14,168 research outputs found

    Using stratified medicine to understand, diagnose, and treat neuropathic pain

    Get PDF
    Neuropathic pain (NeuP) is defined as pain arising from a lesion or disease of the somatosensory nervous system. NeuP is common, affecting approximately 6-8% of the general population and currently treatment is inadequate due to both poor drug efficacy and tolerability. Many different types of injury can cause neuropathic pain including genetic (e.g. SCN9A gain of function variants), metabolic (e.g. diabetic polyneuropathy), infective (e.g. HIV associated neuropathy, hepatitis), traumatic and toxic (e.g. chemotherapy induced neuropathy) causes. Such injurious events can impact on anatomically distinct regions of the somatosensory nervous system ranging from the terminals of nociceptive afferents (in small fiber neuropathy) to the thalamus (in post-stroke pain). Classification of neuropathic pain using etiology and location remains an important aspect of routine clinical practice; however, pain medicine is coming to the realization that we need more precision in this classification. The hope is that improved classification will lead to better understanding of risk, prognosis and optimal treatment of NeuP

    Translational Oncogenomics and Human Cancer Interactome Networks

    Get PDF
    An overview of translational, human oncogenomics, transcriptomics and cancer interactomic networks is presented together with basic concepts and potential, new applications to Oncology and Integrative Cancer Biology. Novel translational oncogenomics research is rapidly expanding through the application of advanced technology, research findings and computational tools/models to both pharmaceutical and clinical problems. A self-contained presentation is adopted that covers both fundamental concepts and the most recent biomedical, as well as clinical, applications. Sample analyses in recent clinical studies have shown that gene expression data can be employed to distinguish between tumor types as well as to predict outcomes. Potentially important applications of such results are individualized human cancer therapies or, in general, ‘personalized medicine’. Several cancer detection techniques are currently under development both in the direction of improved detection sensitivity and increased time resolution of cellular events, with the limits of single molecule detection and picosecond time resolution already reached. The urgency for the complete mapping of a human cancer interactome with the help of such novel, high-efficiency / low-cost and ultra-sensitive techniques is also pointed out

    Host sequence motifs shared by HIV predict response to antiretroviral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV viral genome mutates at a high rate and poses a significant long term health risk even in the presence of combination antiretroviral therapy. Current methods for predicting a patient's response to therapy rely on site-directed mutagenesis experiments and <it>in vitro </it>resistance assays. In this bioinformatics study we treat response to antiretroviral therapy as a two-body problem: response to therapy is considered to be a function of both the host and pathogen proteomes. We set out to identify potential responders based on the presence or absence of host protein and DNA motifs on the HIV proteome.</p> <p>Results</p> <p>An alignment of thousands of HIV-1 sequences attested to extensive variation in nucleotide sequence but also showed conservation of eukaryotic short linear motifs on the protein coding regions. The reduction in viral load of patients in the Stanford HIV Drug Resistance Database exhibited a bimodal distribution after 24 weeks of antiretroviral therapy, with 2,000 copies/ml cutoff. Similarly, patients allocated into responder/non-responder categories based on consistent viral load reduction during a 24 week period showed clear separation. In both cases of phenotype identification, a set of features composed of short linear motifs in the reverse transcriptase region of HIV sequence accurately predicted a patient's response to therapy. Motifs that overlap resistance sites were highly predictive of responder identification in single drug regimens but these features lost importance in defining responders in multi-drug therapies.</p> <p>Conclusion</p> <p>HIV sequence mutates in a way that preferentially preserves peptide sequence motifs that are also found in the human proteome. The presence and absence of such motifs at specific regions of the HIV sequence is highly predictive of response to therapy. Some of these predictive motifs overlap with known HIV-1 resistance sites. These motifs are well established in bioinformatics databases and hence do not require identification via <it>in vitro </it>mutation experiments.</p

    Galectin-3. One molecule for an alphabet of diseases, from A to Z

    Get PDF
    Galectin-3 (Gal-3) regulates basic cellular functions such as cell–cell and cell–matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed

    Drug resistance mutations in HIV:new bioinformatics approaches and challenges

    Get PDF
    International audienceDrug resistance mutations appear in HIV under treatment pressure. Resistant variants can be transmitted to treatmentnaive individuals, which can lead to rapid virological failure and can limit treatment options. Consequently, quantifying the prevalence, emergence and transmission of drug resistance is critical to effectively treating patients and to shape health policies. We review recent bioinformatics developments and in particular describe: (1) the machine learning approaches intended to predict and explain the level of resistance of HIV variants from their sequence data; (2) the phylogenetic methods used to survey the emergence and dynamics of resistant HIV transmission clusters; (3) the impact of deep sequencing in studying within-host and between-host genetic diversity of HIV variants, notably regarding minority resistant variants

    Research on experiential psychotherapies

    Get PDF
    Reviews research on experiential or humanistic psychotherapies, including meta-analysis of outcome research and studies of particular change processes. Outcome meta-analysis shows large client pre-post change, as well as large controlled effects relative to untreated controls and statistical equivalence to nonexperiential psychotherapies, including CBT

    Using data-driven rules to predict mortality in severe community acquired pneumonia

    Get PDF
    Prediction of patient-centered outcomes in hospitals is useful for performance benchmarking, resource allocation, and guidance regarding active treatment and withdrawal of care. Yet, their use by clinicians is limited by the complexity of available tools and amount of data required. We propose to use Disjunctive Normal Forms as a novel approach to predict hospital and 90-day mortality from instance-based patient data, comprising demographic, genetic, and physiologic information in a large cohort of patients admitted with severe community acquired pneumonia. We develop two algorithms to efficiently learn Disjunctive Normal Forms, which yield easy-to-interpret rules that explicitly map data to the outcome of interest. Disjunctive Normal Forms achieve higher prediction performance quality compared to a set of state-of-the-art machine learning models, and unveils insights unavailable with standard methods. Disjunctive Normal Forms constitute an intuitive set of prediction rules that could be easily implemented to predict outcomes and guide criteria-based clinical decision making and clinical trial execution, and thus of greater practical usefulness than currently available prediction tools. The Java implementation of the tool JavaDNF will be publicly available. © 2014 Wu et al

    Modeling Virus-Host Networks

    Get PDF
    Virus-host interactions are being cataloged at an increasing rate using protein interaction assays and small interfering RNA screens for host factors necessary for infection. These interactions can be viewed as a network, where genes or proteins are nodes, and edges correspond to associations between them. Virus-host interac- tion networks will eventually support the study and treatment of infection, but first require more data and better analysis techniques. This dissertation targets these goals with three aims. The first aim tackles the lack of data by providing a method for the computational prediction of virus-host protein interactions. We show that HIV-human protein interactions can be predicted using documented human peptide motifs found to be conserved on HIV proteins from different subtypes. We find that human proteins predicted to bind to HIV proteins are enriched in both documented HIV targeted proteins and pathways known to be utilized by HIV. The second aim seeks to improve peptide motif annotation on virus proteins, starting with the dock- ing site for protein kinases ERK1 and ERK2, which phosphorylate HIV proteins during infection. We find that the docking site motif, in spite of being suggestive of phosphorylation, is not present on all HIV subtypes for some HIV proteins, and we provide evidence that two variations of the docking site motif could explain phos- phorylation. In the third aim, we analyze virus-host networks and build on the observation that viruses target host hub proteins. We show that of the two hub types, date and party, HIV and influenza virus proteins prefer to interact with the latter. The methods presented here for prediction and motif refinement, as well as the analysis of virus targeted hubs, provide a useful set of tools and hypotheses for the study of virus-host interactions
    corecore