‘Ele-
phants have trunks’. Here is the final answer: we accept that ‘Elephants have trunks’
is true because we believe that elephants have trunks and we accept an appropriate
disquotational axiom of MT .

In an attempt to generalise this strategy, Horwich proposes the following truth-free
assumption:

(A) Whenever someone is disposed to accept, for any proposition of structural type
F, that it is G (and to do so for uniform reasons) then he will be disposed to accept
that every F-proposition is G. (Horwich 2010, p. 45)

With this assumption at hand, Horwich promises to explain why we are inclined to
accept generalisations of the (1)–(3) type. As an example, we present the Horwichian
explanation below for (1).

Explanation 5

(P1) For every proposition of structural type ‘ϕ → ϕ’, we are disposed to accept that
it is true (and we do it for uniform reasons).

(P2) If P1, then we will be disposed to accept that every proposition of structural type
‘ϕ → ϕ’ is true.

7 Cf. Raatikainen (2005, p. 176): “Theω-rule has its uses in theoretical contexts, but because of its infinitary
nature, it is not a rule of inference in the ordinary sense. That is, the usual rules of inference are decidable
relations between (conclusion) formulas and finite sets of (premiss) formulas. This is not so with the ω-rule.
It requires that one can, so to say, have in mind and check infinitely many premisses, and then draw a
conclusion. Consequently, we finite human beings are never in a position to apply the ω-rule”.
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Conclusion We will be disposed to accept that every proposition of structural type
‘ϕ → ϕ’ is true.

Clearly, the reasoning is logically valid. Indeed, we can assume that premise (P1)
describes us as users of a given disquotational theory of truth; it is also easy to observe
that P2 is an instance of (A). In effect, we obtain the explanation of our acceptance of
‘∀ϕ T (ϕ → ϕ)’.

Still, some critics remained unconvinced. In particular, Bradley Armour-Garb was
dissatisfied with premise P2. In his own words:

One will not be disposed to accept (the proposition) that all F-propositions are
G, from the fact that, for any F-proposition, she is disposed to accept that it is G
[. . .], unless she is aware of the fact that, for any F-proposition, she is disposed
to accept that it is G. (Armour-Garb 2010, p. 699)

Armour-Garb’s reservation seems fair indeed. However, as he notes himself, it is
possible to take this objection into account, which generates the following modified
version of Explanation 5:

Explanation 6

S1 For every proposition of structural type ‘ϕ → ϕ’, we are disposed to accept that
it is true.

S2 We are aware that S1.
S3 If S1 and S2, then we will be disposed to accept that every proposition of structural

type ‘ϕ → ϕ’ is true.

Conclusion We will be disposed to accept that every proposition of structural type
‘ϕ → ϕ’ is true.

Nevertheless, Armour-Garb is dissatisfied with S2. He asks: “What is it for one to
be aware of such a fact”? He then answers:

Here is a plausible answer: for one to be aware of the fact that, for every F-
proposition, she is disposed to accept that it is true is for that person to be
aware of the fact that she is disposed to accept that every F-proposition is true.
(Armour-Garb 2010, p. 700)

If this is so, then S2 simply means ‘we are aware that the conclusion holds’ and for
this reason Armour-Garb accuses Explanation 6 of being viciously circular. We just
cannot explain our disposition to accept a general sentence by citing our awareness
that we have such a disposition.

Still, such a dismissal of Horwichian explanations seems to me too hasty, since
there are other possible interpretations of S2 which should be taken into account. The
next section contains an initial sketch of what seems to me to be a more promising
strategy.
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3 Horwichian explanations reconsidered

Wewill propose here a certain reconstruction of Horwichian explanations. To enhance
clarity, they will be presented in a very restricted, arithmetical framework. For starters,
we are going to assume that the disquotational theory T B− is our preferred theory of
truth for the language of arithmetic. The obvious question then arises of why we are
inclined to accept such general statements as (1).8 A Horwichian explanation of our
acceptance of ‘∀ψ ∈ SentLPA T (ψ → ψ)’ will be presented below. The explanation
is carried out in a metatheory S about which we will make the following stipulations.

(a) The language of S contains expressions ‘we are aware that …’ and ‘we are dis-
posed to accept …’, predicated of sentences of LS .

(b) S contains Peano arithmetic.
(c) S contains the information that T B− is our theory. That is, we are disposed to

accept sentences in awareness that they are theorems of T B−.
(d) S contains an axiom stating that if we are aware that (for every x , ϕ(x)), then for

every x , we are aware that ϕ(x).9

(e) S contains the following necessitation rule: given ϕ as a theorem, we are allowed
to infer ‘we are aware that ϕ’.

(f) S contains Horwich’s rule: given a proof of ‘we are aware that for every x , we
are disposed to accept ϕ(x)’, we are allowed to infer: ‘we are disposed to accept
∀xϕ(x)’.10

It should be noted that, as it stands, S describes us as highly idealised users of
T B−.11 Thus, for example, condition (b) together with the closure condition (e) guar-
antees that for every theorem ϕ of PA, S will prove ‘we are aware that ϕ’. Surely, the
awareness of every single theorem of Peano arithmetic (including those never proved
by anyone) is an impossibly tall order for any real-world agent, which invites the
charge that any solution to the generalisation problem based on S will be as unrealistic
and impractical as the recourse to ω-rule. Nonetheless, in fact the situation is not that
dire at all. In the course of explaining the dispositions of the real-world agents, we
can still appeal to those concrete reasonings carried out in S, which employ only the

8 Restricting our attention to Peano arithmetic and T B− brings both gains and losses. On the one hand, we
gain clarity, since the set of axioms of T B− (unlike that of MT ) is precisely defined. On the other hand, we
admittedly lose the breadth and scope of Horwich’s original proposal. Indeed, Horwich discusses arbitrary
propositions, not arithmetical sentences, and properties, not formulas. Here we are going to sacrifice scope
for the sake of clarity.However, it isworth emphasising that ifHorwichian explanations donotwork in simple
arithmetical contexts, then they are even more problematic when applied to propositions and properties.
9 One should be careful, nonetheless, about the use of implication. Let us abbreviate ‘I am aware that x’
by ‘A(x)’. Given ‘A

(∀x[ϕ(x) → ψ(x)])’, by stipulation (d) I can infer ‘for every x , A
(
ϕ(x) → ψ(x)

)
’.

‘What I cannot do is to automatically infer ‘for every x , if ϕ(x), then A(ψ(x))’. Even taking this reservation
into account, one could wonder what psychological reality corresponds to (d). My suggestion is that, on
the assumption of a minimal logical competence of the agent, the awareness of the general fact generates
something more than just a disposition to accept all the instances, namely, the explicit knowledge of a
simple algorithm producing, for an arbitrary n, a derivation of ϕ(n) from the general statement.
10 This clearly corresponds to Horwich’s assumption (A), even though I formulate it as an inference rule
here.
11 I am grateful to the anonymous referee for this observation.
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principles known to the agents at a given time (ideally, principles for which the agents
themselves have provided proofs).12

At this point let us recall Armour-Garb’s question. What is it for one to be aware
that ϕ? In my opinion, the application of (e) to the real-world agents (see the previous
paragraph) provides a reasonable sufficient condition. In order to be aware that ϕ it is
enough to prove ϕ. After proving ϕ in our metatheory S, we are permitted to conclude
‘we are aware that ϕ’.

