
https://helda.helsinki.fi

Subphenotypes in acute kidney injury : a narrative review

Vaara, Suvi T.

2022-08-19

Vaara , S T , Bhatraju , P K , Stanski , N L , McMahon , B A , Liu , K , Joannidis , M &

Bagshaw , S M 2022 , ' Subphenotypes in acute kidney injury : a narrative review ' , Critical

Care , vol. 26 , no. 1 , 251 . https://doi.org/10.1186/s13054-022-04121-x

http://hdl.handle.net/10138/354016

https://doi.org/10.1186/s13054-022-04121-x

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Vaara et al. Critical Care          (2022) 26:251  
https://doi.org/10.1186/s13054-022-04121-x

REVIEW

Subphenotypes in acute kidney injury: 
a narrative review
Suvi T. Vaara1*  , Pavan K. Bhatraju2,3, Natalja L. Stanski4, Blaithin A. McMahon5, Kathleen Liu6, 
Michael Joannidis7 and Sean M. Bagshaw8 

Abstract 

Acute kidney injury (AKI) is a frequently encountered syndrome especially among the critically ill. Current diagno-
sis of AKI is based on acute deterioration of kidney function, indicated by an increase in creatinine and/or reduced 
urine output. However, this syndromic definition encompasses a wide variety of distinct clinical features, varying 
pathophysiology, etiology and risk factors, and finally very different short- and long-term outcomes. Lumping all AKI 
together may conceal unique pathophysiologic processes specific to certain AKI populations, and discovering these 
AKI subphenotypes might help to develop targeted therapies tackling unique pathophysiological processes. In this 
review, we discuss the concept of AKI subphenotypes, current knowledge regarding both clinical and biomarker-
driven subphenotypes, interplay with AKI subphenotypes and other ICU syndromes, and potential future and clinical 
implications.
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Background
Acute kidney injury (AKI) is a common syndrome in hos-
pitalized populations and especially in the critically ill [1, 
2]. It is associated with prolonged hospitalization, receipt 
of kidney replacement therapy (KRT), persistent loss of 
kidney function, and death [1–3]. AKI is diagnosed based 
on clinical features indicating the deterioration of kidney 
function, namely increased level of serum creatinine and/
or decreased urine output [4].

While the current definition of AKI has enhanced clini-
cal recognition of AKI and promoted critical concepts 
applicable to AKI populations, combining all patients 
with AKI into one group may hide sub-groups that are 
more tightly linked to clinical outcomes [5] and conceal 
unique pathophysiologic processes specific to certain 

AKI populations [6]. Supporting this notion, multiple 
research groups have shown that diversity within the AKI 
clinical syndrome exists and a ‘one size fits all’ approach 
may not be ideal [7–10]. Thus, existing heterogeneity 
within the group of AKI patients may explain why mul-
tiple clinical trials have yet to identify effective phar-
macotherapy for its prevention or treatment [3, 4, 11]. 
Furthermore, the efficacy of certain already tested phar-
macotherapies may have been concealed by the existing 
heterogeneity in the trial population and lack of suitable 
measures to detect improved outcomes [12, 13].

This review aims to describe the concept of subpheno-
types in AKI, current knowledge regarding both clinical 
and biomarker-driven subphenotypes, interplay with the 
subphenotypes with other ICU syndromes such as acute 
respiratory distress syndrome (ARDS), and potential 
future and clinical implications.
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Concept of subphenotypes
Among critically ill patients, several syndromic diagnoses 
(or phenotypes) are recognized, such as AKI [4], ARDS 
[14], sepsis [15], and delirium. These diagnoses encom-
pass a wide variety of distinct clinical features, varying 
pathophysiology, etiology, risk factors and clinical course, 
and finally, very different short- and long-term outcomes. 
A subphenotype is a distinct group of patients within a 
phenotype such as AKI who share common features, risk 
factors, biomarker positivity, response to treatment, or 
outcomes that separates this subphenotype from other 
groups of patients within the phenotype [16]. Thus, mul-
tiple ways to classify patients into subphenotypes exist 
(Fig.  1). Severity scoring according to clinical features 
(such as magnitude of creatinine rise) into subgroups of 
differing outcomes (such as stage 1 to 3 AKI) [4] has a 
long tradition in daily clinical practice. However, classi-
fying patients using multiple clinical variables and bio-
markers to more specific biologic subphenotypes may 
better reflect the underlying pathophysiology, facilitate 
customized approaches to care, and ultimately find tar-
geted therapies.

Regardless of the strategy used to subphenotype AKI, 
the overarching goal should remain the same: to cohort 
patients into groups with unique prognostic and/or 
therapeutic implications [17, 18]. Subgrouping patients 
in this manner is termed enrichment, a central tenet 
of precision medicine. A general schematic of how 

subphenotyping can facilitate prognostic enrichment (i.e. 
identifying patients likely to have a disease-related out-
come of interest) and predictive enrichment (i.e. select-
ing patients more likely to respond to a given therapy on 
the basis of biology) to personalize AKI management is 
shown in Fig. 2.

