5 research outputs found

    Subphenotypes in acute kidney injury : a narrative review

    Get PDF
    Acute kidney injury (AKI) is a frequently encountered syndrome especially among the critically ill. Current diagnosis of AKI is based on acute deterioration of kidney function, indicated by an increase in creatinine and/or reduced urine output. However, this syndromic definition encompasses a wide variety of distinct clinical features, varying pathophysiology, etiology and risk factors, and finally very different short- and long-term outcomes. Lumping all AKI together may conceal unique pathophysiologic processes specific to certain AKI populations, and discovering these AKI subphenotypes might help to develop targeted therapies tackling unique pathophysiological processes. In this review, we discuss the concept of AKI subphenotypes, current knowledge regarding both clinical and biomarker-driven subphenotypes, interplay with AKI subphenotypes and other ICU syndromes, and potential future and clinical implications.Peer reviewe

    Subphenotypes in acute kidney injury : a narrative review

    Get PDF
    Acute kidney injury (AKI) is a frequently encountered syndrome especially among the critically ill. Current diagnosis of AKI is based on acute deterioration of kidney function, indicated by an increase in creatinine and/or reduced urine output. However, this syndromic definition encompasses a wide variety of distinct clinical features, varying pathophysiology, etiology and risk factors, and finally very different short- and long-term outcomes. Lumping all AKI together may conceal unique pathophysiologic processes specific to certain AKI populations, and discovering these AKI subphenotypes might help to develop targeted therapies tackling unique pathophysiological processes. In this review, we discuss the concept of AKI subphenotypes, current knowledge regarding both clinical and biomarker-driven subphenotypes, interplay with AKI subphenotypes and other ICU syndromes, and potential future and clinical implications.Peer reviewe

    The Quality Application of Deep Learning in Clinical Outcome Predictions Using Electronic Health Record Data: A Systematic Review

    Get PDF
    Introduction: Electronic Health Record (EHR) is a significant source of medical data that can be used to develop predictive modelling with therapeutically useful outcomes. Predictive modelling using EHR data has been increasingly utilized in healthcare, achieving outstanding performance and improving healthcare outcomes. Objectives: The main goal of this review study is to examine different deep learning approaches and techniques used to EHR data processing. Methods: To find possibly pertinent articles that have used deep learning on EHR data, the PubMed database was searched. Using EHR data, we assessed and summarized deep learning performance in a number of clinical applications that focus on making specific predictions about clinical outcomes, and we compared the outcomes with those of conventional machine learning models. Results: For this study, a total of 57 papers were chosen. There have been five identified clinical outcome predictions: illness (n=33), intervention (n=6), mortality (n=5), Hospital readmission (n=7), and duration of stay (n=1). The majority of research (39 out of 57) used structured EHR data. RNNs were used as deep learning models the most frequently (LSTM: 17 studies, GRU: 6 research). The analysis shows that deep learning models have excelled when applied to a variety of clinical outcome predictions. While deep learning's application to EHR data has advanced rapidly, it's crucial that these models remain reliable, offering critical insights to assist clinicians in making informed decision. Conclusions: The findings demonstrate that deep learning can outperform classic machine learning techniques since it has the advantage of utilizing extensive and sophisticated datasets, such as longitudinal data seen in EHR. We think that deep learning will keep expanding because it has been quite successful in enhancing healthcare outcomes utilizing EHR data

    Towards generalizable machine learning models for computer-aided diagnosis in medicine

    Get PDF
    Hidden stratification represents a phenomenon in which a training dataset contains unlabeled (hidden) subsets of cases that may affect machine learning model performance. Machine learning models that ignore the hidden stratification phenomenon--despite promising overall performance measured as accuracy and sensitivity--often fail at predicting the low prevalence cases, but those cases remain important. In the medical domain, patients with diseases are often less common than healthy patients, and a misdiagnosis of a patient with a disease can have significant clinical impacts. Therefore, to build a robust and trustworthy CAD system and a reliable treatment effect prediction model, we cannot only pursue machine learning models with high overall accuracy, but we also need to discover any hidden stratification in the data and evaluate the proposing machine learning models with respect to both overall performance and the performance on certain subsets (groups) of the data, such as the ‘worst group’. In this study, I investigated three approaches for data stratification: a novel algorithmic deep learning (DL) approach that learns similarities among cases and two schema completion approaches that utilize domain expert knowledge. I further proposed an innovative way to integrate the discovered latent groups into the loss functions of DL models to allow for better model generalizability under the domain shift scenario caused by the data heterogeneity. My results on lung nodule Computed Tomography (CT) images and breast cancer histopathology images demonstrate that learning homogeneous groups within heterogeneous data significantly improves the performance of the computer-aided diagnosis (CAD) system, particularly for low-prevalence or worst-performing cases. This study emphasizes the importance of discovering and learning the latent stratification within the data, as it is a critical step towards building ML models that are generalizable and reliable. Ultimately, this discovery can have a profound impact on clinical decision-making, particularly for low-prevalence cases
    corecore