Below, we present a Horwich-style explanation of why we are inclined to accept
that every arithmetical sentence of the form ‘ϕ → ϕ’ is true. The explanation proceeds
as follows.

Explanation 7

(1) For every ϕ ∈ SentLT , if we are aware that T B− � ϕ, then we are disposed to
accept ϕ. (By (c))

(2) For every x, T B− � SentLPA (x) → T (x → x). (By (b), since (2) is provable
already in PA)13

(3) We are aware that (2). (Necessitation, applied to (2))
(4) For every x, we are aware that T B− � SentLPA (x) → T (x → x). (From (3)

by (d))
(5) For every x, SentLT (�SentLPA (x) → T (x → x)�)14 (Provable in PA)
(6) For every x, we are disposed to accept: SentLPA (x) → T (x → x). (From (1), (4)

and (5), logic)
(7) We are aware that (6). (Necessitation, applied to (6))
(8) We are disposed to accept: for every x, [SentLPA (x) → T (x → x)]. (From (7) by

Horwich’s rule)

The acceptance of various other truth-involving generalisations can be explained
in an analogous manner.

How should we assess Explanation 7? All in all, I am inclined to think of it as of a
step in the right direction. Nevertheless, I will formulate two critical remarks below,
both of which indicate the need for a still further reformulation and amendment.

Before engaging into the criticism, let us note one peculiar trait of Explanation 7
(or of Horwichian explanations in general). The explanation of why we are disposed
to accept a given statement could proceed by deriving this statement in a theory which
we accept. Indeed, this would be the case of T B− with ω rule, where various truth-
theoretic generalisations become provable; this is also the case when we try to explain
our acceptance of the truth of ‘Elephants have trunks’.15 However, this is not what
happens here. The general statement in question, i.e. ‘∀ϕ ∈ LPAT (ϕ → ϕ)’, is not

12 Alternatively, the rules of S could be modified by relativising them to agents and times.
13 As usual in such contexts, the intended meaning is that for every x , T B− proves the result of substituting
a numeral denoting x for a free variable in the relevant formula.
14 This notation is used here as a shorthand of: ‘for every x , y, if y = �SentLP A (x) → T (x → x)�,
then SentLT (y)’, with ‘y = �SentLP A (x) → T (x → x)�’ abbreviating ‘y is the result of substituting a
numeral denoting x for a variable v in the expression ‘SentLP A (v) → T (v → v)”.
15 ‘T (Elephants have trunks)’ is simply provable in a disquotational truth theory enrichedwith an additional
assumption ‘Elephants have trunks’.
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derived here at all, neither in T B− (which would be impossible, anyway), nor even
in T B− supplemented with some additional premises. What is instead derived is a
statement about our disposition to accept the general sentence under discussion.

I will now formulate two objections against Explanation 7 and against Horwichian
explanations in general.

Problem 1 Horwichian explanations are psychological. A psychological fact (namely,
our disposition to accept a given sentence) is explained here in terms of our other dis-
positions and mental abilities. This in itself is not problematic. There is nothing wrong
with psychological explanations as such. However, the trouble is that in Explanation 7
the normative element is completely lost and the following additional question arises:
Is someone who accepts T B− (or Horwich’s MT ) committed to accept additional
generalisations, unprovable in T B−? Assume for the sake of argument that we do
satisfy the description from Explanation 7, entailing that, while accepting T B−, we
are also inclined to accept the general statement ‘∀ϕ ∈ LPAT (ϕ → ϕ)’. But is there
any reason why we should accept such independent sentences?

If the sentence in question was provable in a theory accepted by us, the difficulty
would not be so acute. However, as we noticed, Explanation 7 does not contain a
derivation of ‘∀ϕ ∈ LPAT (ϕ → ϕ)’ in any theory accepted by us. Why then should
we accept it?16

Problem 2 Premise (1) requires some reformulation. It seems that an assumption to
the effect that T B− is a theory accepted by us, should be employed in Horwichian
explanations. Butwhat does itmean to accept a theory? The problem is that Premise (1)
does not adequately express this content. For illustration, assume that my knowledge
of the theory T B− is very limited—that I do not know much more about T B− apart
from the fact that it is some theory. In such a case Premise (1) would be vacuously
true; nevertheless, we would not say that in this situation I accept T B−.

In view of this, later on we are going to propose an alternative approach, which pre-
serves some essential traits of Horwichian explanations, but gets rid of psychological
concepts altogether. However, we will start with remarks about the notion of accepting
a theory.

4 Accepting a theory

Given that we accept a theory Th, why should we then accept various generalisations
that are not provable in T h? This question is the starting point of our investigations; this
is also what we consider to be the basic challenge behind the generalisation problem.
In such a formulation, the notion of accepting a theory comes out as crucial. But what
does it mean to accept a theory?

16 Admittedly, the conclusion of Explanation 7 is that we are disposed to accept that ∀ϕ ∈ SentLP A T (ϕ →
ϕ). Hence, we could point out that the sentence in question does, after all, follow quite trivially from some
theory accepted by us (namely, from the theory containing this very sentence). However, this would be a
moot point. The question still remains how we arrived at such a theory and, more importantly, why we
should embrace it.
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For starters, we are going to consider (and reject) a few candidates for the role of
an explication of ‘I accept Th’. Our criterion of assessment of the explications will be
twofold. First, we are going to reject those explicationswhich yield clearly implausible
consequences.17 Second, we will also reject those explications which are too strong
(in a sense to be explained below). Here is our initial list of options. ‘I accept Th’
could mean that:

(a) For any sentence ϕ, if I believe that ϕ has a proof in Th, then I am ready to accept
ϕ.

(b) For any sentence ϕ, if I believed that ϕ has a proof in Th, then I would be ready
to accept ϕ.

(c) I accept that all the theorems of Th are true.
(d) I accept some truth-free version of the reflection principle for Th (the local or the

uniform one).

(a) is clearly inadequate for reasonswhich have already been indicated (seeProblem
2 above). Indeed, if I knownothing about T h, then (a) is vacuously true. Hence it would
follow that I accept Th, which is hardly plausible.

(b)—a counterfactual strengthening of (a)—turns out to be inadequate as well. I
submit that very few people would accept any theory Th in such a sense! For example,
if I believed that Peano arithmetic proves ‘0 = 1’, then I would not be ready to accept
that 0 = 1. I would reject PA instead.

Even though (c) sounds plausible in itself, it is too strong to be of much use in
our present discussion. To give a simple example, one of the ‘conditional epistemic
obligations’ (to use Ketland’s phrase again) is the consistency of Th. Why is it that
when accepting Th, we should accept that Th is consistent? In a way, the explication
(c) makes the issue trivial. Thus, given an arithmetical theory Th it is easy to observe
that any theory of truth which includes T-sentences for the arithmetical language,
proves ConTh (the consistency of Th) when supplemented with ‘All theorems of Th
are true’. So far so good—but where does it leave the disquotationalist? How can he
accept Th if—as it may well happen—his disquotational truth theory for the language
of Th does not permit him to prove ‘all theorems of Th are true’? Indeed, if (c) was
the only possible way to make sense of the notion of ‘accepting a theory’, I would be
inclined to see it as a strong argument against disquotationalism. But, this is not the
only way.