Methodological aspects
Relatively novel methods to find subphenotypes within 
phenotypes include clustering methods such as latent 
class analysis (LCA) and k-means clustering. LCA is a 
frequently used mixture model that presumes that an 
unobserved categorical variable exists that classifies 
the heterogeneous population into mutually exclusive 
latent classes (homogeneous subgroups) [19]. Observed 
variables are used to predict the membership of these 
unobserved or latent groups [19]. As in other types of 
statistical models, selection of the variables for the model 
should be carefully considered and be based on the 
research question. From the fitted LCA model, probabili-
ties of class membership are generated that can then be 
used to assign patients to latent classes [20]. The number 
of classes is selected on the basis of the best model with 
the fewest number of classes using various criteria [20]. 
Exploring the variables that come up in the process as the 
strongest definers of the latent classes can provide useful 
hints of the potential pathophysiologic background.

AKI biomarkers

Functional markers of AKI
Creatinine, urine output

Biomarker patterns indicating common 
pathophysiologic features
-inflammatory biomarkers
-endothelial injury biomarkers
-AKI biomarkers? 

Genetic variants associated with 
susceptibility for biologic subphenotypes

Acute kidney injury

Clinical 
subphenotypes

Biologic 
subphenotypes

Severity
-stage 1
-stage 2
-stage 3 

Trajectory
-resolving vs non-resolving
-early vs late onset
-single vs multiple hit Etiology

-single vs multiple factors
-septic
-nephrotoxic
-ischemic
etc

Care bundles & organ support (KRT) Targeted therapy

Suspectibility
CKD, hypertension, etc 

Outcomes Common treatable traits 
with other ICU syndromes?

Subclinical AKI

Fig. 1 Subphenotypes in acute kidney injury. AKI; acute kidney injury, CKD; chronic kidney disease, ICU; intensive care unit, KRT; kidney replacement 
therapy
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The current methods also have some limitations. 
First, one must remember that the selection of variables 
has been made bearing the research question and study 
hypothesis in mind, and most subphenotype analyses 
thus far have been conducted using existing databases or 
clinical trial datasets that have a limited selection of vari-
ables available. This has also generated heterogeneity in 
the identified subphenotypes. Therefore, besides further 
validation of the discovered subphenotypes, prospective 
studies aimed at detecting subphenotypes reflecting the 
hypothesized pathophysiology would help to find the 
best combination variables to define the novel subpheno-
types. Second, as clustering analysis is a powerful tool of 
finding distinct groups, the results of such analyses must 
be carefully interpreted to avoid over-optimistic conclu-
sions of finding something that may not actually exist or 
be replicated in other studies. Thus, a good starting point 
would be a study protocol that is based on sound patho-
physiologic hypotheses. The protocol should also include 
the development of clinically feasible, rapid method to 
identify subphenotypes that may include for example, a 
novel combination of routinely measured parameters 
with a point-of-care measurement of a biomarker. Obvi-
ously, even before subphenotype-directed therapeutic 
randomized trials, enormous work is needed that is not 
possible without international collaboration.

Clinical subphenotypes of AKI
Currently, the defining criteria for AKI are based purely 
on the absolute or relative increase in serum creatinine or 
a decrease in urinary output [4]. Therefore, the definition 

of AKI does not include information about the trajectory 
of AKI, AKI biomarkers, or renal recovery criteria. More-
over, it does not acknowledge the significance of recur-
rent AKI ‘hits’ within a single hospitalization. However, 
AKI is heterogeneous in its etiology. Single AKI episodes 
can differ based on timing of injury, rate of AKI devel-
opment, natural history specific to etiology, prediction of 
clinical outcome, and finally, severity. Additionally, out-
comes are influenced by baseline kidney function, the 
duration of AKI, and the interaction with non-kidney 
organ injury and dysfunction [4]. Moreover, the variabil-
ity in the application of KDIGO criteria is a great source 
of heterogeneity and reported varying outcomes espe-
cially in database and registry-related research [21].

The concept of pre-renal, intrinsic, and post-renal AKI 
has a long tradition to stratify the etiology of AKI and 
is among the oldest ways to subphenotype AKI. As the 
diagnosis of AKI does not account for etiology, conven-
tional diagnostic tools may reveal disease processes with 
available specific treatment, such as thrombotic micro-
angiopathies, glomerulonephritis, or post-renal obstruc-
tion. In addition to these, using creatinine trajectories 
allow a more tailored and immediate approach to man-
agement (Fig. 3).

Creatinine‑based AKI trajectories
Subphenotypes of AKI can be identified from func-
tional changes including creatinine trajectories dur-
ing the AKI diagnosis (Table 1). In a large observational 
study, authors identified resolving and non-resolving 
AKI subphenotypes based on the early trajectory of 

Fig. 2 Concept of prognostic and predictive enrichment. AKI; acute kidney injury, KRT; kidney replacement therapy
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creatinine values in ICU patients using single creatinine 
changing trend to model the probability of death [7]. 
Another study by Guitterez et  al. described the trajec-
tory of creatinine rise analyzed in a longitudinal fashion 
after exposure to radiocontrast media in 98 subjects who 
underwent cardiac catheterization [22]. The authors used 
a random intercept and slope model to describe the tra-
jectory of creatinine rise limited to an observational time 
of 5.5 ± 5.1 days. However, generalizability of model tra-
jectory was not validated in other cohorts of patients 
with higher rates of AKI. Neither of these two studies 
used detailed clinical data to identify AKI trajectory sub-
phenotypes. A more recent study of 5,294 post cardiopul-
monary bypass patients divided into a development and a 
validation cohort, identified 12 novel AKI trajectory sub-
phenotypes with distinct postoperative serum creatinine 
trajectories over time [23]. In this study, the authors used 
latent class mixed modeling to identify several other fea-
tures, including patient and procedural characteristics, 
post-operative complications, and long-term outcome 
data. Notably, four high-risk phenotypes had greater 
long-term risk for death relative to lower risk classes.

