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Abstract 

Parcellation of the human brain into fine-grained units by grouping voxels into distinct 

clusters has been an effective approach for delineating specific brain regions and their 

subregions. Published neuroimaging studies employing coordinate-based meta-analyses have 

shown that the activation foci and their corresponding behavioral categories may contain 

useful information about the anatomical-functional organization of brain regions. Inspired by 

these developments, we proposed a new parcellation scheme called meta-analytic activation 

modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The 

raw meta data, including the experiments and the reported activation coordinates related to a 

brain region of interest, were acquired from the Brainmap database. Using this data, we first 

obtained the “modeled activation” pattern by modeling the voxel-wise activation probability 

given spatial uncertainty for each experiment that featured at least one focus within the region 

of interest. Then, we processed these “modeled activation” patterns across the experiments 

with a K-means clustering algorithm to group the voxels into different subregions. In order to 

verify the reliability of the method, we employed our method to parcellate the amygdala and 
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the left Brodmann area 44 (BA44). The parcellation results were quite consistent with 

previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP 

proposed in the current study could be a useful complement to other methods for uncovering 

the functional organization of the human brain. 

Keywords: Meta-analysis, Activation modeling, Parcellation, Neuroimaging, Behavior domain 
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Introduction 

Neuroimaging techniques have been used to find the relationships between function and 

structure in the human brain (for an overview see Eickhoff & Grefkes 2011). From one 

perspective, researchers want to know which brain region is activated by the task at hand 

(Fox and Lancaster, 2002). Additionally, they want to know which tasks a brain region will 

participate in and how brain regions interact and cooperate with each other to accomplish a 

task. The relationship between tasks and brain activations is, however, complex. Because of 

the complexity of the mechanisms of brain function, a single task will commonly activate 

several brain regions simultaneously. In fact, different brain regions need to cooperate to 

accomplish almost any task (Bullmore and Sporns, 2009; Fox and Friston, 2012). On the 

other hand, considerable evidence suggests that one brain region may be involved in different 

functional networks (Bressler, 1995; Bullmore and Sporns, 2009) and activated in many 

different tasks (e.g., Dosenbach et al., 2006). The best way to simultaneously characterize the 

structural and functional properties of the human brain currently seems to be to use functional 

neuroimaging techniques such as functional magnetic resonance imaging (fMRI) or positron 

emission tomography (PET). In functional neuroimaging studies, researchers use such 

techniques to localize the brain regions that participate in certain tasks. The statistical map 

related to a particular task encodes the information about the two aspects of the relationships. 

In this paper, we will refer to the way a region activates in different tasks as its activation 

pattern. Regions that have similar activation patterns across different tasks may thus belong 

to the same functional community and work together to accomplish common mental 
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processes (Smith et al., 2009). Based on this, we assumed that if the activation level of two 

voxels covaries across experiments, meaning that they both have a high level of activation in 

the same group of tasks and a low level of activation in other tasks, they should form a 

distinct module or functionally homogenous region. Thus, it is possible to design some 

elaborate task fMRI experiments and use such task-dependent activation patterns to study the 

functional topology of the human brain. However, the major problem is that the information 

needed to predict which tasks will cover the function of a brain region is not really known. 

Another problem is that it would be very costly to collect so many task fMRI images in a 

single study.  

Due to the development of various neuroimaging study databases and tools such as 

Brainmap (Fox et al., 2005) and Neurosynth (Yarkoni et al., 2011), researchers have been 

able to begin to focus on the coordinate-based meta-analysis of neuroimaging studies. Rather 

than collecting the raw task fMRI images or the statistical parametric maps, these databases 

store the peak coordinates of the statistical maps related to a particular task, reported in 

standard space. The advantage of meta-analysis is that researchers can recruit published 

statistics to perform higher-level statistical analyses without having to collect the actual 

image data. The key in such coordinate-based meta-analyses has been to model the whole 

brain activation using the sparse peak coordinates; this modeling procedure has been 

implemented in several algorithms such as the activation likelihood estimation algorithm 

(ALE) (Laird et al., 2005; Turkeltaub et al., 2002) and multi-level kernel density analysis 

(MKDA) (Wager et al., 2009). This type of coordinate-based meta-analysis has been used to 

study the functional connectivity of brain regions and further used to perform task-dependent 
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parcellations. Toro et al. (2008) mapped the functional connectivity between regions by 

estimating the co-occurrence of the voxel activity across several neuroimaging studies. This 

approach was later formalized as meta-analytic connectivity modeling (MACM) (Robinson et 

al., 2010), which used the ALE algorithm to identify regions showing statistically significant 

co-activation patterns, i.e., the task-dependent functional connectivity of the seed region. 