In addition, treating (c) as an explication of ‘I accept Th’ will be very problematic
in some particularly pertinent cases, namely, when Th itself is a theory of truth.
For illustration, let Th be K F + con; in other words, let it be the Kripke–Feferman
system supplemented with the consistency axiom ‘∀ϕ¬(T (ϕ)∧T (¬ϕ))’.18What does

17 For example, if under a given explication I ‘accept’ a theory which I do not accept in a normal sense of
the word, this will count heavily against the proposed explication.
18 See Reinhardt (1986) and Feferman (1991), where the theory in question was introduced; cf. also
Feferman (1984). K F was meant to capture a Kripkean notion of truth and originally it was formulated
in the language with two primitive predicates ‘T ’ and ‘F’ for truth and falsity respectively. For the list of
axioms of K F in the language with ‘T ’ but without the falsity predicate, see Halbach (2011, pp. 200–201).
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it mean to accept such a theory? Since the system K F + con proves the untruth of
some of its own theorems, accepting K F + con in the sense (c)—that is, introducing
the information that all theorems of K F + con are true—produces an inconsistent
theory.19 This is another reason why (c) should be deemed unsatisfactory.

We reject also (d) for similar reasons as (c)—that is, we consider it too strong
for our purposes. If ‘accepting Th’ means accepting all the substitutions of (say) the
local reflection principle for Th, then how can the disquotationalist accept Th in this
sense if (as it may well happen) his disquotational truth theory does not prove all
such substitutions? Indeed, one could try to argue that on any admissible sense of
‘accepting’, our acceptance of Th commits us to some forms of reflection for Th.20

Still, I am inclined to view such a commitment as something to be explained. It is
totally unhelpful to postulate it in advance, as a part of the meaning of ‘I accept Th’.

At this point we have considered and rejected four explications of ‘I accept Th’.
So what is left?

In this paper we will work with the following explication, which is a modified
version of (b).

(e) For any sentence ϕ, if I believed that ϕ has a proof in Th and I had no independent
reason to disbelieve ϕ, then I would be ready to accept ϕ.

Observe that the objection raised earlier against (b) is no longer valid. Here, a mere
possibility of the theory being inconsistent is no longer a problem: if I believed that
‘0 = 1’ has a proof in Th, then I would not be ready to accept that 0 = 1 because
of independent reasons! In fact, the formulation (e) gives justice to the fact that we
rarely—if ever—accept our theories unconditionally. The intuition is rather that we
will stick to them as long as we believe that they do not yield false consequences. Still,
if I accept Th, then given a new sentence ϕ (new in the sense that I neither accepted
nor rejected ϕ previously), I would accept ϕ if I believed that it is a theorem of Th.
Indeed, this is how the present story goes.

Throughout the rest of this paper I am going to treat (e) as my basic description of
the content of ‘I accept Th’. Let us observe that, with such a choice, the generalisation
challenge remains nontrivial. For example, we still have to explain why someone
accepting PA in this sense should be committed to accept statements not provable in
PA (the consistency statement in particular). Alternatively, one could claim that any
such additional commitments are illusory.

19 For a sentence L such that K F � L ≡ ¬T (L), it is possible to show that K F + con � L and therefore
K F + con � ¬T (L). It is then easy to observe that K F + con+ ‘All theorems of K F + con are true’
proves T (L) and hence it is inconsistent. See Halbach (2011, p. 215).
20 Cf. Ketland’s ‘If one accepts a mathematical base theory S, then one is committed to accepting a number
of further statements in the language of the base theory (and one of these is the Gödel sentence G)’. Ketland
(2005, p. 79) In this context, the role of reflection principles is quite central: they give us ‘the possibility
of systematically generating larger and larger systems whose acceptability is implicit in acceptance of the
starting theory. The engines for that purpose arewhat have come to be called reflection principles’ (Feferman
1991, p. 1). These words of Feferman are quoted with approval by Ketland in the same paper.
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5 An epistemic approach

5.1 Introducing believability

In the remaining part of this paper, a Horwich-style solution to the generalisation
problem will be proposed, one which eschews psychological concepts altogether.
Instead of ‘being aware of’ and ‘being disposed to accept’ (see Explanation 7), in our
amended explanations we are going to employ a single epistemic predicate B(x) (‘x
is believable’), predicated of sentences. The intuitive intended interpretation of B(x)
is ‘there is a reason to accept x which is good enough to warrant rational acceptance of
x , given the absence of reasons to reject x’ (later on we will abbreviate this as ‘there is
a reason to accept x which is normally good enough’ or just as ‘there is a good reason
to accept x’). We emphasise that this interpretation is not to be confused with ‘there
is a compelling reason to accept x’ or with an unconditional ‘x should be rationally
accepted’. It corresponds rather to the weak notion of theory acceptance characterised
by condition (e) on p. 11 of this paper. The initial idea is that proofs carried out in a
theory that we accept are treated by us exactly as such reasons: when presented with
such a proof, we accept its conclusion, unless given strong reasons to the contrary.21

In a moment we are going to characterise the new predicate by means of axioms and
rules. However, I will start with a general outline of the proposed strategy.

We begin with a very simple notion of truth, characterised by purely disquotational
axioms of our truth theory Th (resembling T B− or, more ambitiously, resembling
perhaps Horwich’s MT ). We are convinced that our axioms fully specify the meaning
of the truth predicate. Moreover, we treat the axioms as obvious, simple and episte-
mologically basic. Sometimes we express these convictions by slogans like ‘truth is
innocent’ or ‘truth is a light notion’.

We accept our disquotational truth theory. The notion of acceptance is employed
here in the sense (e) of the previous section. In practice, given a reliable information
about the existence of a proof of ϕ in Th, we accept ϕ. However, there is one additional
element of the picture: it should be emphasised that in such cases we accept ϕ because
of the proof in Th. Indeed, we consider theorems of Th believable. The key point is
that our mathematical practice—that of accepting statements because of their proofs
in Th (even in cases when we did not check the proofs by ourselves)—would be
irrational without the underlying belief that proofs in Th function as reasons which
are normally good enough to accept their conclusions.

In the next stage, we characterise our notion of believability bymeans of some basic
axioms and rules. As we are going to see, this move brings important consequences.
The final result is that we declare as believable various additional statements in the
language of Th, unprovable in Th itself. In effect, our initial acceptance of disquota-
tional theory Th, together with some basic convictions about believability, leads us to

21 Similarly, information froma very trustworthywitnesswill warrant rational acceptance given the absence
of reasons to reject the testimony (in particular, given the absence of contrary testimonies from other
trustworthy witnesses). On the other hand, information conveyed by an unreliable witness is not believable
in our intended sense: the reason in question (namely, the witness’s words) does not warrant rational
acceptance even in the absence of any evidence to the contrary—this is the intuition.
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the recognition that, indeed, there is a reason to accept e.g. compositional truth axioms.
In this way new commitments are generated. The point is that given such a reason,
we behave rationally when—not aware of any good reasons to reject compositional
principles—we finally accept them. This is the general outline of the story proposed
here.

