1,350 research outputs found

    Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options

    Get PDF
    The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML − including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite ‘writer’ proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates

    Long non-coding RNAs defining major subtypes of B cell precursor acute lymphoblastic leukemia

    Get PDF
    BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established BCP-ALL subtypes. METHODS: We performed RNA sequencing and DNA methylation (Illumina Infinium microarray) of 40 diagnosis and 42 relapse samples from 45 BCP-ALL patients in a German cohort and quantified lncRNA expression. Unsupervised clustering was applied to ascertain and confirm that the lncRNA-based classification of the BCP-ALL molecular subtypes is present in both our cohort and an independent validation cohort of 47 patients. A differential expression and differential methylation analysis was applied to determine the subtype-specific, relapse-specific, and differentially methylated lncRNAs. Potential functions of subtype-specific lncRNAs were determined by using co-expression-based analysis on nearby (cis) and distally (trans) located protein-coding genes. RESULTS: Using an integrative Bioinformatics analysis, we developed a comprehensive catalog of 1235 aberrantly dysregulated BCP-ALL subtype-specific and 942 relapse-specific lncRNAs and the methylation profile of three subtypes of BCP-ALL. The 1235 subtype-specific lncRNA signature represented a similar classification of the molecular subtypes of BCP-ALL in the independent validation cohort. We identified a strong correlation between the DUX4-specific lncRNAs and genes involved in the activation of TGF-β and Hippo signaling pathways. Similarly, Ph-like-specific lncRNAs were correlated with genes involved in the activation of PI3K-AKT, mTOR, and JAK-STAT signaling pathways. Interestingly, the relapse-specific lncRNAs correlated with the activation of metabolic and signaling pathways. Finally, we found 23 promoter methylated lncRNAs epigenetically facilitating their expression levels. CONCLUSION: Here, we describe a set of subtype-specific and relapse-specific lncRNAs from three major BCP-ALL subtypes and define their potential functions and epigenetic regulation. The subtype-specific lncRNAs are reproducible and can effectively stratify BCP-ALL subtypes. Our data uncover the diverse mechanism of action of lncRNAs in BCP-ALL subtypes defining which lncRNAs are involved in the pathogenesis of disease and are relevant for the stratification of BCP-ALL subtypes

    Gene Expression Profiling in an Alzheimer\u27s Disease Mouse Model

    Get PDF
    Explaining precisely how Alzheimer’s disease (AD)—the world’s most common form of dementia—materializes in the human brain has proven to be one of the most elusive ends in modern medicine. Progressive memory loss, neurodegeneration, and the presence of abnormal protein aggregates of amyloid-beta (Aβ) and neurofibrillary tangles (NFT) characterize this disease. Genome sequencing provides researchers with the ability to better identify disease-related changes in gene expression, some of which may play a role in the initiation and progression toward the AD-like state. Intimate interactions between tissues have been observed in many diseases, particularly between the brain and blood. This analysis seeks to employ RNA sequencing techniques in the brain in order to identify potential drivers, molecular passengers, and significant contributors to AD, while overlaying this data with that of the blood to identify candidate genes to be used as disease biomarkers

    Complex-based analysis of dysregulated cellular processes in cancer

    Full text link
    Background: Differential expression analysis of (individual) genes is often used to study their roles in diseases. However, diseases such as cancer are a result of the combined effect of multiple genes. Gene products such as proteins seldom act in isolation, but instead constitute stable multi-protein complexes performing dedicated functions. Therefore, complexes aggregate the effect of individual genes (proteins) and can be used to gain a better understanding of cancer mechanisms. Here, we observe that complexes show considerable changes in their expression, in turn directed by the concerted action of transcription factors (TFs), across cancer conditions. We seek to gain novel insights into cancer mechanisms through a systematic analysis of complexes and their transcriptional regulation. Results: We integrated large-scale protein-interaction (PPI) and gene-expression datasets to identify complexes that exhibit significant changes in their expression across different conditions in cancer. We devised a log-linear model to relate these changes to the differential regulation of complexes by TFs. The application of our model on two case studies involving pancreatic and familial breast tumour conditions revealed: (i) complexes in core cellular processes, especially those responsible for maintaining genome stability and cell proliferation (e.g. DNA damage repair and cell cycle) show considerable changes in expression; (ii) these changes include decrease and countering increase for different sets of complexes indicative of compensatory mechanisms coming into play in tumours; and (iii) TFs work in cooperative and counteractive ways to regulate these mechanisms. Such aberrant complexes and their regulating TFs play vital roles in the initiation and progression of cancer.Comment: 22 pages, BMC Systems Biolog