Later such meta-analytic co-activation maps were used as voxel-wise features to identify the 

subregions in a given area (Eickhoff et al., 2011). Moreover, the behavioral metadata in the 

Brainmap database, specifically the paradigm and behavioral domain descriptions of the 

experiments, enable researchers to infer the functional properties of the subregions. Recently, 

the method was successfully used to parcellate various brain regions, including the amygdala, 

BA44, and the posterior superior temporal gyrus (Bzdok et al., 2013; Clos et al., 2013; Wang 

et al., 2015).  

Co-activation-based parcellation is quite similar to connectivity-based parcellation 

(Anwander et al., 2007; Beckmann et al., 2009; Mars et al., 2011; Wang et al., 2012). 

Although the covariance of resting state signal fluctuations is conceptually different from 

these methods, some researchers have directly used covariance to parcellate brain areas 

(Zhang et al., 2014). Similarly, another study used the Brainmap database to investigate the 

covariance within the activation pattern rather than focusing on co-activations (Smith et al., 

2009). In this latter study, an independent component analysis (ICA)-based analysis of spatial 

activation maps from Brainmap discovered some major explicit activation networks that are 

very similar to the majority of networks that can be identified by measuring spontaneous 

covariations in the resting fMRI brain. By an extension of this to parcellation, it is possible to 
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measure the voxel-wise similarity directly rather than doing this through identifying the 

co-activation pattern. For this reason, we proposed a new meta-analysis-based parcellation 

method called meta-analytic activation modeling-based parcellation (MAMP) by modeling of 

the voxel-wise activation followed by the K-means clustering algorithm. To test the accuracy 

of this method, we used it to parcellate the amygdala and the left side BA44 area that had 

previously been parcellated using the MACM method (Bzdok et al., 2013; Clos et al., 2013).   

Materials and Methods 

In our method we assumed that, in contrast to two voxels in different regions, foci located in 

a functionally homogeneous region or subregion should tend to be reported in experiments 

that share the same paradigm and should have similar activation patterns that co-vary across 

experiments from different paradigms. To estimate the activation of a voxel in an experiment, 

we applied the modeled activation value (MA value) from the ALE algorithm. The modeled 

activation value estimates the likelihood of a particular voxel’s being activated during a given 

experiment. Such MA value images across experiments were combined to form MA value 

image sequences. This sequence of MA values was treated as a feature profile for each voxel. 

Then we applied the K-means clustering algorithm to the MA value sequences. This method 

can divide the region of interest (ROI) into functionally homogenous subregions, and also can 

help us to interpret the relationship between the functions of the subregions and the specific 

tasks to which they respond. The basic steps of our method included data preparation to 

obtain ROI related experiments from the Brainmap database followed by construction of 

voxel-wise MA patterns based on meta-analytic activation modeling and voxel clustering, as 
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shown in Figure 1. 

Data preparation 

The image files for the two ROIs, i.e., the amygdala and the BA44 area, were created with the 

Anatomy Toolbox in spm8 (Eickhoff et al., 2005). Specially, the left and right amygdala ROIs 

were composed of three micro-anatomically-defined cyto-architectonic subregions of the 

amygdala (Amunts et al., 2005), namely the laterobasal nuclei group (LB), centromedial 

nuclei group (CM), and the superficial nuclei group (SF) in the Jülich amygdala atlas. All the 

ROIs were down sampled to a 2 mm × 2 mm × 2 mm resolution space. 

