6 research outputs found

    A solution to smart health and state of art

    Get PDF
    A medical cyber–physical system (MCPS) is a unique cyber–physical system (CPS), which combines embedded software control devices, networking capabilities, and complex physiological dynamics of patients in the modern medical field. In the process of communication, device, and information system interaction of MCPS, medical cyber–physical data are generated digitally, stored electronically, and accessed remotely by medical staff or patients. With the advent of the era of medical big data, a large amount of medical cyber–physical data is collected, and its sharing provides great value for diagnosis, pathological analysis, epidemic tracking, pharmaceutical, insurance, and so on. This overview will present MCPS’s architectures and frameworks from different perspectives, modeling and verification methods, identification and sign sensing technologies, key communications’ technologies, data storage and analysis technologies, monitoring systems, data security and privacy protection technologies, and key research perspectives and directions. We can have a com- prehensive understanding of the important characteristics and technical route of MCPS, and grasp its research status and progress

    Logging mechanism for cross-organizational collaborations using Hyperledger Fabric

    Get PDF
    Organizations nowadays are largely computerized, with a mixture of internal and external services providing them with on-demand functionality. In some situations (e.g. emergency situations), cross-organizational collaboration is needed, providing external users access to internal services. Trust between partners in such a collaboration can however be an issue. Although (federated) access control policies may be in place, it is unclear which data was requested and delivered after a collaboration has finished. This may lead to disputes between participating organizations. The open-source permissioned blockchain Hyperledger Fabric is utilized to create a logging mechanism for the actions performed by the participants in such a collaboration. This paper presents the architecture needed for such a logging mechanism and provides details on its operation. A prototype was designed in order to evaluate the performance of an asynchronous logging approach. Measurements show that the proposed logging mechanism enables organizations to create a log of service interactions with limited delay imposed on the data exchange process

    Identity-as-a-Service: An Adaptive Security Infrastructure and Privacy-Preserving User Identity for the Cloud Environment

    Get PDF
    In recent years, enterprise applications have begun to migrate from a local hosting to a cloud provider and may have established a business-to-business relationship with each other manually. Adaptation of existing applications requires substantial implementation changes in individual architectural components. On the other hand, users may store their Personal Identifiable Information (PII) in the cloud environment so that cloud services may access and use it on demand. Even if cloud services specify their privacy policies, we cannot guarantee that they follow their policies and will not (accidentally) transfer PII to another party. In this paper, we present Identity-as-a-Service (IDaaS) as a trusted Identity and Access Management with two requirements: Firstly, IDaaS adapts trust between cloud services on demand. We move the trust relationship and identity propagation out of the application implementation and model them as a security topology. When the business comes up with a new e-commerce scenario, IDaaS uses the security topology to adapt a platform-specific security infrastructure for the given business scenario at runtime. Secondly, we protect the confidentiality of PII in federated security domains. We propose our Purpose-based Encryption to protect the disclosure of PII from intermediary entities in a business transaction and from untrusted hosts. Our solution is compliant with the General Data Protection Regulation and involves the least user interaction to prevent identity theft via the human link. The implementation can be easily adapted to existing Identity Management systems, and the performance is fast.</jats:p

    Analyzing the Prospects of Blockchain in Healthcare Industry

    Get PDF
    Deployment of a secured healthcare information is a major challenge in a web based environment. Ehealth services are subjected to same security threats as other services. The purpose of blockchain is to provide a structure and security to the organization data. Healthcare data deals with confidential information. The medical records can be well organized and empower their propagation in a secured manner through the usage of blockchain technology. The study throws light on providing security of health services through blockchain technology. The authors have analysed the various aspects of role of blockchain in healthcare through an extensive literature review. The application of blockchain in covid-19 has also been analysed and discussed in the study. Further application of blockchain in Indian healthcare has been highlighted in the paper. The study provides suggestions for strengthening the healthcare system by blending machine learning, artificial intelligence, big data, IoT with blockchain

    Data trust framework using blockchain and smart contracts

    Get PDF
    Lack of trust is the main barrier preventing more widespread data sharing. The lack of transparent and reliable infrastructure for data sharing prevents many data owners from sharing their data. Data trust is a paradigm that facilitates data sharing by forcing data controllers to be transparent about the process of sharing and reusing data. Blockchain technology has the potential to present the essential properties for creating a practical and secure data trust framework by transforming current auditing practices and automatic enforcement of smart contracts logic without relying on intermediaries to establish trust. Blockchain holds an enormous potential to remove the barriers of traditional centralized applications and propose a distributed and transparent administration by employing the involved parties to maintain consensus on the ledger. Furthermore, smart contracts are a programmable component that provides blockchain with more flexible and powerful capabilities. Recent advances in blockchain platforms toward smart contracts' development have revealed the possibility of implementing blockchain-based applications in various domains, such as health care, supply chain and digital identity. This dissertation investigates the blockchain's potential to present a framework for data trust. It starts with a comprehensive study of smart contracts as the main component of blockchain for developing decentralized data trust. Interrelated, three decentralized applications that address data sharing and access control problems in various fields, including healthcare data sharing, business process, and physical access control system, have been developed and examined. In addition, a general-purpose application based on an attribute-based access control model is proposed that can provide trusted auditability required for data sharing and access control systems and, ultimately, a data trust framework. Besides auditing, the system presents a transparency level that both access requesters (data users) and resource owners (data controllers) can benefit from. The proposed solutions have been validated through a use case of independent digital libraries. It also provides a detailed performance analysis of the system implementation. The performance results have been compared based on different consensus mechanisms and databases, indicating the system's high throughput and low latency. Finally, this dissertation presents an end-to-end data trust framework based on blockchain technology. The proposed framework promotes data trustworthiness by assessing input datasets, effectively managing access control, and presenting data provenance and activity monitoring. A trust assessment model that examines the trustworthiness of input data sets and calculates the trust value is presented. The number of transaction validators is defined adaptively with the trust value. This research provides solutions for both data owners and data users’ by ensuring the trustworthiness and quality of the data at origin and transparent and secure usage of the data at the end. A comprehensive experimental study indicates the presented system effectively handles a large number of transactions with low latency

    BLOCKGRID: A BLOCKCHAIN-MEDIATED CYBER-PHYSICAL INSTRUCTIONAL PLATFORM

    Get PDF
    Includes supplementary material, which may be found at https://calhoun.nps.edu/handle/10945/66767Blockchain technology has garnered significant attention for its disruptive potential in several domains of national security interest. For the United States government to meet the challenge of incorporating blockchain technology into its IT infrastructure and cyber warfare strategy, personnel must be educated about blockchain technology and its applications. This thesis presents both the design and prototype implementation for a blockchain-mediated cyber-physical system called a BlockGrid. The system consists of a cluster of microcomputers that form a simple smart grid controlled by smart contracts on a private blockchain. The microcomputers act as private blockchain nodes and are programmed to activate microcomputer-attached circuits in response to smart-contract transactions. LEDs are used as visible circuit elements that serve as indicators of the blockchain’s activity and allow demonstration of the technology to observers. Innovations in networking configuration and physical layout allow the prototype to be highly portable and pre-configured for use upon assembly. Implementation options allow the use of BlockGrid in a variety of instructional settings, thus increasing its potential benefit to educators.Civilian, CyberCorps: Scholarship for ServiceApproved for public release. distribution is unlimite
    corecore