In order to make some of these ideas precise, we introduce the following definition:

Definition 8 Let K be an axiomatisable extension of PA in the language LK (possibly
richer than LPA). Denote as LK ,B the extension of LK with a new one-place predicate
‘B’. Let K B be a theory K formulated in the language LK ,B .22

• We denote as Bel(K )− the theory in the language LK ,B which extends K B with
the following axioms:

(A1)∀ψ ∈ LK ,B[K B � ψ → B(ψ)]
(A2)∀ϕ,ψ ∈ LK ,B[(B(ϕ) ∧ B(ϕ → ψ)

) → B(ψ)]
In addition, the theory Bel(K )− has the following rules of inference:

nec
� φ

� B(φ)

� ∀x Bφ(x)

� B
(∀xφ(x)

) gen

• We denote as BelCon(K )− the theory which is exactly like Bel(K )−, except that
it contains the following additional consistency axiom:

(A3)∀ψ ∈ LK ,B¬B(ψ ∧ ¬ψ).

• Bel(K ) and BelCon(K ) are theories which are exactly like Bel(K )− and
BelCon(K )−, except that they contain all the axioms of induction for formulas
of LK ,B .

We will view Bel(K ) as a believability theory built over our initial theory K . The
intended reading of ‘B(x)’ (‘x is believable’) will manifest itself in our treatment of a
proof of B(ψ) in Bel(K ) as showing that ψ should be rationally accepted, given our
acceptance of K and given that we are not aware of any independent reasons to reject
ψ .23

Axiom (A1) is not muchmore than a formalisation of the assumption hidden behind
our acceptance of K . We realise that proofs in K are (for us) good reasons to accept
their conclusions—that is the content. The only addition is that (A1) also expresses
our acceptance of logic in the extended language, with the new predicate ‘B’ (we
emphasise that in the formulation of (A1) the provability predicate for K B is used).

Axiom (A2) expresses the following thought: if there is a good reason to accept the
implication and there is a good reason to accept its antecedent, then there is a good
reason to accept the consequent.

As for the rules of inference of Bel(K ), the intuitive validity of nec seems to
me uncontroversial. If a proof of ϕ in Bel(K ) is provided, it is simply this proof

22 The only difference between K and K B is that K B contains logical axioms also in the language with
the new predicate.
23 As noted earlier, the last reservation is clearly forced by our weak notion (e) of accepting a theory.
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itself which constitutes a good reason to accept ϕ, therefore in such a situation ϕ is
believable. 24

Rule gen is of crucial importance. As we are going to see, it is exactly gen which
permits us to derive (in the scope of ‘B’) strong consequences, unprovable in K itself.
In order to explain the idea behind gen, let us compare it to the following (somewhat
similar) reflection rule for the theory K 25:

� ∀x PrKφ(x)

� ∀xφ(x)
ref

Let us assume that K is the theory we accept. Let us also assume that we are able to
prove (perhaps in K itself) that for every x , φ(x) is a theorem of K . Why should we
then accept the general statement ‘∀x φ(x)’? The answer becomes unproblematic as
soon as we assume that all theorems of K are true. Indeed, after this (with just a few
basic properties of the truth predicate) the conclusion of ref can be easily justified.
Still, with just the disquotational notion of truth we might not have a right to such an
assumption. How can we close this gap?26

The idea of gen is to close the gap by introducing an additional epistemological
element. Here, it should be noted that what we really do in such contexts involves some
reasoning about reasons, not about truth. For illustration, assume that you consider the
Pope an authority in matters of religious faith. You trust the Pope and the fact that a
certain opinion was expressed by the Pope is treated by you as a good reason to accept
this opinion. Assume in addition that you heard from a trustworthy source—possibly
from the Pope himself—that every book written by a given theologian was proclaimed
heretical by the Pope. You will then have a good reason to think that (for every book
written by the theologian, there is a good reason to think that it contains a heresy).
The idea behind gen is that this in itself constitutes a good reason to think that every
book written by the theologian contains a heresy. According to the present proposal,
this is how we reason about reasons.

It is worth observing that the following transformation of gen into the axiommisses
the mark:

(Ax) ∀ψ[∀nB(ψ(n)) → B(∀nψ(n))].
As a formalisation of our intuitions concerningbelievability, (Ax) is clearly inadequate.
For every numerical instance of ψ , there may exist a good reason to accept it without
there being a uniform reason, one covering all the cases simultaneously. In otherwords,

24 Note that, unlike in the case of (A1), nec is the closure condition for Bel(K ), so it can be applied also
to statements which are not theorems of K B. On the other hand, nec by itself has not the full force of (A1).
Indeed, for every theorem ϕ of K B, it is enough to have nec (without (A1)) in order to prove B(ϕ). Still,
nec by itself is not enough to derive the believability of all theorems of K B as a general statement.
25 See Beklemishev (2005) for a more detailed discussion of the reflection rule. In particular, Beklemishev
shows that ref is equivalent to (UR) over Peano arithmetic.
26 Indeed, one might be tempted to interpret Horwich’s assumption (A) as containing the proposal of
enriching MT with something like ref (or maybe even with the uniform reflection principle stated in the
form of an implication). However, the key question would then be what gives us the right to introduce such
a rule—why should we accept its conclusion, given the acceptance of the premise?
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theremight still not be any good reason to believe the general statement in question.We
emphasise that in gen this particular flaw is eliminated; we require that the statement
‘∀nB(ψ(n))’ is itself provable, and that we therefore have a good, uniform reason
(namely, the proof of the general sentence in Bel(K )) to believe of every instance of
ψ that it is believable. The intuition is that such a good reason to think that all instances
are believable is also a good reason to believe a general statement. It is exactly this
intuition that is expressed by gen.

Axiom (A3) is an ugly duckling and I do not present it as a part of the minimal
believability theory Bel(K ). In this context we should emphasise one more time that,
according to the intended interpretation, believability is neither truth nor unconditional
rational acceptance. Not only can false sentences be believable but there is also no
automatic transition from ‘B(ϕ)’ to ‘ϕ should be rationally accepted’. Intuitively,
‘B(ϕ)’ instead means that ‘there is a reason to accept ϕ which is normally good
enough’ or, in other words, ‘you should rationally accept ϕ unless you have a strong
independent reason to reject ϕ’. Observe that this reading corresponds closely to the
characterisation of the weak notion of theory acceptance adopted in this paper. Thus,
the information that ϕ is provable in K (a theory which I accept) is normally good
enough for me to accept ϕ. However, my acceptance of K is not unconditional and if
it turned out that K � 0 = 1, then I would not be ready to accept that 0 = 1. In our
framework, this would be the situation of Bel(K ) proving B(0 = 1). I then still have
a reason to accept ‘0 = 1’ that is normally good enough (namely, the proof in K—a
theory which I accept). However, the situation envisaged is not normal, since I am
also able to prove that B(¬0 = 1). In general, the intuition is that whenever we obtain
both B(ϕ) and B(¬ϕ), there is no automatic transition to the rational acceptance of
statements in the scope of the believability predicate.