 

We then searched the Brainmap database (Fox et al., 2005; Fox and Lancaster, 2002) to get 

the ROI-related functional experiments. Brainmap archives over 10000 neuroimaging 

experiments with the coordinates of reported activations and labels each experiment with its 

experimental paradigms and behavior domains, a practice which makes it feasible to perform 

a task-based analysis. We constrained our analysis to fMRI (functional magnetic resonance 

imaging) and PET (positron emission tomography) experiments with conventional mapping 

(no interventions, no group comparisons) which used healthy participants and reported the 

results as coordinates in stereotaxic space. These inclusion criteria yielded ~7,300 eligible 

experiments at the time of the analysis. From these experiments, we then filtered out those 

that reported activation foci located in and surrounding the ROIs we had selected with a 2 

mm tolerance margin outside the ROIs. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

    9 
 

Meta-analytic activation modeling 

First, we constructed the meta-analytic modeled activation profiles. For each experiment 

obtained from the database, we used the modeled activation value obtained from the ALE 

algorithm (Eickhoff et al., 2009) to estimate the probability of activation for each seed voxel 

in the ROI. Each reported focus was modeled by a 3D Gaussian distribution with adaptive 

full-width at half-maximum (FWHM), which depends on the sample size in the experiment, 

to evaluate the spatial uncertainty of the real position of the focus and the inter-subject 

localization uncertainty. Let iX  denote the situation in which the i th focus is located in a 

given voxel. The probability of iX  occurring at a seed voxel is 

2 2

3/2 3

exp( / 2 )
( )

((2 ) )
i

r i

d
P X V



 


   

where id  is the Euclidean distance from the center of the seed voxel to the i th focus and 

  is the standard deviation of the Gaussian distribution. To obtain the probability estimate 

for the entire voxel volume instead of just its central point, the Gaussian probability density 

was multiplied by the voxel size, V . The voxel-wise MA value takes the maximum 

probability associated with any one focus, as reported from the experiment (Turkeltaub et al., 

2012). 

( , , ) max( ( ))r iMA x y z P X  

 After calculating MA values for each voxel in each experiment, the values were 

rearranged into a N M matrix (1173 1307 ,556 413 , 584 386  for the left BA44, the 

left amygdala, and the right amygdala, respectively), where N  was the number of seed 

voxels and M  was the number of experiments that activated a particular ROI. The row 
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vector of M  elements is called the modeled activation pattern. Each element in the 

sequence measures the activation level of the voxel in the corresponding experiment. The 

activation pattern series varies across experiments. The features of a particular voxel (the 

activation likelihoods in different experiments) are independent of each other. The features of 

different voxels will be correlated given that activation likelihoods are spatially smooth. We 

normalized each row of the MA patterns to unit vectors to ensure that the features were scale 

invariant.  

Similarity matrix calculating 

We computed the similarity between every pair of meta-analytically-modeled activation 

patterns and got an N N similarity matrix. Different metrics, such as correlation (the 

sample linear correlation between observations), Euclidean similarity (one minus the 

normalized Euclidean distance), and cosine similarity (one minus the cosine distance), can be 

used to compute the similarity matrix. We tested our method on all of these most widely used 

similarity measures. 

 

Voxel clustering and experiment clustering 

Once we produced the MA patterns, we used clustering algorithms to cluster the voxels. We 

could have used any of several clustering algorithms, such as K-means or N-cut. For the 

convenience of allowing a comparison between the MAMP and MACM, we used the 

K-means clustering algorithm, which was implemented in Matlab2012a, because that 
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algorithm was used in the MACM. K-means clustering is a non-hierarchical clustering 

method that uses an iterative algorithm to separate the seed region into a previously selected 

number of K non-overlapping clusters (Hartigan and Wong, 1979). Clustering using the 

K-means algorithm consists of minimizing the variance within clusters and maximizing the 

variance between clusters by first computing the centroid of each cluster and subsequently 

reassigning voxels to the clusters such that their difference from the nearest centroid is 

minimal. We needed to choose K, the number of clusters, and the distance metric. All three 

distances used to compute a similarity matrix, for which correlation, Euclidean similarity, and 

cosine similarity could be used here. The input of the clustering algorithm was an N M  

MA value sequence and K (the number of the clusters); the output was the index vector of the 

cluster label. For the amygdala, both left and right, we set K to 3, expecting to get 

parcellation results which were similar to those in the cytoarchitecture map from the 

Anatomy Toolbox. For the left BA44, we set K to 5 based on the MACM parcellation results 

(Clos et al., 2013). To measure the overlap of the corresponding subregions between different 

parcellation methods (cytoarchitecture, MACM, and MAMP), we computed the dice index 

for each pair of subregions. The dice coefficient is a statistic used for comparing the 

similarity of two sets: 

2 X Y
s

X Y



 

As we assumed, voxels in the same subregion tended to be activated under the same 

functional paradigms. In other words, it is likely that different groups of voxels may be 

activated by different groups of experiments. Or even further, these groups of experiments 
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may belong to different behavior domains. To find the relationship between activation and 

tasks, we used the K-means clustering algorithm to group the experiments into K subsets. 