A meticulous study by Smith et  al. [24] used a popu-
lation-based approach to align and compare long and 
short KDIGO trajectories. Additionally, they used clini-
cal-oriented approach to determine the number of AKI 
trajectory subphenotypes including the identification of 
a critical AKI trajectory feature. They assessed 6,816 ICU 
patients that developed any stage of KDIGO AKI with 
this model and found that the trend or shape of trajectory 
appeared to be more associated with inpatient mortality 
rates rather than the maximum KDIGO stage. As shown 
in Fig.  4 with hypothetical patient scenarios, patients 
with a lower maximum KDIGO stage and a gradual 

decline in kidney function over time (subphenotype C 
& D) had a higher ICU mortality rate when compared to 
those patients who had a high maximum KDIGO score 
on arrival in the ICU but rapidly recovered by day 3 (sub-
phenotype A & B).

Severity and delayed resolution of AKI
The identification of subgroups of patients with AKI 
based on the trajectory of kidney function recovery after 
an AKI episode is also a potentially important and clini-
cally intuitive parameter for risk stratification of AKI. 
In a large cohort of 47,903 adult US veteran patients, 
patients were subgrouped by the duration of time from 
peak serum creatinine to recovery of kidney function 
[26]. The primary outcome was a sustained 40% decline 
in estimated glomerular filtration rate or kidney failure 
[26]. Patients with a protracted AKI recovery course 
were at higher risk for earlier loss of kidney function 
after recovery was complete [26]. This study was cor-
roborated further in a retrospective longitudinal cohort 
study of 156,699 hospitalized, ICU and non-ICU patients 
focused on persistent AKI [25]. AKI was classified as rap-
idly reversed AKI or persistent AKI (AKI lasting longer 
than 48  h with and without renal recovery) and com-
pared to individuals with no AKI. Persistent AKI without 
renal recovery was associated with approximately fivefold 
increased hazard rates for all-cause mortality compared 
with no AKI in the full cohort as well as in the ICU and 
non-ICU subcohorts, independent of AKI severity [25].

Furthermore, functional tests can be used to identify 
patients who are likely to be AKI non-resolvers. The furo-
semide stress test [28] assesses the urine output response 
to a large single dose of intravenous furosemide. Patients 
with a poor response have been found to have a higher 

Admission Day 7-10 Hospital Discharge

Serum
Creatinine

A

D

C

Phenotype A: hypovolemia, 
Transient hypotension

Phenotype B: contrast-associated 
AKI, sustained hypotension,
hypovolemia that has been reversed.

Phenotype C: HRS, 
persistent shock, TMA, acute
glomerulonephri�s

Phenotype D: Hospital-acquired
AKI

B

Fig. 3 Scenarios presenting phenotypes based on the etiology or trajectory of acute kidney injury. AKI; acute kidney injury, HRS; hepatorenal 
syndrome, TMA; thrombotic microangiopathy
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likelihood of progression of AKI [29]. It has been used as 
a method to stratify patients for intervention studies [30].

Biomarker‑driven AKI subphenotypes
A number of blood and urinary biomarkers have been 
shown to predict the development of AKI, such as 
plasma or urinary neutrophil gelatinase-associated 
lipocalin (NGAL), urinary kidney injury molecule 1 
(KIM-1), urinary tissue inhibitor of metalloprotein-
ase-2 (TIMP-2), and insulin-like growth factor-binding 
protein 7 (IGFBP7), and others [31]. Biomarkers have 
also been used to identify AKI subphenotypes. One 
such biomarker-derived AKI subphenotype is subclini-
cal AKI. Subclinical AKI refers to a clinical condition 
where structural kidney injury occurs without a rise in 
creatinine. Studies have shown that elevations in uri-
nary NGAL or KIM-1 without a rise in creatinine sub-
sequently predicted initiation of KRT or in-hospital 
mortality [32, 33]. In a cardiac surgery cohort, elevations 
in urinary interleukin-18 and KIM-1 were independently 
associated with higher 3-year mortality in those patients 
without AKI [34]. More recently, alternative plasma and 
urinary biomarkers have again demonstrated a stepwise 
increase in adverse outcomes in those with subclinical 
AKI compared with patients with established AKI [35, 
36]. This association underlines the problem with creati-
nine, namely kidney damage with association to patient-
centered outcomes may occur even without an evident 
creatinine increase. Whether such damage is limited 
to the kidneys as the kidney-specific biomarkers imply, 
or a problem encompassing also other organs such as 
endothelium, needs to be further elucidated.

Biomarkers have also been found to predict the non-
recovery of AKI. In an analysis comprising 331 patients, 
C–C motif chemokine ligand 14 (CCL14) was discovered 

to stratify patients according to the likelihood of persis-
tent severe AKI [37]. These results imply that in future, if 
validated, biomarkers could help to allocate patients into 
both trials searching for methods to enhance AKI recov-
ery and to ensure adequate follow-up of kidney function.

