202 research outputs found

    Identifying Connectome Module Patterns via New Balanced Multi-Graph Normalized Cut.

    Get PDF
    Computational tools for the analysis of complex biological networks are lacking in human connectome research. Especially, how to discover the brain network patterns shared by a group of subjects is a challenging computational neuroscience problem. Although some single graph clustering methods can be extended to solve the multi-graph cases, the discovered network patterns are often imbalanced, e.g. isolated points. To address these problems, we propose a novel indicator constrained and balanced multi-graph normalized cut method to identify the connectome module patterns from the connectivity brain networks of the targeted subject group. We evaluated our method by analyzing the weighted fiber connectivity networks

    Different approaches to community detection

    Full text link
    A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in network clustering and blockmodeling, and based on an extended version of The many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4 (2017) by the same author

    The Structural Basis for Brain Health

    Get PDF
    Cardiovascular disease (CVD) remains the leading cause of mortality in the United States. Stroke and dementia are the leading causes of adult disability worldwide, and the 5th and 6th leading causes of mortality respectively in the United States. Furthermore, CVD annually accounts for approximately $330 billion in direct and indirect costs in the United States: approximately one in seven health care dollars is spent on CVD. While these diseases have different etiologies, and present with different clinical manifestations and prognosis, converging evidence increasingly supports the idea of CVD as a common pathophysiological origin of cerebrovascular disease, potentially indicating a complex interplay between brain health and cardiovascular health. In this thesis, we leverage methodological advancements in systems and computational neurosciences related to the human brain connectome to assess individual topological network organization and integrity in acute and chronic stroke cohorts, and in a non-stroke cohort with varying CV risk factor burden, using graph theory and network analysis. We propose measures that underly neuroanatomical mechanisms that constitute efficient transfer of information and brain health. We demonstrate the impact of cardiovascular risk factors on brain health, even before overt clinical manifestation, and the resulting impact on cognitive performance, and further determine the underlying pathophysiology relating white matter disease and post-stroke outcomes

    Multimodal and multiscale brain networks : understanding aging, Alzheimer’s disease, and other neurodegenerative disorders

    Get PDF
    The human brain can be modeled as a complex network, often referred to as the connectome, where structural and functional connections govern its organization. Several neuroimaging studies have focused on understanding the architecture of healthy brain networks and have shed light on how these networks evolve with age and in the presence of neurodegenerative disorders. Many studies have explored the brain networks in Alzheimer’s disease (AD), the most common type of dementia, using various neuroimaging modalities independently. However, most of these studies ignored the complex and multifactorial nature of AD. The aim of this thesis was to investigate and analyze the brain’s multimodal and multiscale network organization in aging and in AD by using different multilayer brain network analyses and different types of data. Additionally, this research extended its scope to incorporate other dementias, such as Lewy body dementias, allowing for a comparison of these disorders with AD and normal aging. These comparisons were made possible through the application of protein co-expression networks. In Study I, we investigated sex differences in healthy individuals using multimodal brain networks. To do this we used resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion-weighted imaging (DWI) data from the Human Connectome Project (HCP) to perform multilayer and deep learning analyses. These analyses identified differences between men's and women's underlying brain network organization, showing that the deep-learning analysis with multilayer network metrics (area under the curve, AUC, of 0.81) outperforms the classification using single-layer network measures (AUC of 0.72 for functional networks and 0.70 for anatomical networks). Furthermore, we integrated the multilayer brain networks methodology and neural network models into a software package that is easy to use by researchers with different backgrounds and is also easily expandable for researchers with different levels of programming experience. Then, we used the multilayer brain networks methodology to study the interaction between sex and age on the functional network topology using a large group of people from the UK Biobank (Study II). By incorporating multilayer brain network analyses, we analyzed both positive and negative connections derived from functional correlations, and we obtained important insights into how cognitive abilities, physical health, and even genetic factors differ between men and women as they age. Age and sex were strongly associated with multiplex and multilayer measures such as the multiplex participation coefficient, multilayer clustering, and multilayer global efficiency, accounting for up to 89.1%, 79.9%, and 79.5% of the variance related to age, respectively. These results indicate that incorporating separate layers for positive and negative connections within a complex network framework reveals sensitive insights into age- and sex-related variations that are not detected by traditional metrics. Furthermore, our functional metrics exhibited associations with genes that have previously been linked to processes related to aging. In Study III, we assessed whether multilayer connectome analyses could offer new perspectives on the relationship between amyloid pathology and gray matter atrophy across the AD continuum. Subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were divided into four groups based on cerebrospinal fluid (CSF) amyloid-β (Aβ) biomarker levels and clinical diagnosis. We compared the different groups using weighted and binary multilayer measures that assess the strength of the connections, the modularity, as well as the multiplex segregation and integration of the brain connectomes. Across Aβ-positive (Aβ+) groups, we found widespread increases in the overlapping connectivity strength and decreases in the number of identical connections in both layers. Moreover, the brain modules were reorganized in the mild cognitive impairment (MCI) Aβ+ group and an imbalance in the quantity of couplings between the two layers was found in patients with MCI Aβ+ and AD Aβ+. Using a subsample from the same database, ADNI, we analyzed rs-fMRI data from individuals at preclinical and clinical stages of AD (Study IV). By dividing the time series into different time windows, we built temporal multilayer networks and studied the modular organization across time. We were able to capture the dynamic changes across different AD stages using this temporal multilayer network approach, obtaining outstanding areas under the curve of 0.90, 0.92 and 0.99 in the distinction of controls from preclinical, prodromal, and clinical AD stages, respectively, on top and beyond common risk factors. Our results not only improved the discrimination between various disease stages but, importantly, they also showed that dynamic multilayer functional measures are associated with memory and global cognition in addition to amyloid and tau load derived from positron emission tomography. These results highlight the potential of dynamic multilayer functional connectivity measures as functional biomarkers of AD progression. In Study V, we used in-depth quantitative proteomics to compare post-mortem brains from three key brain regions (prefrontal cortex, cingulate cortex, and the parietal cortex) directly related to the disease mechanisms of AD, Parkinson’s disease with dementia (PDD), dementia with Lewy bodies (DLB) in prospectively followed patients and older adults without dementia. We used covariance weighted networks to find modules of protein sets to further understand altered pathways in these dementias and their implications for prognostic and diagnostic purposes. In conclusion, this thesis explored the complex world of brain networks and offered insightful information about how age, sex, and AD influence these networks. We have improved our understanding of how the brain is organized in different imaging modalities and different time scales, as well as developing software tools to make this methodology available to more researchers. Additionally, we assessed the connections among various proteins in different areas of the brain in relation to health, Alzheimer's disease, and Lewy body dementias. This work contributes to the collective effort of unraveling the mysteries of the human brain organization and offers a foundation for future research to understand brain networks in health and disease