After that, both the N M  MA value matrix and the N N similarity matrix were 

reordered to find whether the K subsets of the experiments corresponded to each individual 

voxel cluster. This is possible because each voxel cluster will have a high activation in its 

corresponding experiments but a low activation in other experiments.     

 

Function decoding 

Furthermore, we employed behavior analysis to characterize the function of each subregion. 

The functional profile of a subregion quantitatively describes the statistical association 

between the activation of the region and the behavior domains. The behavioral domains 

comprise the main categories of cognition, action, perception, emotion, and interoception, as 

well as their related subcategories. These categories denote the mental processes that have 

been isolated by contrasts between different conditions. We filtered the Brainmap database 

for those experiments that featured at least one focus of activation within the ROI that we 

were currently researching. We then determined the individual functional profile of the 

MAMP-derived clusters using both forward and reverse inference (Clos et al., 2013). 

Forward inference refers to the probability of observing activity in a brain region given 

knowledge of the psychological process, represented as P(activation | domain), whereas 

reverse inference refers to the probability of a psychological process’s being present given 

knowledge of the activation in a particular brain region, represented as P(domain | activation). 

Using forward inference, a cluster’s functional profile was determined by identifying 
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taxonomic labels for which the probability of finding activation in the respective cluster was 

significantly higher than the a priori chance (across the entire database) of finding activation 

in that particular cluster. Significance was established using a binomial test (p < 0.05; 

Eickhoff et al., 2011; Nickl-Jockschat et al., 2012). That is, we tested whether the conditional 

probability of activation given a particular label [P(activation | domain)] was higher than the 

baseline probability of activating the brain region in question per se [P(activation)]. Using 

reverse inference, a cluster’s functional profile was determined by identifying the most likely 

behavioral domains given activation in a particular cluster. This likelihood P(domain | 

activation) can be derived from P(activation | domain) as well as P(domain) and P(activation) 

using Bayes’ rule. Significance was then assessed by means of a chi-square test (p < 0.05). 

 

Results 

 

Parcellation of the amygdala 

In the cytoarchitecture results as well as in the previous MACM-based parcellation results, 

the human amygdala was divided into three subregions, the laterobasal nuclei group (LB), 

centromedial nuclei group (CM), and superficial nuclei group (SF). In order to maintain 

consistency, the cluster number K in our experiment was also set to three. Fig. 2 displays the 

computational procedure of the MAMP process performed on the MA value patterns of the 

left amygdala. Fig. 2A and 2B show the original MA maps and the original similarity matrix. 

We filtered out 413 experiments that featured at least one focus that fell within the area of the 
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left amygdala. Each column in the MA map matrix represents the MA map for each 

experiment within the ROI. Each row (the modeled activation pattern), reflects the likelihood 

of the voxel to activate in the experiment. The similarity matrix was computed as the cosine 

similarity between two MA values sequences, as shown in Fig. 2B. After clustering the 

voxels, we were able to reorder the MA maps to clearly reveal the different activation 

patterns of distinct groups of voxels (Fig. 2C). In the reordered MA maps, the rows were 

arranged in the order of cluster 1 (CM), cluster 2 (SF) and cluster 3 (LB). The experiments 

were also grouped into three subsets using clustering based on the similarity of the spatial 

activation map for each pair of experiments. From this we saw that the three subsets of the 

experiments and the three subregions corresponded very well. The red, green and blue 

rectangles in Fig. 2 mark three different groups of experiments with a relatively higher 

activation for each cluster. The CM subregion had a relatively higher activation for the 

second group of experiments, marked with red rectangles. The SF had a higher activation in 

the third group of experiments, marked with green rectangles. The LB had a higher activation 

in the first group of experiments, marked with blue rectangles. The reordered similarity 

matrix (Fig. 2D) shows the separation between the three groups of voxels. It shows a high 

similarity inside a group but a low similarity between groups, leading to higher value blocks 

along the diagonal line. 

