34,005 research outputs found

    Toward a Taxonomy and Computational Models of Abnormalities in Images

    Full text link
    The human visual system can spot an abnormal image, and reason about what makes it strange. This task has not received enough attention in computer vision. In this paper we study various types of atypicalities in images in a more comprehensive way than has been done before. We propose a new dataset of abnormal images showing a wide range of atypicalities. We design human subject experiments to discover a coarse taxonomy of the reasons for abnormality. Our experiments reveal three major categories of abnormality: object-centric, scene-centric, and contextual. Based on this taxonomy, we propose a comprehensive computational model that can predict all different types of abnormality in images and outperform prior arts in abnormality recognition.Comment: To appear in the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016

    What do we perceive in a glance of a real-world scene?

    Get PDF
    What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level components of a scene, there is little evidence suggesting any bias toward either scene-level or object-level recognition

    Automatic Understanding of Image and Video Advertisements

    Full text link
    There is more to images than their objective physical content: for example, advertisements are created to persuade a viewer to take a certain action. We propose the novel problem of automatic advertisement understanding. To enable research on this problem, we create two datasets: an image dataset of 64,832 image ads, and a video dataset of 3,477 ads. Our data contains rich annotations encompassing the topic and sentiment of the ads, questions and answers describing what actions the viewer is prompted to take and the reasoning that the ad presents to persuade the viewer ("What should I do according to this ad, and why should I do it?"), and symbolic references ads make (e.g. a dove symbolizes peace). We also analyze the most common persuasive strategies ads use, and the capabilities that computer vision systems should have to understand these strategies. We present baseline classification results for several prediction tasks, including automatically answering questions about the messages of the ads.Comment: To appear in CVPR 2017; data available on http://cs.pitt.edu/~kovashka/ad

    Complex Event Recognition from Images with Few Training Examples

    Full text link
    We propose to leverage concept-level representations for complex event recognition in photographs given limited training examples. We introduce a novel framework to discover event concept attributes from the web and use that to extract semantic features from images and classify them into social event categories with few training examples. Discovered concepts include a variety of objects, scenes, actions and event sub-types, leading to a discriminative and compact representation for event images. Web images are obtained for each discovered event concept and we use (pretrained) CNN features to train concept classifiers. Extensive experiments on challenging event datasets demonstrate that our proposed method outperforms several baselines using deep CNN features directly in classifying images into events with limited training examples. We also demonstrate that our method achieves the best overall accuracy on a dataset with unseen event categories using a single training example.Comment: Accepted to Winter Applications of Computer Vision (WACV'17

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion
    corecore