    A networks method for ranking microRNA dysregulation in cancer

    Get PDF
    Background Despite the lack of agreement on their exact roles, it is known that miRNAs contribute to cancer progression. Many studies utilize methods to detect differential regulation of miRNA expression. It is prohibitively expensive to examine all potentially dysregulated miRNAs and traditionally, researchers have focused their efforts on the most extremely dysregulated miRNAs. These methods may overlook the contribution of less differentially expressed but more functionally relevant miRNAs. The purpose of this study was to outline a method that not only utilizes differential expression but ranks miRNAs based on the functional relevance of their targets. This work uses a networks based approach to determine the sum node degree for all experimentally verified miRNA targets to identify potential regulators of prostate cancer initiation, progression and metastasis. Results Here, we present a method for identifying functionally relevant miRNAs that contribute to prostate cancer development. This paper shows that miRNAs preferentially regulate highly connected, central proteins within a protein-protein interaction network. Known targets of miRNAs differentially regulated during prostate cancer progression are enriched in pathways with known involvement in tumorigenesis. To demonstrate the applicability of our method, we utilized a unique model of prostate cancer progression to identify five miRNAs that may contribute to the oncogenic state of the cell. Three of these miRNAs have been shown by other studies to have a role in cancer but their exact role in prostate cancer remains undefined. Conclusion Developing methods to determine which miRNAs to carry forward into biological and biochemical analyses is important as traditional approaches often overlook miRNAs that contribute to oncogenesis. Our method applied to a model of prostate cancer progression was able to identify miRNAs with roles in prostate cancer development

    Long noncoding RNAs during normal and malignant hematopoiesis

    Get PDF
    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant DK068348)National Heart, Lung, and Blood Institute (Grant 5P01 HL066105

    Potential role of lncRNA cyp2c91-protein interactions on diseases of the immune system

    Get PDF
    With unprecedented increase in next generation sequencing (NGS) technologies, there has been a persistent interest on transcript profiles of long noncoding RNAs (lncRNAs) and protein-coding genes forming an interaction network. Apart from protein-protein interaction (PPI), gene network models such as Weighted Gene Co-expression Network Analysis are used to functionally annotate lncRNAs in identifying their potential disease associations. To address this, studies have led to characterizing transcript structures and understanding expression profiles mediating regulatory roles. In the current exploratory analysis, we show how a lncRNA - cyp2c91 contributes to the transcriptional regulation localized to cytoplasm thereby making refractory environment for transcription. By applying network methods and pathway analyses on genes related to a disease such as obesity and systemic lupus erythematosus, we show that we can gain deeper insight in biological processes such as the perturbances in immune system, and get a better understanding of the systems biology of diseases

    Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis

    Get PDF
    Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and its prognostic is influenced by the progression covering a complex network of gene interactions. In our study, we screened differential expressed genes, and constructed protein-protein interaction (PPI) network and a weighted gene co-expression network to identify key genes and pathways associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in response to wounding, positive regulation of immune system process, leukocyte activation, immune response and cell activation. Downregulated DEGs were significantly enriched in oxidation reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In the PPI network, top 10 hub genes were identified (TOP2A, MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR and PTGS2). In co-expression network, 6 ccRCC-related modules were identified. They were associated with immune response, metabolic process, cell cycle regulation, angiogenesis and ion transport. In conclusion, our study illustrated the hub genes and pathways involved in the progress of ccRCC, and further molecular biological experiments are needed to confirm the function of the candidate biomarkers in human ccRCC

    The epigenetic landscape of renal cancer

    Get PDF
    This is an accepted manuscript of an article published by Nature in Nature Reviews: Nephrology on 28/11/2016, available online: https://doi.org/10.1038/nrneph.2016.168 The accepted version of the publication may differ from the final published version.The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers
    • …
    corecore