Fig. 3A shows the results of parcellating the amygdala using cytoarchitecture, MACM, 

and MAMP. Both the MAMP and MACM results demonstrated inter-hemisphere symmetry 

in the shape and topology of the subregions. As shown in Fig, S3, the parcellation results 

were robust to the choice of different similarity measures. We computed the dice coefficients 
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of the volumes from the three different parcellations to see whether the dice coefficients 

would be consistent between the methods. The topology of the three subregions derived from 

all three methods was highly similar between the different methods, as showed in the bar 

chart of the dice coefficient computed for each pair of corresponding subregions (Fig. 3B). In 

particular, the MACM and MAMP methods yielded very similar results. The lowest dice 

coefficient between these two meta-analytic methods was 0.89 for the left SF. The 

comparison between the two data-driven methods and the histological maximum probability 

map provided strong support for the biological meaningfulness of the data driven methods, 

that is, for either MACM or MAMP. 

Fig. 4 shows the function decoding results for the left amygdala. Only the results that 

remained significant (p < 0.05) after a false discovery rate (FDR) correction are displayed. 

For the left amygdala, all three subregions were highly activated by tasks involved with 

domains such as those involved with emotion (e.g. fear or happiness) or with olfactory 

perception. The CM was specifically related with the emotion of anger, whereas the SF was 

related with the emotion of disgust. Sexuality interoception was strongly present in the SF. 

The right amygdala also showed a close relationship with emotion but had slightly different 

functional profiles between the three subregions (see supplementary Fig. S2).  

    

Parcellation of the left BA44 area 

Common brain region parcellation methods depend on choosing the most optimal and 

reasonable cluster number. In order to focus on a comparison with previous results, we chose 

a cluster number of five, as previous MACM parcellation results yielded this number (Clos et 
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al., 2013). We filtered 1307 experiments that featured at least one focus falling within the left 

BA44 area. After calculating the MA maps we got a 1173 1307  MA value pattern matrix 

(Fig. 5A). The original cosine similarity matrix before clustering is displayed in Fig. 5B. 

After the K-means clustering, the voxels in the ROI were grouped into five isolated sets. 

Again, we used the K-means clustering algorithms to detect the subgroup structure of the 

experiments by clustering the MA maps within the ROI (columns in the MA value sequence 

matrix). As shown in the reordered MA map matrix (Fig. 5C), the apparent blocks in the 

matrix indicate that each subgroup of voxels corresponded with certain sets of experiments. 

The rows of the matrix indicate that voxels from different subregions had different activation 

patterns. The columns of the matrix indicate that different sets of experiments activated 

distinct brain regions within the ROI. Fig. 5D shows the reordered similarity matrix with 

higher value blocks along the diagonal line. The correspondence between the results of the 

two methods was high (Fig. 6). The dice coefficients between the two methods were on 

average above 0.74 for the five subregions (Fig. 6), indicating that the location of the five 

clusters corresponded well in the two methods. Cluster 1 showed the greatest difference 

between the two results. The differences may be attributable to uncertainty about the location 

of the borders between the subregions. The function profiles of the five subregions showed 

that all five subregions were highly associated with language related functions (Fig. 7). Four 

subregions, not including cluster 3, were involved with action. Cluster 4 was involved with 

music. Cluster 2 and cluster 5 were involved with working memory.  

 

Voxel-wise density map 
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According to our assumption, different subregions should express different activation patterns. 

This can be confirmed by checking the reordered MA maps in Fig. 2C or Fig. 5C. We see that 

the subsets of the experiments and those of the subregions corresponded very closely. The 

subset of the experiments showed spatially varied density within the ROI. Different sets of 

experiments divided up the ROI. We call this the voxel-wise density map of the experiments. 

Supplementary experiments showed that the MAMP algorithm is invariant to the choice 

of the similarity measure. The K-means obtained using different similarity measures provided 

almost identical results for both the amygdala and the BA44 area (Fig. S1, Fig. S2). 

 

Discussion 

In this study, we proposed a new method called meta-analytic activation modeling-based 

parcellation in which we utilized the information in the Brainmap database to identify 

subregions in the left and right amygdala and the left area 44. The experiments on these areas 

showed subregional structures that were consistent with previous cytoarchitecture and 

MACM-based parcellation studies. Furthermore, we applied behavioral domain analysis for 

each subregion to make inferences about the functions of the subregions. We verified that 

each subregion was activated in different sets of experiments. 