Another method to derive AKI subphenotypes is to use 
unsupervised clustering analyses, such as LCA. Bhatraju 
and colleagues applied LCA to a panel of 29 different 
variables in two cohorts of critically ill patients with 
AKI. They identified two AKI subphenotypes (AKI-SP1 
and AKI-SP2) with different clinical characteristics and 
associations with clinical outcomes, even after adjust-
ing for both illness and AKI severity [8]. They also found 
heterogeneity in treatment effect in a post-hoc analysis 
of patients with sepsis-associated AKI from the Vaso-
pressin and Septic Shock Trial (VASST) trial, patients 
with AKI-SP1 had lower mortality with the early addi-
tion of vasopressin with norepinephrine therapy, while 
patients with AKI-SP2 had no difference in mortality [8, 
38]. These findings are in contrast to the overall results 
in the VASST trial that demonstrated no mortality ben-
efit with the early addition of vasopressin therapy for 
the treatment of shock. The findings also highlight the 
importance of identifying biologically distinct AKI sub-
phenotypes as they may respond differently to treatments 
in clinical trials. Other research groups have also applied 
LCA to ICU cohorts with AKI and have identified two 
AKI subphenotypes. Wiersema and colleagues studied 
301 patients with sepsis-associated AKI and applied LCA 
to 30 different variables including 12 variables involved in 
systemic inflammation and endothelial dysfunction [10]. 
They identified two AKI subphenotypes with differing 
clinical characteristics and outcomes [10].

Heterogeneity in the AKI clinical syndrome may 
also limit the identification of novel mechanisms and 

Admission Day 7-10 Hospital Discharge

Serum
Creatinine

B

A

D

C

Phenotype A

Phenotype B

Phenotype C

Phenotype D

Fig. 4 Hypothetical patient scenarios with different AKI recovery subphenotypes and influence on renal outcomes
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genetic risk for AKI. A systematic review in 2009 con-
cluded that genetic studies in AKI have been inconsist-
ent and contradictory [39]. One reason has been the 
lack of consensus on defining AKI by the time of that 
report. For example, the authors found five different 
definitions of AKI used in prior genetic studies. While 
the KDIGO definition of AKI is now widely used, AKI 
remains as a syndromic diagnosis that may be too het-
erogeneous to allow the identification of genetic risk 
factors. Thus, leveraging AKI subphenotypes may 
overcome the heterogeneity in the AKI clinical defini-
tion. Bhatraju et al. leveraged the previously described 
AKI subphenotypes to evaluate genetic risk in the 
development of AKI [40]. They performed a targeted 
genetic study to identify single nucleotide polymor-
phisms (SNPs) within 50 kb of the ANGPT1, ANGPT2 
and TNFRSF1A genes associated with AKI- SP2 in 452 
subjects. They demonstrated that a SNP (rs2920656) 
near ANGPT2 was associated with reduced risk for 
AKI-SP2 and this SNP was associated with decreased 
plasma concentrations of angiopoietin-2 (Ang-2). 
These findings support the pathophysiologic role of 
Ang-2 in AKI, also as a therapeutic target. Moreover, 
genetic susceptibilities may be concentrated in certain 
populations, such as another genetic polymorphism 
related to increased Ang-2 concentrations in sep-
tic ARDS in subjects with European ancestry [41]. A 
number of studies in other fields, such as diabetes mel-
litus [42] and asthma [43] have also leveraged disease 
subphenotypes to discover novel genetic variants asso-
ciated with disease.

The work completed to date in identifying bio-
marker-based AKI subphenotypes raises the question 
of whether these AKI subphenotypes are specific to 
AKI or are found in other clinical syndromes, ARDS 
or sepsis. As in ARDS, sepsis and other diseases, cir-
culating biomarkers of endothelial activation and 
inflammation are relevant and not specific to AKI. 
These findings imply potential parallels between criti-
cal illness syndromes and shared pathophysiological 
mechanisms across diseases. Some researchers have 
proposed transitioning from a disease specific model 
to identify subphenotypes to a ‘treatable traits’ model 
across diseases [44]. Potential examples in cancer 
include immunomodulatory therapy not specific to 
one type of cancer but effective in multiple types of 
cancer with high programmed death ligand-1 expres-
sion on tumor cells [45–47]. Another example is the 
use of mepolizumab, a monoclonal antibody that 
blocks interleukin-5 signaling, in eosinophilic lung 
disease irrespective if patients have asthma or chronic 
obstructive pulmonary disease [48, 49].

Subphenotypes of other ICU syndromes
Analogous to AKI, there has been tremendous interest in 
defining subtypes of other forms of critical illness, includ-
ing sepsis and the ARDS [16]. In the context of ARDS, 
two subphenotypes can reliably be identified in clinical 
trial populations. The hyperinflammatory subphenotype 
is characterized by higher levels of pro-inflammatory 
biomarkers including interleukin-6, interleukin-8, solu-
ble tumor necrosis factor receptor-1, and plasminogen 
activator inhibitor-1 and higher mortality [50]. In con-
trast, the hypoinflammatory subphenotype is associated 
with higher levels of protein C and bicarbonate, as well as 
higher systolic blood pressure. Patients with the hyperin-
flammatory and hypoinflammatory subphenotypes have 
differential responses to a number of therapies, includ-
ing fluid management, positive end-expiratory pressure, 
and statins [50–52]. For example, in the re-analysis of 
HARP-2 trial, there was improvement in survival with 
simvastatin therapy in patients with the hyper-inflam-
matory subphenotype [52]. These two subphenotypes 
are also identifiable in more generalizable, prospective 
observational cohort studies [53]. Finally, these subphe-
notypes can be reliably identified using a parsimonious 
subset of three biomarkers, raising the possibility of near 
real-time point-of-care biomarker measurement and pre-
dictive enrichment for clinical trials [54].

