2,149 research outputs found

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Fostering IoT service replicability in interoperable urban ecosystems

    Get PDF
    Worldwide cities are involved in a digital transformation phase specially focused on sustainability and improving citizen's quality of life. However, such objectives are hard to achieve if the migration of the urban processes are not performed following a common approach. Under the paradigm of smart city, different Information and Communication Technologies (ICT) have been deployed over urban environments to enable such digital transformation. However, actual implementations differ from one city to another, and even between services within the same city. As a consequence, the deployment of urban services is hindered, since they need to be tailored to each city. In addition, the isolation of urban services obstructs its optimization, since it cannot harness contextual information coming from other services. All in all, it is necessary to implement tools and mechanisms that allow us to ensure that city solutions and their vertical services are interoperable. In order to tackle this issue, different initiatives have proposed architectures that homogenize the interaction with smart cities from different angles. However, so far the compliance with such architectures has not been assessed. Having this in mind, in this work we present a validation framework, developed under the umbrella of the SynchroniCity project, which aims to verify that interfaces and data exposed by cities are aligned with the adopted standards and data models. In this regard, the validation framework presented here is the technical enabler for the creation of an interoperability certi cate for smart cities. To assess the bene ts of the validation framework, we have used it to check the interoperability of 21 smart city deployments worldwide that adhered the SynchroniCity guidelines. Afterwards, during an open call a total number of 37 services have been deployed over such SynchroniCity instances, thus con rming the goodness of uniform and validated smart cities to foster service replicability.This work was supported in part by the European Union’s Horizon 2020 Programme [SynchroniCity (Delivering an IoT enabled Digital Single Market for Europe and Beyond)] under Grant 732240, and in part by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) through the project FIERCE: Future Internet Enabled Resilient smart CitiEs under Grant RTI2018-093475-AI00
    • …
    corecore