Methods Comparisons 

Brain parcellation currently uses several different approaches, which can be categorized 

based on the data modality and the similarity measure strategy that they use. One strategy for 

measuring voxel-wise similarity is to first compute the voxel-wise connectivity profiles, such 
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as those derived from anatomical, resting-state functional, and task-dependent 

co-activation-based connectivity data. Then these connectivity profiles are used to measure 

the similarity between voxels indirectly. The other is a local strategy, which is often used in 

fMRI-based parcellations. In this type of study, the local covariance of the voxel-wise fMRI 

time series is computed as the voxel-wise similarity. Different modalities can also provide 

different information about brain structure and function. Anatomical connectivity estimates 

the fiber tracts between individual brain regions, but such structural connectivity cannot fully 

encode the functional network structure of the brain (Honey et al., 2009). Therefore, we 

cannot guarantee that identifying differences in structure will yield accurate information 

about functionally distinct subregions. In resting state functional connectivity studies, the 

dynamics of the resting fMRI can lead to unstable results. Compared with task fMRI data, 

resting state signals tend to yield an insignificant amount of information about functional 

relationships and thus are not likely to provide much information about the function of a 

brain region. This defect restricts the use of this technique. Both a whole brain connectivity 

strategy and the local covariance have been used in resting state fMRI-based parcellations 

(Yeo et al., 2011; Zhang et al., 2014). Since our goal was to obtain brain function-structure 

mapping, we were obliged to dig deeply into the task-fMRI data. MACM-based connectivity 

took advantage of the rich information encoded in task-dependent neuroimaging studies and 

used global information by computing the connectivity with the rest of brain. In fact, we can 

envision the available data as being processed according to a 2 (resting state fMRI data, 

coordinate-based meta data) × 2 (whole brain connectivity-based strategy, local covariance- 

based strategy) matrix of methods. Since 3/4 of this information was previously available 
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(various studies have combined resting state data with either local or whole brain data and 

MACM supplied the third by combining whole brain connectivity with meta data), MAMP 

fills the last cell by combining resting state fMRI data with the local covariance. Our 

covariance-based strategy is conceptually different from that used in MACM in that our 

scheme directly measured the task-dependent functional relationship between two voxels 

within each ROI rather than across the entire brain. The advantage of a local strategy is that 

the measurement of voxel-wise similarity is direct and efficient. Our method recruits only the 

local activation information, whereas MACM must compute the whole brain MA map for 

each voxel. Thus, our MAMP method avoids error propagation arising from an indirect 

relationship, making the results more direct and interpretable. Interestingly, the 

MACM-based parcellation and that obtained by MAMP provided almost identical results in 

our experiments. This reflects the intrinsic relationship between these two methods. To some 

degree, our similarity measure of the MA value pattern can be expected to be close to the 

MACM-based similarity measure of the co-activation pattern. If one voxel is coactive with 

another, these two voxels should always either be simultaneously present or absent in any 

given experiment. In this situation, their MA value patterns will be similar as well. In spite of 

both our observed similarity between our MACM method and the MAMP as well as a 

reasonable explanation of why these should be similar, future studies should investigate to 

see whether these two methods produce greater differences in other regions. In either case, 

this may help to elucidate the underlying mechanisms.   
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Modeled activation value pattern 

The most pivotal aspect of our method is the modeled activation value pattern. Some peak 

coordinate-based meta-analytical neuroimaging studies used the MA value to estimate the 

activation of a voxel in each experiment. This is the basis of the ALE algorithm (Laird et al., 

2005; Turkeltaub et al., 2002) and of MACM-based parcellation. Another study used the MA 

value pattern as a voxel-wise feature to identify specific major activation networks in the 

Brainmap database (Smith et al., 2009).  

  An MA value pattern models the spatial uncertainty of a peak that has been identified 

using contrasting conditions and resembles the statistical activation map from the experiment. 

The peaks reported in a neuroimaging study constitute a rather discrete and sparse 

representation of the activation map obtained from an experiment. The activation level of the 

voxels other than those that are reported as peaks is unknown. Using 3D Gaussian kernel 

smoothing, we transformed the discrete activation map into a ‘continuous activation map’, a 

new statistical parametric map that represents the likelihood of the location of the peaks. 