In an analysis using only biomarkers to identify sub-
phenotypes, “uninflamed” and “reactive” subphenotypes 
were identified and linked to a number of signaling path-
ways in whole blood transcriptomic studies [55]. These 
subphenotypes are characterized by many of the same 
biomarkers as the “hyperinflammatory” and “hypoin-
flammatory” subphenotypes and emphasize the concept 
that a hyperinflammatory state is associated with adverse 
outcomes across a wide variety of critical illnesses and 
can be used to target specific therapeutic interventions in 
clinical trials.

Subphenotypes of sepsis have been studies in both chil-
dren and adults. Here, the number of subphenotypes has 
varied more than in studies of ARDS, perhaps due to the 
larger overall populations studied and therefore the abil-
ity to derive more subphenotypes. Nonetheless, a num-
ber of important themes emerge from these studies. First, 
due to the large number of patients admitted with sepsis, 
it is possible to perform very large, clinical subphenotyp-
ing studies using data from the electronic health record. 
Some of these studies have focused on the trajectory of 
a limited number of variables (for example, temperature) 
[56], whereas others have focused on clustering patients 
based on data available at the time of presentation [57, 
58]. These subphenotypes vary with regards to clinical 
characteristics and mortality; however, these subpheno-
types may not add significantly to our biological insights 
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regarding sepsis. In some cases, subsequent analyses 
have linked the inflammatory response to clinical sub-
phenotypes, including the temperature-based subpheno-
types [59]. Second, subphenotypes with variable response 
to therapies can be identified in children and adults. For 
example, re-analysis of clinical trials of an interleukin-1 
receptor antagonist demonstrate differential outcomes 
by subphenotype [60, 61]. However, these studies also 
highlight the importance of studying both children and 
adults and the need for replication. That is, in analyses of 
the impact of steroids on outcomes in sepsis, although 
one pediatric subclass had higher mortality with corti-
costeroid therapy, but the adults did not [62, 63]. More 
work is clearly needed to better define and understand 
sepsis subphenotypes, which may have additional com-
plexities due to underlying comorbidities (e.g., immuno-
suppressed states) that increase the risk of infection and 
may alter the host response to infection as well. Finally, 
a number of these studies have linked sepsis subphe-
notypes to gene expression patterns and host response, 
which will be critical to identifying precision therapies 
for sepsis. However, more work will clearly be needed to 
define subtypes within this complex syndrome [64].

Current and future implications
To date, the vast majority of AKI subphenotyping work 
has focused on differences in prognosis -specifically, 
identifying which patients with AKI are likely to suf-
fer poor outcomes, including death. As such, the cur-
rent implications of this work, if validated and applied 
clinically, are largely based in prognostic enrichment. 
For example, several groups have now identified clinical 
and/or biomarker-based subphenotypes of sepsis-asso-
ciated AKI in both adults [7, 8, 10, 65] and children [66, 
67] that are associated with various outcomes of inter-
est, including increased likelihood of requiring KRT, 
renal non-recovery, and mortality. These subphenotyp-
ing strategies could be applied at the bedside to inform 
clinical care (i.e. earlier consideration of KRT in high-
risk patients), and perhaps more importantly, to guide 
risk-informed enrollment of patients into future thera-
peutic trials (i.e. to enroll only patients at high risk for 
KRT in trials examining optimal timing of initiation). 
Unfortunately, most of these tools have thus far failed 
to translate to the bedside, likely due to a combination 
of lack of largescale validation [7, 8, 10, 65–67], issues 
with timely availability of included biomarkers [8, 10, 
67], genetic testing and overall complexity of the sub-
phenotyping models [10, 65]. These are all issues that 
will need to be addressed in order to make real-time 
subphenotyping of AKI for prognostic enrichment a 
reality. Regarding the identification of ARDS subpheno-
types, on-going projects are already searching solutions 

for feasible bedside identification of subphenotypes 
using machine-learning [68] or point-of-care biomarker 
assays (NCT04009330).

While prognostic enrichment is an important compo-
nent of a personalized approach to AKI management, 
the ultimate goal of subphenotyping any heterogeneous 
disorder is to identify and employ precision therapeutics 
(i.e. predictive enrichment). While predictive enrichment 
strategies for AKI remain limited, recent AKI subphe-
notyping work has highlighted the potential for preci-
sion vasoactive selection. The application of two unique 
AKI subphenotypes (AKI-SP1 and AKI-SP2) in a sub-
set of patients from the VASST trial demonstrated that 
patients classified as AKI-SP1—characterized by lesser 
degrees of endothelial activation and inflammation than 
AKI-SP2—had improved 28- and 90-day mortality when 
they received vasopressin compared to norepinephrine, 
though rates of renal recovery did not differ [4]. While 
direct links between the underlying biology of AKI-
SP1 patients and their response to vasopressin have not 
been made, continued molecular subphenotyping of 
AKI using strategies such as these is required to identify 
future predictive enrichment targets and develop novel 
therapeutics. Unfortunately, similar to subphenotyping 
for prognostic enrichment, significant work needs to be 
done to translate these tools to the bedside of patients. 
In particular, the ability to rapidly subphenotype a patient 
with AKI remains the most significant barrier, given that 
many of the patients who would benefit most from this 
care are critically ill with evolving pathology and require 
time-sensitive decision making.

