1,118 research outputs found

    Approximately Counting Embeddings into Random Graphs

    Get PDF
    Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.Comment: Earlier version appeared in Random 2008. Fixed an typo in Definition 3.

    On the decomposition threshold of a given graph

    Get PDF
    We study the FF-decomposition threshold δF\delta_F for a given graph FF. Here an FF-decomposition of a graph GG is a collection of edge-disjoint copies of FF in GG which together cover every edge of GG. (Such an FF-decomposition can only exist if GG is FF-divisible, i.e. if e(F)e(G)e(F)\mid e(G) and each vertex degree of GG can be expressed as a linear combination of the vertex degrees of FF.) The FF-decomposition threshold δF\delta_F is the smallest value ensuring that an FF-divisible graph GG on nn vertices with δ(G)(δF+o(1))n\delta(G)\ge(\delta_F+o(1))n has an FF-decomposition. Our main results imply the following for a given graph FF, where δF\delta_F^\ast is the fractional version of δF\delta_F and χ:=χ(F)\chi:=\chi(F): (i) δFmax{δF,11/(χ+1)}\delta_F\le \max\{\delta_F^\ast,1-1/(\chi+1)\}; (ii) if χ5\chi\ge 5, then δF{δF,11/χ,11/(χ+1)}\delta_F\in\{\delta_F^{\ast},1-1/\chi,1-1/(\chi+1)\}; (iii) we determine δF\delta_F if FF is bipartite. In particular, (i) implies that δKr=δKr\delta_{K_r}=\delta^\ast_{K_r}. Our proof involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory, Series

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure
    corecore