All in all, one might have a good reason—that is, a reason normally good enough—
to accept a sentence ϕ (for instance, a derivation of ϕ from some plausible premises)
while at the same time having a good reason to accept¬ϕ (say, a derivation of¬ϕ from
another set of plausible premises). This is why I reject (A3) as an axiom formalising
the properties of the believability predicate. The axiom is introduced just in order to
indicate that nice models (in a sense to be explained) can be provided even for full
BelCon(K ) on the assumption that the initial theory K is ‘safe’ enough. Nevertheless,
none of the applications of the believability theory discussed in this paper will employ
(A3).

5.2 Formal properties of Bel(K )

In this section we state the main formal results about the properties of Bel(K ). We
omit the proofs, which can be found in the Appendix.

When analysing formal properties of Bel(K ) with the intended interpretation of
‘B’ in mind, the following question looms as primary. Imagine that K is an initial
theory which we accept. If K is trustworthy, just how trustworthy are the statements
which are, provably in Bel(K ), within the scope of B? In other words, if Bel(K )

proves the believability of a given statement, will something go wrong if we accept
this statement? In order to facilitate further discussion, we introduce the following
notational convention:
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Definition 9 I ntBel(K ) = {ψ ∈ LK ,B : Bel(K ) � B(ψ)}
The set I ntBelCon(K ) can be defined in an analogous manner.

What we would like to know is whether the elements of I ntBel(K ) form a nice
theory. One particular interpretation of the phrase, ‘a nice theory’, will be considered
here; that is, nice theories are interpretable in the standard model of arithmetic.27 One
of our main formal observation is that even I ntBelCon(K ) is indeed nice in this sense.
This is the content of the theorem formulated below.

Theorem 10 Let K be a theory in the language without the predicate ‘B’. If N (the
standardmodel of arithmetic) is expandable to amodel N∗ of K , then N∗ is expandable
to a model of I ntBelCon(K ).

Having checked that I ntBel(K ) is a nice theory, we observe that even without the
axiom (A3), the theory Bel(T B−), obtained by taking T B− as the basic (initially
accepted) theory, is already strong enough to prove the believability of various inter-
esting generalisations unprovable in T B−. Let ‘B(CT )’ be a shorthand of ‘all the
compositional truth principles are believable’. It is then possible to show that:

Theorem 11 Bel(T B−) � B(CT ).

As a final observation, we remark that similar results can be obtained for some
untyped disquotational truth theories taken as a starting point. Thus, in (Horsten and
Leigh 2015) the language LT,F has been defined in the following manner.

Definition 12

• Terms and function symbols of LT,F are exactly those of LPA.
• The connectives of LT,F are ∧ and ∨.
• The predicates of LT,F are: =, �=, T , F .
• In LT,F we have the quantifiers ∀ and ∃.
• The formulas of LT,F are built in the usual style.

What is important is that in LT,F we do not have a symbol for negation. We will
instead be using the symmetric relation of being a dual formula. Strictly speaking, this
notion is first defined for primitive symbols and then generalised to cover all formulas.

Definition 13

• ‘=’ and ‘ �=’ are dual predicate symbols.
• ‘T ’ and ‘F’ are dual predicate symbols.
• ‘∧’ and ‘∨’ are dual connectives.
• ‘∀’ and ‘∃’ are dual quantifiers.
• ψ and ϕ are dual formulas iff ψ is obtained from ϕ by replacing every symbol in

ϕ with its dual.

We will use the notation ϕd whenever we want to indicate that a given formula is a
dual of ϕ.

27 It follows in particular that nice theories are ω-consistent.
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In this language, the following basic disquotational theory can be characterised:

Definition 14

• T FB = PA ∪ {T (�ϕ�) ≡ ϕ : ϕ ∈ LT,F } ∪ {F(�ϕd�) ≡ ϕ : ϕ ∈ LT,F } ∪
I nd(LT,F ).

• A theory like T FB, butwith arithmetical induction only,will be denoted as T FB−.

Let K F be a variant of Kripke–Feferman truth theory in the language LT,F .28 Let
‘B(K F)’ be the sentence stating that all compositional axioms of K F are believable.
Then it is possible to show that:

Theorem 15 Bel(T FB−) � B(K F).

In this way a Horwich-style solution to the generalisation problem is vindicated.
Indeed, it turns out that if we find our initial disquotational theory (for example,
T B− or T FB−) believable, then we will also find believable various truth-theoretic
generalisations, not provable in the initial theory of our choice.

5.3 How does it help?

How attractive is the proposed epistemic strategy? Does it really permit the disquota-
tionalist to escape the generalisation problem?We believe that it does. Nevertheless, in
this final section we are going to discuss some limitations of the proposed believability
framework, indicating the areas with an additional work still awaiting to be done.

For starters, let us recapitulate the proposed solution.
The disquotationalist begins with accepting some disquotational theory K , which

may well be truth-theoretically weak. In particular, it might happen that various com-
positional principles involving truth are not provable in K . Should he accept these
principles? If so, why? This is the question.

Here is the proposed answer. The disquotationalist treats proofs in K as good
reasons to accept their conclusions (more exactly, he treats them as reasons which are
normally good enough—see the condition (e) earlier in this paper). In this realisation,
he applies the believability theory to K treating it as the base.However, it transpires that
Bel(K ) proves the believability of compositional principles. The initial acceptance of
K , together with some basic convictions about believability, leads the disquotationalist
to the recognition that there is indeed a good reason to accept compositional principles.
Given such a good reason and without being aware of any good reason to reject these
principles, he should accept them.

Viewed in more general terms, our endeavour has been to understand the commit-
ments of someone who accepts a given theory K .29 We have noticed that the answer
depends on the notion of accepting a theory. After observing that some strong notions
trivialise the issue, we have decided to focus on the weak notion of theory acceptance.
This has forced us to adopt a notion of believability partially characterised by the
axioms (A1) and (A2) but without the consistency axiom (A3). We have argued that

28 See (Horsten and Leigh 2015) for the full list of axioms.
29 For a classical analysis of such commitments, we refer the reader to Feferman (1991).
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the statement ‘All theorems of K are believable’ should be accepted once we reflect
upon our mathematical practice as users of K .30 That is, once we realise that “if we
believed that ϕ has a proof in K andwe had no independent reason to disbelieve ϕ, then
we would be ready to accept ϕ”; in other words, once we appreciate that proofs in K
are normally good enough for us as reasons to accept their conclusions. The resulting
theory Bel(K ), with sentences declared believable even though they are unprovable
in K , permits us then to recognise our commitments as users of K .