Conclusions
Subphenotyping helps to differentiate patients with dif-
fering pathophysiologic mechanisms, severity of illness, 
and outcome amongst all patients with AKI. Clustering 
analyses including data from not routinely measured bio-
markers have revealed subphenotypes with potentially 
distinct pathophysiology regarding response to inflam-
mation thus opening avenues to research of targeted 
therapies. More research to validate the discovered AKI 
subphenotypes and to develop methods to distinct vari-
ous subphenotypes rapidly at the bedside are needed.

Abbreviations
AKI: Acute kidney injury; AKI-SP: Acute kidney injury subphenotype; Ang-2: 
Angiopoietin-2; ARDS: Acute respiratory distress syndrome; CCL14: C–C motif 
chemokine ligand 14; ICU: Intensive care unit; IGFBP7: Insulin-like growth 
factor-binding protein 7; KIM-1: Kidney injury molecule 1; KDIGO: Kidney 
diseases improving global outcomes; KRT: Kidney replacement therapy; LCA: 
Latent class analysis; NGAL: Neutrophil gelatinase-associated lipocalin; SNP: 
Single nucleotide polymorphisms; TIMP-2: Tissue inhibitor of metalloprotein-
ase-2; VASST: Vasopressin and Septic Shock Trial.



Page 9 of 10Vaara et al. Critical Care          (2022) 26:251  

Acknowledgements
Dr. Bagshaw is supported by a Canada Research Chair in Critical Care 
Outcomes and Systems Evaluation. Dr. Stanski is supported by the National 
center for Advancing Translation Sciences of the National Institutes of Health 
(UL1TR001425).

Author contributions
STV, MJ and SB conceived the review. STV, PB, BM, KL and NLS drafted the 
manuscript. MJ and SB critically commented the draft. All authors read and 
approved the final version of the manuscript.

Funding
Open access funded by Helsinki University Library.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Dr. Bagshaw has received fees for scientific advisory from Baxter, BioPorto and 
Novartis.

Author details
1 Division of Intensive Care Medicine, Department of Anesthesiology, Intensive 
Care and Pain Medicine, Meilahti Hospital, University of Helsinki and Helsinki 
University Hospital, PO Box 340, 00290 Helsinki, Finland. 2 Division of Pulmo-
nary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA. 
3 Sepsis Center of Research Excellence (SCORE), University of Washington, 
Seattle, USA. 4 Division of Critical Care Medicine, Department of Pediatrics, 
Cincinnati Children’s Hospital Medical Center, University of Cincinnati College 
of Medicine, Cincinnati, USA. 5 Division of Nephrology, Department of Medi-
cine, Medical University of South Carolina, Charleston, SC, USA. 6 Divisions 
of Nephrology and Critical Care, Departments of Medicine and Anesthe-
sia, University of California, San Francisco, USA. 7 Division of Intensive Care 
and Emergency Medicine, Department of Internal Medicine, Medical Univer-
sity of Innsbruck, Innsbruck, Austria. 8 Department of Critical Care Medicine, 
Faculty of Medicine and Dentistry, University of Alberta and Alberta Health 
Services, Edmonton, Canada. 

Received: 16 July 2022   Accepted: 20 July 2022

References
 1. Nisula S, Kaukonen KM, Vaara ST, et al. Incidence, risk factors and 

90-day mortality of patients with acute kidney injury in Finn-
ish intensive care units: the FINNAKI study. Intensive Care Med. 
2013;39(3):420–8.

 2. Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney 
injury in critically ill patients: the multinational AKI-EPI study. Intensive 
Care Med. 2015;41(8):1411–23.

 3. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 
2019;394(10212):1949–64.

 4. Kidney Diseases Improving Global Outcomes. KDIGO clinical practice 
guideline for acute kidney injury. Kidney Inter. 2012;2:1–138.

 5. Moledina DG, Parikh CR. Phenotyping of acute kidney injury: beyond 
serum creatinine. Semin Nephrol. 2018;38(1):3–11.

 6. Gallagher KM, O’Neill S, Harrison EM, et al. Recent early clinical drug 
development for acute kidney injury. Expert Opin Investig Drugs. 
2017;26(2):141–54.

 7. Bhatraju PK, Mukherjee P, Robinson-Cohen C, et al. Acute kidney injury 
subphenotypes based on creatinine trajectory identifies patients at 
increased risk of death. Crit Care. 2016;20(1):372.

 8. Bhatraju PK, Zelnick LR, Herting J, et al. Identification of acute kidney 
injury subphenotypes with differing molecular signatures and responses 
to vasopressin therapy. Am J Respir Crit Care Med. 2019;199(7):863–72.

 9. Xu Z, Chou J, Zhang XS, et al. Identifying sub-phenotypes of acute kidney 
injury using structured and unstructured electronic health record data 
with memory networks. J Biomed Inform. 2020;102:103361.

 10. Wiersema R, Jukarainen S, Vaara ST, et al. Two subphenotypes of septic 
acute kidney injury are associated with different 90-day mortality and 
renal recovery. Crit Care. 2020;24(1):150.

 11. Joannidis M, Druml W, Forni LG, et al. Prevention of acute kidney injury 
and protection of renal function in the intensive care unit: update 
2017: Expert opinion of the working group on prevention, AKI section, 
European society of intensive care medicine. Intensive Care Med. 
2017;43(6):730–49.

