15,148 research outputs found

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    A Holistic Approach for Trustworthy Distributed Systems with WebAssembly and TEEs

    Full text link
    Publish/subscribe systems play a key role in enabling communication between numerous devices in distributed and large-scale architectures. While widely adopted, securing such systems often trades portability for additional integrity and attestation guarantees. Trusted Execution Environments (TEEs) offer a potential solution with enclaves to enhance security and trust. However, application development for TEEs is complex, and many existing solutions are tied to specific TEE architectures, limiting adaptability. Current communication protocols also inadequately manage attestation proofs or expose essential attestation information. This paper introduces a novel approach using WebAssembly to address these issues, a key enabling technology nowadays capturing academia and industry attention. We present the design of a portable and fully attested publish/subscribe middleware system as a holistic approach for trustworthy and distributed communication between various systems. Based on this proposal, we have implemented and evaluated in-depth a fully-fledged publish/subscribe broker running within Intel SGX, compiled in WebAssembly, and built on top of industry-battled frameworks and standards, i.e., MQTT and TLS protocols. Our extended TLS protocol preserves the privacy of attestation information, among other benefits. Our experimental results showcase most overheads, revealing a 1.55x decrease in message throughput when using a trusted broker. We open-source the contributions of this work to the research community to facilitate experimental reproducibility.Comment: This publication incorporates results from the VEDLIoT project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 95719

    Security in Internet of Things: networked smart objects.

    Get PDF
    Internet of Things (IoT) is an innovative paradigm approaching both industries and humans every-day life. It refers to the networked interconnection of every-day objects, which are equipped with ubiquitous intelligence. It not only aims at increasing the ubiquity of the Internet, but also at leading towards a highly distributed network of devices communicating with human beings as well as with other devices. Thanks to rapid advances in underlying technologies, IoT is opening valuable opportunities for a large number of novel applications, that promise to improve the quality of humans lives, facilitating the exchange of services. In this scenario, security represents a crucial aspect to be addressed, due to the high level of heterogeneity of the involved devices and to the sensibility of the managed information. Moreover, a system architecture should be established, before the IoT is fully operable in an efficient, scalable and interoperable manner. The main goal of this PhD thesis concerns the design and the implementation of a secure and distributed middleware platform tailored to IoT application domains. The effectiveness of the proposed solution is evaluated by means of a prototype and real case studies

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Secure Publisher Subscriber System Using IBE

    Get PDF
    In Today's life providing Security such as Authentication and Confidentiality are most demanding security issues. Improvement of basic security mechanisms like authentication, reliability and confidentiality is extremely difficult during a content based publish/subscribe system. This Paper presents a new way to provide confidentiality and authentications in a broker-less content-based publish subscribe system. The authentication of users is done using pairing based cryptography. Confidentiality of message is also ensured, by adapting the pairing-based cryptography mechanisms. In Identity Based Encryption, any unique and valid string which is distinctively identifies a user can be public key of the user. A key server maintains public and private master keys. Public key of each user is known to all users of system. The master public key can be used by the publisher to encrypt and send messages to a subscriber with any identity, for example an email address. To decrypt the message subscriber request a private key from server. Using master private key subscriber decrypt message successfully. On the whole approach provides fine-grained key management. Published events are routed to their subsequent subscribers. The assessment of this System provides security respect to authentication and confidentiality of event distribution. DOI: 10.17762/ijritcc2321-8169.15074
    corecore