At this point it should be emphasised that our intended interpretation of ‘B’ is
only partially captured by the axioms and rules of Bel(K ). Apart from the formal
machinery of the believability theory, the second crucial element of the picture, external
to Bel(K ), are the prospective bridge rules which connect believability with rational
acceptance. When then, or under what conditions, are we permitted to move from
‘B(ϕ)’ to ‘ϕ should be rationally accepted’? In this paper I have advocated a modest
approach. I would say that given a proof of B(ϕ) in Bel(K ), we should rationally
accept ϕ as long as we are not aware of any derivation of B(¬ϕ) in Bel(K ) or in
some theory Bel(K ′), built over a well-entrenched mathematical theory K ′, possibly
different than K . I consider it to be a workable option, one that the deflationist can
employ in practice, successfully defending himself against the objections of the critics.
However, there is still a room for a more ambitious approach, aiming to explain how
we ‘reason about reasons’ even in troublesome cases.

In general,whenworkingwithout the consistency axiom (A3) (as I thinkwe should),
we are faced with the question of how the bridge rules are to be used in contexts with
contradictory statements appearing within the scope of B. One of the main issues
is the problem of logical explosion. Since by (A1) the whole of first-order logic is
believable, it is easy to see that with contradictory statements in the scope of B, an
arbitrary statement will become believable, provably so in our theory. Let me stress
that with our weak reading of ‘B’, this result is not troublesome in itself. Indeed, the
intuition is then that treating proofs in K as reasons normally good enough to rationally
accept their conclusions, gives you a reason to accept an arbitrary ϕ—again, a reason
which is normally good enough to warrant rational acceptance. However, with both
B(ϕ) and B(¬ϕ) as theorems, the situation is not normal and the bridge rules should
not licence the universal transition from B(x) to ‘x should be rationally accepted’.
Indeed, various concrete cases indicate that the problem concerns not so much the
believability rules and axioms, but K itself.31

30 This move would not be valid with the consistency axiom (A3) treated as a part of our characterisation
of the notion of believability. The problem is that I just cannot see why ‘all theorems of K are believable’
should be then rationally accepted, given that our initial notion of accepting a theory is so weak. What is
it that entitles us to conclude immediately that proofs in K will always function as compelling reasons to
accept their conclusions? What is the guarantee that nothing will go wrong—that no independent reason to
reject a theorem of K will ever be provided? I cannot see a good answer to this question.
31 An example is provided by the truth theory FS, known to be ω-inconsistent (see Halbach 2011, pp.
157–158). As it happens, the proof of ω-inconsistency of FS can be reconstructed in PA; in other words,
there is a formula ϕ(x) ∈ LT such that PA proves that: (1) FS � ∃xϕ(x), (2) ∀x FS � ¬ϕ(x). Then axiom
(A1) of Bel(FS) permits us to conclude that B

(∃xϕ(x)
)
and ∀x B(¬ϕ(x)

)
, which in turn (by gen) gives us

B
(∀x¬ϕ(x)

)
. In this way a contradiction in the scope of B is obtained, which only reflects the troublesome

properties of FS itself.
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Nevertheless, in themore ambitious approach afore-mentioned, one could try to give
justice to the fact that we domake great efforts to tolerate contradictions in the scope of
B. Naturally, when given good reasons for a pair of contradictory statements, we try to
resolve the contradiction and to reassess the reasons. However, themain observation to
makewould be that, in themeantime,we do not treat the believability of a contradiction
as an argument which, for every sentence ϕ of our language, demonstrates that rational
acceptance of ϕ is invalid. As I have said, one bridge rule will permit us to conclude
that ϕ should be rationally accepted, given that we have B(ϕ) and we are not aware
of any reason to accept the negation of ϕ. However, blocking the move to ‘we should
rationally accept ϕ’ whenever both B(ϕ) and B(¬ϕ) are provable, always and without
exceptions, does not seem to be a good idea because in practice such an additional rule
is not treated by us as universal. This intuition could lead to a more general, possibly
paraconsistent analysis of both believability and rational acceptance. Indeed, I view
it as a promising line of research. Nevertheless, here I prefer to remain noncommittal
about the shape of such a general theory of believability and rational acceptance.

An additional avenue for further research corresponds to the limiting condition
built into our Theorem 10: namely, to the reservation that the base theory K is to
be formulated in a language without ‘B’. Indeed, it is easy to observe that removing
this reservation makes Theorem 10 false. For a trivial example, let K be PA with
the additional axiom ‘B(0 = 1)’. Then clearly the standard model of arithmetic is
expandable to a model of K but just as clearly I ntBel(K ) is inconsistent. A non-trivial
illustration is provided by the lottery paradox, introduced by Kyburg (1961). Consider
a fair lottery with a large number of tickets exactly one of which will win. In what
follows we assume that the tickets are numbered from 1 to k. It is highly probable that
ticket 1 will not win, ticket 2 will not win …and so on, separately for every single
ticket up to k.

The following intuitively plausible premises then lead to a contradiction:

1. It is rational to accept propositions with very high probability assigned to them.
2. If you are aware that a given proposition is inconsistent, then it is not rational to

accept it.
3. If it is rational to accept ϕ and it is rational to accept ψ , then it is rational to accept

ϕ ∧ ψ .

Let R(ϕ) abbreviate ‘it is rational to accept ϕ’. We obtain:

(a) R(ticket 1 will not win) and R(ticket 2 will not win) and …R(ticket k will not
win), (by 1)

(b) R(ticket 1 will not win and ticket 2 will not win and …ticket k will not win),
(by 3)

(c) R(ticket 1 will win or …ticket k will win), (by the assumption that some ticket
will win)

(d) R
(
(ticket 1 will not win and …ticket k will not win) and (ticket 1 will win or

…ticket k will win)
)
(by 3)

However, we are aware that the last sentence in the scope of R is inconsistent and
in this way a contradiction with 2 is obtained.

It should be emphasised that the lottery paradox concerns rational acceptance, not
believability. For believability, premise 2 simply does not hold. Believability of ϕ
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and ψ (separately) means, in intuitive terms, that we should rationally accept both ϕ

and ψ assuming that we are not aware of any good reason to accept ¬ϕ or ¬ψ . We
should then rationally accept (ϕ ∧ ψ), unless we are aware of a good reason to accept
¬(ϕ ∧ ψ), with the point being simply that a good justification of both conjuncts is
normally good enough to warrant rational acceptance of a conjunction.32 However, if
we are aware that ¬(ϕ ∧ψ) is a truth of logic, then the situation is not normal and the
usual bridge rule leading to rational acceptance does not apply.

Nevertheless, steps (a)-(c) could be reproduced in Bel(K ) assuming that the back-
ground theory K , formulated in the language with ‘B’, contains as its theorems (i)
all sentences ‘B(ticket m will not win)’ for 1 ≤ m ≤ k, (ii) ‘B(ticket 1 will win or
…ticket k will win)’. Observe that with these assumptions about K , the rule gen is
not needed at all to derive a contradiction in the scope of B, as the mere believability
of propositional logic together with (A2) is quite enough to produce this effect.