 12. Pickkers P, Mehta RL, Murray PT, et al. Effect of human recombinant 
alkaline phosphatase on 7-day creatinine clearance in patients with 
sepsis-associated acute kidney injury: a randomized clinical trial. JAMA. 
2018;320(19):1998–2009.

 13. Lazzareschi D, Mehta RL, Dember LM, et al. Overcoming barriers in the 
design and implementation of clinical trials for acute kidney injury: a 
report from the 2020 kidney disease clinical trialists meeting. Nephrol 
Dial Transplant. 2022. https:// doi. org/ 10. 1093/ ndt/ gfac0 03.

 14. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress 
syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.

 15. Singer M, Deutschman CS, Seymour CW, et al. The third international 
consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 
2016;315(8):801–10.

 16. Reddy K, Sinha P, O’Kane CM, et al. Subphenotypes in critical care: transla-
tion into clinical practice. Lancet Respir Med. 2020;8(6):631–43.

 17. Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat 
Rev Nephrol. 2020;16(1):20–31.

 18. Wong HR. Intensive care medicine in 2050: precision medicine. Intensive 
Care Med. 2017;43(10):1507–9.

 19. Lanza ST, Rhoades BL. Latent class analysis: an alternative perspec-
tive on subgroup analysis in prevention and treatment. Prev Sci. 
2013;14(2):157–68.

 20. Sinha P, Calfee CS, Delucchi KL. Practitioner’s guide to latent class analysis: 
methodological considerations and common pitfalls. Crit Care Med. 
2021;49(1):e63–79.

 21. Wiersema R, Jukarainen S, Eck RJ, et al. Different applications of the 
KDIGO criteria for AKI lead to different incidences in critically ill patients: 
a post hoc analysis from the prospective observational SICS-II study. Crit 
Care. 2020;24(1):164.

 22. Guitterez NV, Diaz A, Timmis GC, et al. Determinants of serum cre-
atinine trajectory in acute contrast nephropathy. J Interv Cardiol. 
2002;15(5):349–54.

 23. Andrew BY, Pieper CF, Cherry AD, et al. Identification of trajectory-based 
acute kidney injury phenotypes among cardiac surgery patients. Ann 
Thorac Surg. 2021. https:// doi. org/ 10. 1016/j. athor acsur. 2021. 11. 047.

 24. Smith TD, Soriano VO, Neyra JA, et al. Identifying KDIGO trajectory phe-
notypes associated with increased inpatient mortality. IEEE nternational 
Conference on Healthcare Informatics. 2019.

 25. Ozrazgat-Baslanti T, Loftus TJ, Ren Y, et al. Association of persistent acute 
kidney injury and renal recovery with mortality in hospitalised patients. 
BMJ Health Care Inform. 2021;28(1):e100458.

 26. Siew ED, Abdel-Kader K, Perkins AM, et al. Timing of recovery from 
moderate to severe AKI and the risk for future loss of kidney function. Am 
J Kidney Dis. 2020;75(2):204–13.

 27. Bhatraju PK, Zelnick LR, Chinchilli VM, et al. Association between early 
recovery of kidney function after acute kidney injury and long-term clini-
cal outcomes. JAMA Netw Open. 2020;3(4):e202682.

 28. Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and 
standardization of a furosemide stress test to predict the severity of acute 
kidney injury. Crit Care. 2013;17(5):R207.

 29. Rewa OG, Bagshaw SM, Wang X, et al. The furosemide stress test for 
prediction of worsening acute kidney injury in critically ill patients: a 
multicenter, prospective, observational study. J Crit Care. 2019;52:109–14.

https://doi.org/10.1093/ndt/gfac003
https://doi.org/10.1016/j.athoracsur.2021.11.047


Page 10 of 10Vaara et al. Critical Care          (2022) 26:251 

 30. Lumlertgul N, Peerapornratana S, Trakarnvanich T, et al. Early versus 
standard initiation of renal replacement therapy in furosemide stress 
test non-responsive acute kidney injury patients (the FST trial). Crit Care. 
2018;22(1):101.

 31. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on 
acute kidney injury biomarkers from the acute disease quality initiative 
consensus conference: a consensus statement. JAMA Netw Open. 
2020;3(10):e2019209.

 32. Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil 
gelatinase-associated lipocalin-positive subclinical acute kidney injury: 
a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 
2011;57(17):1752–61.

 33. Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic 
stratification in the emergency department using urinary biomarkers 
of nephron damage: a multicenter prospective cohort study. J Am Coll 
Cardiol. 2012;59(3):246–55.

 34. Coca SG, Garg AX, Thiessen-Philbrook H, et al. Urinary biomarkers of 
AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol. 
2014;25(5):1063–71.

 35. Joannidis M, Forni LG, Haase M, et al. Use of cell cycle arrest biomarkers in 
conjunction with classical markers of acute kidney injury. Crit Care Med. 
2019;47(10):e820–6.

 36. Dépret F, Hollinger A, Cariou A, et al. Incidence and outcome of subclini-
cal acute kidney injury using penKid in critically Ill patients. Am J Respir 
Crit Care Med. 2020;202(6):822–9.

 37. Hoste E, Bihorac A, Al-Khafaji A, et al. Identification and validation of 
biomarkers of persistent acute kidney injury: the RUBY study. Intensive 
Care Med. 2020;46(5):943–53.

