6 research outputs found

    Abnormal Global Functional Connectivity Patterns in Medication-Free Major Depressive Disorder

    Get PDF
    Mounting studies have applied resting-state functional magnetic resonance imaging (rs-fMRI) to study major depressive disorder (MDD) and have identified abnormal functional activities. However, how the global functional connectivity patterns change in MDD is still unknown. Using rs-fMRI, we investigated the alterations of global resting-state functional connectivity (RSFC) patterns in MDD using weighted global brain connectivity (wGBC) method. First, a whole brain voxel-wise wGBC map was calculated for 23 MDD patients and 34 healthy controls. Two-sample t-tests were applied to compare the wGBC and RSFC maps and the significant level was set at p < 0.05, cluster-level correction with voxel-level p < 0.001. MDD patients showed significantly decreased wGBC in left temporal pole (TP) and increased wGBC in right parahippocampus (PHC). Subsequent RSFC analyses showed decreased functional interaction between TP and right posterior superior temporal cortex and increased functional interaction between PHC and right inferior frontal gyrus in MDD patients. These results revealed the abnormal global FC patterns and its corresponding disrupted functional connectivity in MDD. Our findings present new evidence for the functional interruption in MDD

    Structural connectivity of the amygdala in young adults with autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is characterized by impairments in social cognition, a function associated with the amygdala. Subdivisions of the amygdala have been identified which show specificity of structure, connectivity, and function. Little is known about amygdala connectivity in ASD. The aim of this study was to investigate the microstructural properties of amygdala-cortical connections and their association with ASD behaviours, and whether connectivity of specific amygdala subregions is associated with particular ASD traits. The brains of 51 high-functioning young adults (25 with ASD; 26 controls) were scanned using MRI. Amygdala volume was measured, and amygdala-cortical connectivity estimated using probabilistic tractography. An iterative 'winner takes all' algorithm was used to parcellate the amygdala based on its primary cortical connections. Measures of amygdala connectivity were correlated with clinical scores. In comparison with controls, amygdala volume was greater in ASD (F(1,94) = 4.19; p = .04). In white matter (WM) tracts connecting the right amygdala to the right cortex, ASD subjects showed increased mean diffusivity (t = 2.35; p = .05), which correlated with the severity of emotion recognition deficits (rho = -0.53; p = .01). Following amygdala parcellation, in ASD subjects reduced fractional anisotropy in WM connecting the left amygdala to the temporal cortex was associated with with greater attention switching impairment (rho = -0.61; p = .02). This study demonstrates that both amygdala volume and the microstructure of connections between the amygdala and the cortex are altered in ASD. Findings indicate that the microstructure of right amygdala WM tracts are associated with overall ASD severity, but that investigation of amygdala subregions can identify more specific associations

    Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization

    Get PDF
    Dynamic functional connectivity (dFC) derived from resting-state functional magnetic resonance imaging sheds light onto moment-to-moment reconfigurations of large-scale functional brain networks. Due to computational limits, connectivity is typically computed using pre-defined atlases, a non-trivial choice that might influence results. Here, we leverage new computational methods to retrieve dFC at the voxel level in terms of dominant patterns of fluctuations, and demonstrate that this new representation is informative to derive meaningful brain parcellations, capturing both long-range interactions and fine-scale local organization. Specifically, voxelwise dFC dominant patterns were captured through eigenvector centrality followed by clustering across time/subjects to yield most representative dominant patterns (RDPs). Voxel-wise labeling according to positive/negative contributions to RDPs, led to 37 unique labels identifying strikingly symmetric dFC long-range patterns. These included 449 contiguous regions, defining a fine-scale parcellation consistent with known cortical/subcortical subdivisions. Our contribution provides an alternative to obtain a whole-brain parcellation that is for the first time driven by voxel-level dFC and bridges the gap between voxel-based approaches and graph theoretical analysis

    Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation

    Get PDF
    Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical–functional organization of brain regions. Inspired by these developments, we proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The raw meta data, including the experiments and the reported activation coordinates related to a brain region of interest, were acquired from the Brainmap database. Using this data, we first obtained the “modeled activation” pattern by modeling the voxel-wise activation probability given spatial uncertainty for each experiment that featured at least one focus within the region of interest. Then, we processed these “modeled activation” patterns across the experiments with a K-means clustering algorithm to group the voxels into different subregions. In order to verify the reliability of the method, we employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The parcellation results were quite consistent with previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful complement to other methods for uncovering the functional organization of the human brain

    Amygdala Volume and Social Anxiety Symptom Severity: A Mutli-method Study

    Get PDF
    Neuroimaging research has strongly influenced a biologically-based conceptualization of social anxiety, which is the fear of evaluation from others. Functional neuroimaging research has shown consistently a robust association between atypical amygdala activation and social anxiety symptoms. However, there are disparities in the small structural imaging literature on the amygdala and social anxiety. The inconsistent findings may, in part, be a function of differences across studies in the methods used to obtain amygdala volumes. Freesurfer and manual tracings are two common segmentation techniques, and the use of one over the other involves different tradeoffs. The present study directly compared amygdala volumes generated based on Freesurfer’s boundaries to those generated based on manually corrected boundaries, in neurotypical adults with varying levels of social anxiety. Also, it examined whether amygdala volume predicted social anxiety symptom severity. The Liebowitz Social Anxiety Scale – Self-Report version served as a measure of social anxiety. Participants (N = 76) were selected from three larger archival projects. They had social anxiety scores ranging from 0 - 108 (M = 54.59 ± 33.34). The results suggest Freesurfer’s boundaries consistently produced larger amygdala volumes than manually corrected boundaries. However, in neurotypical individuals with and without social anxiety, manual correction did not provide added benefit over the use of Freesurfer with regard to predicting social anxiety symptoms. The present findings strongly suggest that volumetric measurement of the amygdala is not helpful for understanding variability in social anxiety symptom severity and call into question numerous aspects of existing volumetric studies of the neural correlates of social anxiety
    corecore