As before, if a contradiction appears in the scope of ‘B’, then the bridge rules had
better not block the rational acceptance of all sentences of our language; in other
words, the transition to rational acceptance should be invalidated locally, not globally.
Let me also stress that the present proposal is not meant to offer a solution to the lottery
paradox. Indeed, I think that the various solutions proposed in the literature can be
applied in our framework on the level of the bridge rules, with the believability theory
remaining neutral in this respect.33

In spite of these limitations, I think that the proposed epistemic strategy indeed
offers an attractive way out for the disquotationalist who is worried about the truth-
theoretic weakness of his axioms. It permits him to vindicate his philosophical position
in a model case of arithmetical truth, where Theorem 10 applies. There are also good
prospects for moving towards a conception of a more directly self-applicable notion
of believability, with a base theory K possibly being formulated in the language
containing ‘B’.34
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32 See Ryan (1996, p. 124) for a forceful exposition of this view. In her words, ‘Apart from the fact that
[a conjunction principle], along with the other principles and the lottery story, generates a paradox, this
appears to be an innocent epistemic principle.’ Cf. also Douven (2002, p. 394), where amore general closure
principle is described as one that ‘we rely on in many of our everyday deliberations’.
33 For example, if someone accepts premises 1 and 2 of the reasoning leading to the lottery paradox while
claiming, with Kyburg, that rational acceptance does not agglomerate (in other words, that you cannot derive
‘ϕ ∧ ψ should be rationally accepted’ from ‘ϕ should be rationally accepted’ and ‘ψ should be rationally
accepted’), the proposed bridge rules would licence the transition to rational acceptance of all statements
of the form ‘ticket m will not win’ while blocking the rational acceptance of their conjunction.
34 Apart from introducing bridge rules for handling contradictions, another possible move would consist in
iterating the application of the believability axioms and rules. For illustration, let K0 be PA; define Kn+1
as I ntBelCon(Kn )

. We conjecture that a safety result similar to Theorem 10 can be obtained for all theories
Kn in this sequence.
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Appendix

In the proof of Theorem 10, the following two hierarchies will be used.

Definition 16

• S0 = K B ∪ Axioms (A1)-(A3) of BelCon(K ),
• Sn+1 = Sn ∪ {B(ψ) : Sn � ψ} ∪ {∀xψ(x) : Sn � ∀x Bψ(x)},
• Sω = ⋃

n∈N
Sn .

We emphasise that the S-sets will be treated here as theories (that is, as closed
under first-order consequence). Accordingly, the intended reading is that the set (say)
S1 contains everything which can be proved from S0 with the help of additional
axioms of the form ‘B(ψ)’ and ‘∀xψ(x)’, satisfying the appropriate conditions from
Definition 16.

Definition 17 For a model N∗ of K , we define:

• B0 = K B,
• Bn+1 = {ψ : ∀Z ⊇ Bn[ if (N∗, Z) |� (A2) ∧ (A3), then (N∗, Z) |� ψ]},
• Bω = ⋃

n∈N
Bn .

The proof of Theorem 10 consists in showing that: (1) I ntBelCon(K ) ⊆ Sω; (2)
(N∗, Bω) |� Sω. Then it follows immediately that a certain expansion of N∗, namely,
(N∗, Bω), is a model of I ntBelCon(K ).
Below we provide some details, starting with the following observation:

Observation 18 ∀n Bn ⊆ Bn+1.

This can be easily proved by induction. In particular, for n = 0, it is enough to
observe that theorems of K B (that is, elements of B0) are true in all structures (N∗, Z),
independently of the choice of Z .35

It is also very easy to verify that:

Observation 19 ∀n (N∗, Bn) |� (A1) − (A3).

The content of the next fact is that all the S-sets are contained in the corresponding
sets from the B-hierarchy.

Fact 20 ∀n Sn ⊆ Bn+1.

Proof It is easy to observe that S0 ⊆ B1.36 For the inductive part, assuming that
Sn ⊆ Bn+1, we show that Sn+1 ⊆ Bn+2. Fix ψ ∈ Sn+1 and let (α1 . . . αs) be a proof
of ψ from the axioms of Sn+1.37 We are going to show that ∀k ≤ s αk ∈ Bn+2.

35 We remind the reader that K B has been defined as K (a theory in the language LK , not containing ‘B’),
but formulated in the language LK ,B which is an extension of LK with a new one place predicate ‘B’. To
be more precise, this means that the only axioms of K B employing the new predicate ‘B(x)’ are logical
axioms. In effect, an arbitrary interpretation Z of ‘B’ will make them true.
36 Trivially, K B ⊆ B1; it is also immediate that (A1)–(A3) remain true in every expansion (N∗, Z) given
that Z ⊇ B0 and (N∗, Z) |� (A2) ∧ (A3). Finally, the axioms of induction for LK ,B will remain true
independently of the choice of Z .
37 See the remark immediately below Definition 16.
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Fix k ≤ s and assume that ∀i < k αi ∈ Bn+2. We obtain the appropriate conclusion
for αk by considering the following cases.
Case 1 αk ∈ Sn—then by the inductive assumption and Observation 18, αk ∈ Bn+2.
Case 2 αk = B(ψ) forψ ∈ Sn . Then by the inductive assumptionψ ∈ Bn+1, therefore
∀Z ⊇ Bn+1(N∗, Z) |� B(ψ). So B(ψ) ∈ Bn+2.
Case 3 αk = ∀xψ(x) and Sn � ∀x Bψ(x). In this case, by the inductive assumption
∀x Bψ(x) ∈ Bn+1, therefore:

∀Z ⊇ Bn[(N∗, Z) |� (A2) ∧ (A3) → (N∗, Z) |� ∀x Bψ(x)].
In effect:

∀Z ⊇ Bn[(N∗, Z) |� (A2) ∧ (A3) → ∀x (ψ(x) ∈ Z)].
By Observation 19, it immediately follows that

∀x (ψ(x) ∈ Bn).

Now we will consider two subcases:
(a) n = 0. Then ∀x (ψ(x) ∈ K B), so ∀Z ⊇ Bn[(N∗, Z) |� ∀xψ(x)]. Therefore
∀xψ(x) ∈ B1 (that is, to Bn+1, which is a subset of Bn+2).
(b) n = l + 1. Then ∀x∀Z ⊇ Bl [(N∗, Z) |� (A2) ∧ (A3) → (N∗, Z) |� ψ(x)]. In
effect, ∀Z ⊇ Bl [(N∗, Z) |� (A2)∧ (A3) → (N∗, Z) |� ∀xψ(x)] and this means that
∀xψ(x) ∈ Bl+1 (that is, it belongs already to Bn).
Case 4 αk is obtained in the proof from αi , α j , with i, j < k and α j = �αi → αk�.
But then, by the inductive assumption, αi , α j ∈ Bn+2, so αk belongs to Bn+2 as well.

��
The conclusion is that the Bn-sets provide natural models for all the Sn-s.

Corollary 21 ∀n(N∗, Bn) |� Sn.

Proof Fixn andψ ∈ Sn . Since Sn ⊆ Bn+1 (Fact 20),wehave:∀Z ⊇ Bn
(
if (N∗, Z) |�

(A2) ∧ (A3), then (N∗, Z) |� ψ
)
. But (N∗, Bn) |� (A2) ∧ (A3) (Observation 19);

therefore (N∗, Bn) |� ψ . ��
The next two observations can be established by induction on the length of the proof
of an arbitrary ψ in BelCon(K ).