 38. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepi-
nephrine infusion in patients with septic shock. New Engl J Med. 
2008;358(9):877–87.

 39. Lu JC, Coca SG, Patel UD, et al. Searching for genes that matter in 
acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 
2009;4(6):1020–31.

 40. Bhatraju PK, Cohen M, Nagao RJ, et al. Genetic variation implicates 
plasma angiopoietin-2 in the development of acute kidney injury sub-
phenotypes. BMC Nephrol. 2020;21(1):284.

 41. Reilly JP, Wang F, Jones TK, et al. Plasma angiopoietin-2 as a potential 
causal marker in sepsis-associated ARDS development: evidence from 
Mendelian randomization and mediation analysis. Intensive Care Med. 
2018;44(11):1849–58.

 42. Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset 
diabetes and their association with outcomes: a data-driven cluster 
analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.

 43. Siroux V, González JR, Bouzigon E, et al. Genetic heterogeneity of 
asthma phenotypes identified by a clustering approach. Eur Respir J. 
2014;43(2):439–52.

 44. Maslove DM, Tang B, Shankar-Hari M, et al. Redefining critical illness. Nat 
Med. 2022;28(6):1141–8.

 45. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus 
chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J 
Med. 2016;375(19):1823–33.

 46. Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-nega-
tive breast cancer. N Engl J Med. 2020;382(9):810–21.

 47. Choueiri TK, Tomczak P, Park SH, et al. Adjuvant pembrolizumab after 
nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385(8):683–94.

 48. Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients 
with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207.

 49. Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic 
obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613–29.

 50. Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respira-
tory distress syndrome: latent class analysis of data from two randomised 
controlled trials. Lancet Respir Med. 2014;2(8):611–20.

 51. Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome 
subphenotypes respond differently to randomized fluid management 
strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.

 52. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome 
subphenotypes and differential response to simvastatin: secondary anal-
ysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691–8.

 53. Sinha P, Delucchi KL, Chen Y, et al. Latent class analysis-derived subphe-
notypes are generalisable to observational cohorts of acute respiratory 
distress syndrome: a prospective study. Thorax. 2022;77(1):13–21.

 54. Sinha P, Delucchi KL, McAuley DF, et al. Development and validation of 
parsimonious algorithms to classify acute respiratory distress syndrome 
phenotypes: a secondary analysis of randomised controlled trials. Lancet 
Respir Med. 2020;8(3):247–57.

 55. Bos LD, Schouten LR, van Vught LA, et al. Identification and validation of 
distinct biological phenotypes in patients with acute respiratory distress 
syndrome by cluster analysis. Thorax. 2017;72(10):876–83.

 56. Bhavani SV, Carey KA, Gilbert ER, et al. Identifying novel sepsis subphe-
notypes using temperature trajectories. Am J Respir Crit Care Med. 
2019;200(3):327–35.

 57. Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and 
potential treatment implications of novel clinical phenotypes for sepsis. 
JAMA. 2019;321(20):2003–17.

 58. Zador Z, Landry A, Cusimano MD, et al. Multimorbidity states associated 
with higher mortality rates in organ dysfunction and sepsis: a data-driven 
analysis in critical care. Crit Care. 2019;23(1):247.

 59. Bhavani SV, Wolfe KS, Hrusch CL, et al. Temperature trajectory subpheno-
types correlate with immune responses in patients with sepsis. Crit Care 
Med. 2020;48(11):1645–53.

 60. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor block-
ade is associated with reduced mortality in sepsis patients with features 
of macrophage activation syndrome: reanalysis of a prior phase III trial. 
Crit Care Med. 2016;44(2):275–81.

 61. Meyer NJ, Reilly JP, Anderson BJ, et al. Mortality benefit of recombinant 
human interleukin-1 receptor antagonist for sepsis varies by initial 
interleukin-1 receptor antagonist plasma concentration. Crit Care Med. 
2018;46(1):21–8.

 62. Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible 
personalized medicine approach to pediatric septic shock. Am J Respir 
Crit Care Med. 2015;191(3):309–15.

 63. Antcliffe DB, Burnham KL, Al-Beidh F, et al. Transcriptomic signatures in 
sepsis and a differential response to steroids. From the VANISH rand-
omized trial. Am J Respir Crit Care Med. 2019;199(8):980–6.

 64. DeMerle KM, Angus DC, Baillie JK, et al. Sepsis subclasses: a framework for 
development and interpretation. Crit Care Med. 2021;49(5):748–59.

 65. Chaudhary K, Vaid A, Duffy Á, et al. Utilization of deep learning for sub-
phenotype identification in sepsis-associated acute kidney injury. Clin J 
Am Soc Nephrol. 2020;15(11):1557–65.

 66. Basu RK, Hackbarth R, Gillespie S, et al. Clinical phenotypes of acute 
kidney injury are associated with unique outcomes in critically ill septic 
children. Pediatr Res. 2021;90(5):1031–8.

 67. Stanski NL, Stenson EK, Cvijanovich NZ, et al. PERSEVERE biomarkers 
predict severe acute kidney injury and renal recovery in pediatric septic 
shock. Am J Respir Crit Care Med. 2020;201(7):848–55.

 68. Maddali MV, Churpek M, Pham T, et al. Validation and utility of ARDS sub-
phenotypes identified by machine-learning models using clinical data: 
an observational, multicohort, retrospective analysis. Lancet Respir Med. 
2022;10(4):367–77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