    Phenotyping functional brain dynamics:A deep learning prespective on psychiatry

    Get PDF
    This thesis explores the potential of deep learning (DL) techniques combined with multi-site functional magnetic resonance imaging (fMRI) to enable automated diagnosis and biomarker discovery for psychiatric disorders. This marks a shift from the convention in the field of applying standard machine learning techniques on hand-crafted features from a single cohort.To enable this, we have focused on three main strategies: utilizing minimally pre-processed data to maintain spatio-temporal dynamics, developing sample-efficient DL models, and applying emerging DL training techniques like self-supervised and transfer learning to leverage large population-based datasets.Our empirical results suggest that DL models can sometimes outperform existing machine learning methods in diagnosing Autism Spectrum Disorder (ASD) and Major Depressive Disorder (MDD) from resting-state fMRI data, despite the smaller datasets and the high data dimensionality. Nonetheless, the generalization performance of these models is currently insufficient for clinical use, raising questions about the feasibility of applying supervised DL for diagnosis or biomarker discovery due to the highly heterogeneous nature of the disorders. Our findings suggest that normative modeling on functional brain dynamics provides a promising alternative to the current paradigm

    Micro-, Meso- and Macro-Connectomics of the Brain

    Get PDF
    Neurosciences, Neurolog

    Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    Get PDF
    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory.SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases

    Acquisition and Mining of the Whole Mouse Brain Microstructure

    Get PDF
    Charting out the complete brain microstructure of a mammalian species is a grand challenge. Recent advances in serial sectioning microscopy such as the Knife- Edge Scanning Microscopy (KESM), a high-throughput and high-resolution physical sectioning technique, have the potential to finally address this challenge. Nevertheless, there still are several obstacles remaining to be overcome. First, many of these serial sectioning microscopy methods are still experimental and are not fully automated. Second, even when the full raw data have been obtained, morphological reconstruction, visualization/editing, statistics gathering, connectivity inference, and network analysis remain tough problems due to the unprecedented amounts of data. I designed a general data acquisition and analysis framework to overcome these challenges with a focus on data from the C57BL/6 mouse brain. Since there has been no such complete microstructure data from any mammalian species, the sheer amount of data can overwhelm researchers. To address the problems, I constructed a general software framework for automated data acquisition and computational analysis of the KESM data, and conducted two scientific case studies to discuss how the mouse brain microstructure from the KESM can be utilized. I expect the data, tools, and studies resulting from this dissertation research to greatly contribute to computational neuroanatomy and computational neuroscience
    corecore