After the transformation, every voxel in the ROI had an MA value for each experiment. If we 

had a sufficient number and variety of kinds of experiments archived in the database, almost 

every grey matter voxel in the brain image would be activated in some of the experiments. 

Under such an ideal condition, the MA pattern of any voxel would not be zero or meaningless 

but would have meaningful values that would fluctuate across the experiments. However, in 

practice, some voxels, particularly in larger ROIs, will always be near zero. This thorny 

problem however, exists in almost all coordinate-based meta-analysis tools. In fMRI or PET 

studies, activation usually appears in a cluster of several voxels that have statistically 
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surpassed a certain threshold rather than in an isolated voxel. This is especially true because 

spatial smoothing is a common preprocessing step in these studies. Therefore, the 

neighboring voxels will share similar activation patterns with the peak voxel. By modeling 

peaks with a Gaussian kernel center at the peak, we were similarly able to estimate the 

activation level of the neighboring voxels of the peaks. This model also thereby takes into 

account uncertainties about the coordinates of the focus in a group analysis.  

 

Density map of experiments 

    The density map for the experiments indicated that different subregions were 

specifically activated by different sets of experiments. This finding may be explained by 

results from Laird et al. (2011), which furthered the work of Smith et al. (2009) by exploring 

the relationship between the ICA maps derived from the Brainmap database and the 

behavioral metadata associated with these components. They found corresponding 

relationships between the network architecture and the Brainmap taxonomy, a finding that 

indicated each independent component corresponded with specific tasks. Another study 

constructed a meta-analytic network that revealed community structure (Crossley et al., 2013). 

That study found that many aspects of the co-activation network converged with a 

connectivity network derived from resting state fMRI data. These studies indicate that, as 

with resting fMRI, the task functional networks are organized into modules, and the role of a 

module is explicitly characterized by the related task behavior domain. In our method, the 

subregions in a ROI may belong to different networks or communities and respond to 
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different tasks, as shown by the behavior profiles for each subregion. This can also be 

confirmed by previous MACM based parcellation studies because the subregions differentiate 

between the co-activation patterns. Therefore, their MA value patterns show differences 

between the subregions. The networks that the subregions involve may overlap. Nevertheless, 

wherever Brainmap has enough experiments to cover a sufficient number of task 

configurations for the subregions, we should be able to differentiate the subregions.  

Parcellation results 

 Amygdala: Our results showed a subregion configuration that was similar to previous 

cytoarchitecture studies (Amunts et al., 2005; Eickhoff et al., 2005) and to MACM-based 

parcellation (Bzdok et al., 2013; Robinson et al., 2010). The correspondence between 

microstructure and task-based meta-analytic parcellation indicates that functional topology 

may have an underlying structural basis, though this may not be true for all brain regions. 

Although the two different meta-analytic methods deal with the data in different ways, in that 

MACM uses the whole brain grey matter to get the co-activation pattern for each voxel while 

MAMP uses only local information to compute the activation pattern, they provided almost 

identical results. This may be because voxels in the same region have both the same 

co-activation pattern and the same activation pattern across the experiments. The two 

approaches are similar in that they both use a task-based activation to represent a region 

functionally.  

Area 44:  The left BA44 area is known as part of the Broca's area, a region involved in 

semantic tasks. Some recent findings have indicated that the BA44 is activated in tasks such 
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as music perception and hand movements (Brown et al., 2006; Rizzolatti et al., 2002). 

Postmortem, receptor-based parcellation of Broca's area has suggested that this area is 

organized into the anterior-dorsal area 44d and the posterior-ventral area 44v (Amunts et al., 

2010; Amunts et al., 1999; Amunts and Zilles, 2012). A recent MACM-based study revealed 

that this area can be separated into five functionally heterogeneous regions (Clos et al., 2013). 

The region was first divided into anterior and posterior clusters. Then the anterior portion was 

hierarchically separated into clusters 2, 3, and 5 and the ventral portion was separated into 

clusters 1 and 4 (Fig. 4A). The MAMP method provided similar results to the MACM 

parcellation with a high overlap between each pair of subregions (Fig. 4B).  

Based on the behavior analysis, the three anterior clusters are engaged in 

language-related task domains, such as semantics, phonology, syntax, speech, and working 

memory, while the functional profiles of the two posterior clusters indicate that the BA44 is 

also involved in functions such as music perception and action (Fig. 5).    

