5,737 research outputs found

    A Novel Approach to Face Recognition using Image Segmentation based on SPCA-KNN Method

    Get PDF
    In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCA-KNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vectors are extracted from each input face images. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. In the final part a nearest neighbor classifier is designed for classifying the face images based on the SPCA-KNN algorithm. The algorithm has been tested on 100 different subjects (15 images for each class). The experimental result shows that the proposed method has a positive effect on overall face recognition performance and outperforms other examined methods

    Computer-aided processing of LANDSAT MSS data for classification of forestlands

    Get PDF
    There are no author-identified significant results in this report

    Robust nearest-neighbor methods for classifying high-dimensional data

    Get PDF
    We suggest a robust nearest-neighbor approach to classifying high-dimensional data. The method enhances sensitivity by employing a threshold and truncates to a sequence of zeros and ones in order to reduce the deleterious impact of heavy-tailed data. Empirical rules are suggested for choosing the threshold. They require the bare minimum of data; only one data vector is needed from each population. Theoretical and numerical aspects of performance are explored, paying particular attention to the impacts of correlation and heterogeneity among data components. On the theoretical side, it is shown that our truncated, thresholded, nearest-neighbor classifier enjoys the same classification boundary as more conventional, nonrobust approaches, which require finite moments in order to achieve good performance. In particular, the greater robustness of our approach does not come at the price of reduced effectiveness. Moreover, when both training sample sizes equal 1, our new method can have performance equal to that of optimal classifiers that require independent and identically distributed data with known marginal distributions; yet, our classifier does not itself need conditions of this type.Comment: Published in at http://dx.doi.org/10.1214/08-AOS591 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments

    Get PDF
    Motivation: Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. Results: In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single-and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization

    Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization

    Full text link
    We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science volume "Pattern Recognition Applications and Methods 2013", part of series on Advances in Intelligent and Soft Computin
    corecore