8 research outputs found

    Identifying codes of corona product graphs

    Full text link
    For a vertex xx of a graph GG, let NG[x]N_G[x] be the set of xx with all of its neighbors in GG. A set CC of vertices is an {\em identifying code} of GG if the sets NG[x]∩CN_G[x]\cap C are nonempty and distinct for all vertices xx. If GG admits an identifying code, we say that GG is identifiable and denote by γID(G)\gamma^{ID}(G) the minimum cardinality of an identifying code of GG. In this paper, we study the identifying code of the corona product H⊙GH\odot G of graphs HH and GG. We first give a necessary and sufficient condition for the identifiable corona product H⊙GH\odot G, and then express γID(H⊙G)\gamma^{ID}(H\odot G) in terms of γID(G)\gamma^{ID}(G) and the (total) domination number of HH. Finally, we compute γID(H⊙G)\gamma^{ID}(H\odot G) for some special graphs GG

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by G∘HG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of G∘HG \circ H, and get upper and lower bounds of λ3(G∘H)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    Generalized (edge-)connectivity of join, corona and cluster graphs

    Get PDF
    The generalized k k -connectivity κk(G) \kappa_k(G) of a graph G G , introduced by Hager in 1985, is a natural generalization of the classical connectivity. As a natural counterpart, Li et al. proposed the concept of generalized k k -edge-connectivity λk(G) \lambda_k(G) . In this paper, we obtain exact values or sharp upper and lower bounds of κk(G) \kappa_k(G) and λk(G) \lambda_k(G) for join, corona and cluster graphs

    Identifying Codes and Domination in the Product of Graphs

    Get PDF
    An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code in a graph GG is denoted \gid(G). We consider identifying codes of the direct product Kn×KmK_n \times K_m. In particular, we answer a question of Klav\v{z}ar and show the exact value of \gid(K_n \times K_m). It was recently shown by Gravier, Moncel and Semri that for the Cartesian product of two same-sized cliques \gid(K_n \Box K_n) = \lfloor{\frac{3n}{2}\rfloor}. Letting m≥n≥2m \ge n \ge 2 be any integers, we show that \IDCODE(K_n \cartprod K_m) = \max\{2m-n, m + \lfloor n/2 \rfloor\}. Furthermore, we improve upon the bounds for \IDCODE(G \cartprod K_m) and explore the specific case when GG is the Cartesian product of multiple cliques. Given two disjoint copies of a graph GG, denoted G1G^1 and G2G^2, and a permutation π\pi of V(G)V(G), the permutation graph πG\pi G is constructed by joining u∈V(G1)u \in V(G^1) to π(u)∈V(G2)\pi(u) \in V(G^2) for all u∈V(G1)u \in V(G^1). The graph GG is said to be a universal fixer if the domination number of πG\pi G is equal to the domination number of GG for all π\pi of V(G)V(G). In 1999 it was conjectured that the only universal fixers are the edgeless graphs. We prove the conjecture
    corecore