Methodological considerations: 

Our method is based on published neuroimaging studies. That means that all the information 

our method retrieved was from existing experiments. We cannot guarantee that the whole 

brain and all its subregions were completely covered by these studies. The number of 

available experiments would not have been sufficient for a less studied brain region, which 

could have led to unreliable results. There is currently no way to judge whether the database 

contained enough experiments involving a particular region to allow us to perform an 

adequate parcellation. However, this does not mean that the results are meaningless. Our 
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study indicated that the results were very consistent with a cytoarchitecture-based 

parcellation, indicating that the results are biologically meaningful. Nevertheless, we must 

take care in interpreting the results, so making further comparisons with results from other 

modalities, such as microstructure (Amunts et al., 2007), resting-state fMRI (Cohen et al., 

2008), and diffusion tensor imaging (DTI) (Fan et al., 2014) will be necessary.  

Conclusion 

In this study, we proposed a new brain parcellation scheme that modeled activation patterns 

for each voxel across the experiments in the Brainmap database. Reconstructing the peaks in 

neuroimaging studies into MA values and mapping their activation patterns enabled us to 

retrieve task-related information in the neuroimaging study databases. Because we were able 

to verify its identification of subregions in both cortical and subcortical areas, MAMP seems 

to be able to provide a fresh method for mining the Brainmap data and can complement other 

brain parcellation schemes with different neuroimaging modalities. 
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Figures Legends: 

Fig. 1. Pipeline of MAMP. 

 

Schematic of MAMP pipeline. The raw meta data related to a ROI were acquired form the 

Brainmap database; molded activation patterns were constructed using the ALE algorithm; 

voxels were grouped into subregions by applying K-means clustering to the MA patterns.  

 

Fig. 2. Original and reordered MA maps and similarity matrix for the left amygdala. 

 

(A)  Original MA maps. (B) Original similarity matrix. (C) Reordered MA maps. From top 

to bottom, each row represents a voxel in the ROI in the order of cluster 1, cluster 2, and 

cluster 3. From left to right, each column represents an experiment in the order of the grouped 

three subsets of the experiments. (D) Reordered similarity matrix. 

Fig. 3. Parcellation of the amygdala.  

 

(A) Three subregions (red: CM, green: SF, blue: LB) of the parcellation of the left amygdala 

using different methods (cytoarchitecture, MACM-CBP and MAMP). (B) Overlap (Dice 

coefficient) of the voxels in the subregions between different methods.  

Fig. 4. Behavior domains of the subregions in the left amygdala.  
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Forward inference on the final clusters: significant activation probability of the cluster given a 

certain domain (left column). Reverse inference on the final clusters: significant probability 

of domain (left column) occurrence given activation in a cluster. Color code: Red = CM, 

green = SF, blue = LB. 

Fig. 5. Original and reordered MA maps and similarity matrix for the left BA44 area. 

 

(A) Original MA maps. (B) Original similarity matrix. (C) Reordered MA maps. From top to 

bottom, each row represents a voxel in the ROI in the order of cluster 1, cluster 2, and cluster 

3. From left to right, each column represents an experiment in the order of the grouped three 

subsets of the experiments. (D) Reordered similarity matrix. 

Fig. 6. Parcellation of the left BA44 area. 

 

(A)  Five subregions labeled cluster 1 (red), cluster 2 (green), cluster 3 (blue), cluster 4 

(yellow) and cluster 5 (cyan). (B) Overlap (Dice coefficient) of the voxels in the subregions 

between the results using MACM and MAMP. 

 

Fig. 7. Behavior domains of the subregions in the left BA44 area.  

 

Forward inference on the final clusters: significant activation probability of the cluster given a 

certain domain (left column). Reverse inference on the final clusters: significant probability 

of domain (left column) occurrence given activation in a cluster. Color code: Red = cluster 1, 
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green = cluster 2, blue = cluster 3, yellow = cluster 4, cyan = cluster 5. 
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Figure 1
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Figure 6
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Figure 7 
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Highlights 

The modeled activation patterns approximately estimate the activation in task fMRI. 

MAMP mines the relationship between function and structure within a ROI. 

A direct and efficient strategy is used to measure the voxel-wise similarity. 

Subregions of both cortical and subcortical areas are identified. 