Fact 22 BelCon(K ) ⊆ Sω.

Fact 23 (N∗, Sω) |� BelCon(K ).

As a result, we obtain the corollary stating that the interior of BelCon(K ) is a subset
of Sω.

Corollary 24 I ntBelCon(K ) ⊆ Sω.

Proof Assume that BelCon(K ) � B(ψ) (in other words, we assume that ψ ∈
I ntBelCon(K )). Then by Fact 23, (N∗, Sω) |� B(ψ), therefore ψ ∈ Sω. ��
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At this stage we are able to obtain a model for all sentences which are, provably in
BelCon(K ), in the scope of the believability predicate.

Lemma 25 (N∗, Bω) |� I ntBelCon(K ).

Proof Since I ntBelCon(K ) ⊆ Sω (Corollary 24), it is enough to show that (N∗, Bω) |�
Sω. Fixingψ ∈ Sω, we are going to prove that (N∗, Bω) |� ψ . By assumption, there is
a natural number n such that ψ ∈ Sn . But Sn ⊆ Bn+1 (Fact 20), therefore ψ ∈ Bn+1.
By definition of Bn+1, this means that:

∀Z ⊇ Bn[if (N∗, Z) |� (A2) ∧ (A3), then (N∗, Z) |� ψ].
Since Bω ⊇ Bn and (N∗, Bω) |� (A2) ∧ (A3),38 we immediately conclude that
(N∗, Bω) |� ψ . ��

Lemma 25 permits us to obtain Theorem 10 as a direct corollary. Given a model N∗
of K , we can indeed expand it to the model (N∗, Bω), which satisfies I ntBelCon(K ).

Proceeding now to Theorem 11, we present below the proofs of two chosen cases.
We are going to show that the believability of compositional axioms for negation
and for the existential quantifier is derivable in Bel(T B−). Before we start, let us
emphasise one technical point: if our base theory contains Peano arithmetic, we can
apply gen also in cases with more than one initial universal quantifier. For example,
given ‘∀xyB(ϕ(x, y))’ (with two quantifiers) as a theorem, we are allowed to conclude
‘B(∀xy(ϕ(x, y)))’. The reason is that in PA (and therefore also in the scope of B)
we can use the pairing function freely and so we can always get rid of additional
quantifiers.

Proof of Theorem 11 (chosen cases). In what follows we assume that quantifiers of
the form ‘∀ψ’ and ‘∃ψ’ are restricted to arithmetical sentences (in effect, the reading
is ‘for every (some) arithmetical sentence ψ’). For the compositional truth axiom for
negation, we claim that:

Bel(T B−) � B
(∀ψ[T (¬ψ) ≡ ¬T (ψ)]).

The reasoning (carried out in Bel(T B−)) goes as follows:

(1) ∀ψ T B− � T (¬ψ) ≡ ¬T (ψ) (provable in PA)
(2) ∀ψ B

(
T (¬ψ) ≡ ¬T (ψ)

)
(axiom (A1))

(3) B
(∀ψ[T (¬ψ) ≡ ¬T (ψ)]). (by gen)

Analysing the case of the existential quantifier, we are going to show that:

Bel(T B−) � B
(∀ϕ∀a(�∃aϕ� ∈ SentLPA → T (∃aϕ) ≡ ∃xT (ϕ(x)))

)
.

We start with presenting a proof of the following fact (with ‘Var ’ denoting the set
of variables):

(*) Bel(T B−) � ∀ϕ(x)∀a ∈ Var B
(∀a(T (ϕ(a)) ≡ ϕ(a))

)
.

The argument for (*) (carried out in Bel(T B−)) is given below. Let En(x) be a Σ1
arithmetical predicate with the intuitive reading ‘x is a formula of syntactic complexity
not larger than n’. The expression ‘Trn’ abbreviates a partial truth predicate for En

formulas.

38 The second conjunct follows easily from Observation 19.
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(1) ∀ϕ(x)∀n∀x T B− � ϕ ∈ En → T (ϕ(x)) ≡ Trn(ϕ(x))
(2) ∀ϕ(x)∀n∀x B

(
ϕ ∈ En → T (ϕ(x)) ≡ Trn(ϕ(x))

)

(3) B
(∀ϕ(x)∀n∀x [ϕ ∈ En → T (ϕ(x)) ≡ Trn(ϕ(x))])

(4) ∀ϕ(x)∀nB(∀x[ϕ ∈ En → T (ϕ(x)) ≡ Trn(ϕ(x))])
(5) ∀ϕ(x)∀n[ϕ ∈ En → B

(∀x[T (ϕ(x)) ≡ Trn(ϕ(x))])]
(6) ∀ϕ(x)∀n(

ϕ ∈ En → T B− � ∀x[Trn(ϕ(x)) ≡ ϕ(x)])
(7) ∀ϕ(x)∀n(

ϕ ∈ En → B(∀x[Trn(ϕ(x)) ≡ ϕ(x)]))
(8) ∀ϕ(x)∀n(

ϕ ∈ En → B(∀x[T (ϕ(x)) ≡ ϕ(x)]))
(9) ∀ϕ(x)B(∀x[T (ϕ(x)) ≡ ϕ(x)]))
(10) ∀ϕ(x)∀a ∈ Var B(∀a[T (ϕ(a)) ≡ ϕ(a)]))

(1) is provable already in PA; (2) follows from (1) by axiom (A1); (3) is obtained
by gen. For (4), use the general statement ‘∀α(x)[B(∀xα(x)) → ∀x B(α(x))]’, which
is a theorem of Bel(T B−).39 (5) uses formalised Σ1-completeness: if ϕ ∈ Σn , then
(since ‘ϕ ∈ Σn’ is Σ1) PA proves this fact, therefore B(ϕ ∈ Σn) and the conclusion
follows from (4). (6) is provable already in PA; (7) follows from (6) by (A1). Step
(8) is obtained from (7) and (5). (9) follows from (8) together with the information
that every formula is in En for some n; finally, (10) is obtained from (9) together with
(A1).40

Given (*), we argue again in Bel(T B−) obtaining in the final move the composi-
tional axiom for the existential quantifier.

(11) ∀ϕ(x)∀a ∈ Var B(∃aT (ϕ(a)) ≡ ∃aϕ(a)]))
(12) ∀ϕ(x)∀a ∈ Var B(T (∃aϕ(a)) ≡ ∃aϕ(a)]))
(13) ∀ϕ(x)∀a ∈ Var B(T (∃aϕ(a)) ≡ ∃aT (ϕ(a))]))
(14) ∀ϕ(x)∀a ∈ Var B(T (∃aϕ(a)) ≡ ∃xT (ϕ(x))]))
(15) B

(∀ϕ(x)∀a ∈ Var T (∃aϕ(a)) ≡ ∃xT (ϕ(x))]))

(11) follows from (*) by (A1) (the believability of logic); (12) holds because T B−
is believable. (13) follows by (A1) from (11) and (12). Step (14) involves variable
renaming (a purely logical move); finally (15) is obtained by gen. ��

The proof of Theorem 15 uses the ideas which are very similar to those applied in
the proof of Theorem 11.
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