428 research outputs found

    Automatic Recognition of Tea Diseases Based on Deep Learning

    Get PDF
    With the rapid development of intelligent agriculture and precision agriculture, computer image processing technology has been widely used to solve various problems in the agricultural field. In particular, the advantages of convolutional neural networks (CNNs) in image classification have also been widely used in the automatic recognition and classification of plant diseases. In this paper, a deep convolutional neural network named LeafNet capable of recognizing the seven types of diseases from tea leaf disease images was established, with an accuracy of up to 90.23%, aiming to provide timely and accurate diagnostic services in the remote and topographic tea plantation in China. At the same time, the traditional machine learning algorithm is applied for comparative analysis, which extracts the dense scale-invariant feature transform (DSIFT) of the image and constructs the bag of visual word (BOVW) model to express the image based on the DSIFT descriptor. The support vector machines (SVMs) and multilayer perceptron (MLP) were used to identify tea leaf diseases, with an accuracy of 60.91 and 70.94%, respectively

    Numerical Modeling and Design of Machine Learning Based Paddy Leaf Disease Detection System for Agricultural Applications

    Get PDF
    In order to satisfy the insatiable need for ever more bountiful harvests on the global market, the majority of countries deploy cutting-edge technologies to increase agricultural output. Only the most cutting-edge technologies can ensure an appropriate pace of food production. Abiotic stress factors that can affect plants at any stage of development include insects, diseases, drought, nutrient deficiencies, and weeds. On the amount and quality of agricultural production, this has a minimal effect. Identification of plant diseases is therefore essential but challenging and complicated. Paddy leaves must thus be closely watched in order to assess their health and look for disease symptoms. The productivity and production of the post-harvest period are significantly impacted by these illnesses. To gauge the severity of plant disease in the past, only visual examination (bare eye observation) methods have been employed. The skill of the analyst doing this analysis is essential to the caliber of the outcomes. Due to the large growing area and need for ongoing human monitoring, visual crop inspection takes a long time. Therefore, a system is required to replace human inspection. In order to identify the kind and severity of plant disease, image processing techniques are used in agriculture. This dissertation goes into great length regarding the many ailments that may be detected in rice fields using image processing. Identification and classification of the four rice plant diseases bacterial blight, sheath rot, blast, and brown spot are important to enhance yield. The other communicable diseases, such as stem rot, leaf scald, red stripe, and false smut, are not discussed in this paper. Despite the increased accuracy they offer, the categorization and optimization strategies utilized in this work lead it to take longer than typical to finish. It was evident that employing SVM techniques enabled superior performance results, but at a cost of substantial effort. K-means clustering is used in this paper segmentation process, which makes figuring out the cluster size, or K-value, more challenging. This clustering method operates best when used with images that are comparable in size and brightness. However, when the images have complicated sizes and intensity values, clustering is not particularly effective

    Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive Review

    Full text link
    Jamun leaf diseases pose a significant threat to agricultural productivity, negatively impacting both yield and quality in the jamun industry. The advent of machine learning has opened up new avenues for tackling these diseases effectively. Early detection and diagnosis are essential for successful crop management. While no automated systems have yet been developed specifically for jamun leaf disease detection, various automated systems have been implemented for similar types of disease detection using image processing techniques. This paper presents a comprehensive review of machine learning methodologies employed for diagnosing plant leaf diseases through image classification, which can be adapted for jamun leaf disease detection. It meticulously assesses the strengths and limitations of various Vision Transformer models, including Transfer learning model and vision transformer (TLMViT), SLViT, SE-ViT, IterationViT, Tiny-LeViT, IEM-ViT, GreenViT, and PMViT. Additionally, the paper reviews models such as Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet)-50V2, EfficientNet, Ensemble model, Convolutional Neural Network (CNN), and Locally Reversible Transformer. These machine-learning models have been evaluated on various datasets, demonstrating their real-world applicability. This review not only sheds light on current advancements in the field but also provides valuable insights for future research directions in machine learning-based jamun leaf disease detection and classification

    Machine Learning for Leaf Disease Classification: Data, Techniques and Applications

    Full text link
    The growing demand for sustainable development brings a series of information technologies to help agriculture production. Especially, the emergence of machine learning applications, a branch of artificial intelligence, has shown multiple breakthroughs which can enhance and revolutionize plant pathology approaches. In recent years, machine learning has been adopted for leaf disease classification in both academic research and industrial applications. Therefore, it is enormously beneficial for researchers, engineers, managers, and entrepreneurs to have a comprehensive view about the recent development of machine learning technologies and applications for leaf disease detection. This study will provide a survey in different aspects of the topic including data, techniques, and applications. The paper will start with publicly available datasets. After that, we summarize common machine learning techniques, including traditional (shallow) learning, deep learning, and augmented learning. Finally, we discuss related applications. This paper would provide useful resources for future study and application of machine learning for smart agriculture in general and leaf disease classification in particular

    A Review on Advances in Automated Plant Disease Detection

    Get PDF
    Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images

    Resnet-Based Approach For Detection And Classification Of Plant Leaf Diseases

    Get PDF
    Plant diseases may cause large yield losses, endangering both the stability of the economy and the supply of food. Convolutional Neural Networks (CNNs), in particular, are deep neural networks that have shown remarkable effectiveness in completing image categorization tasks, often outperforming human ability. It has numerous applications in voice processing, picture and video processing, and natural language processing (NLP). It has also grown into a centre for research on plant protection in agriculture, including the assessment of pest ranges and the diagnosis of plant diseases. In two plant phenotyping tasks, the function of a CNN (Convolutional Neural Networks) structure based on Residual Networks (ResNet) is investigated in this study. The majority of current studies on Species Recognition (SR) and plant infection detection have used balanced datasets for accuracy and experimentation as the evaluation criteria. This study, however, made use of an unbalanced dataset with an uneven number of pictures, organised the data into several test cases and classes, conducted data augmentation to improve accuracy, and—most importantly—used multiclass classifier assessment settings that were helpful for an asymmetric class distribution. Furthermore with all these frequent issues, the paper addresses selecting the size of the data collection, classifier depth, necessary training time, and assessing the efficacy of the classifier when using various test scenarios. The Species Recognising (SR) and Identifying of Health and Infection Leaves (IHIL) tasks in this study have shown substantial improvement in performance for the ResNet 20 (V2) architecture, with Precision of 91.84% & 84.00%, Recall of 91.67% and 83.14%, and F1 scores of 91.49% & 83.19%, respectively. &nbsp

    A Framework for Crop Disease Detection Using Feature Fusion Method

    Get PDF
    Crop disease detection methods vary from traditional machine learning, which uses Hand-Crafted Features (HCF) to the current deep learning techniques that utilize deep features. In this study, a hybrid framework is designed for crop disease detection using feature fusion. Convolutional Neural Network (CNN) is used for high level features that are fused with HCF. Cepstral coefficients of RGB images are presented as one of the features along with the other popular HCF. The proposed hybrid model is tested on the whole leaf images and also on the image patches which have individual lesions. The experimental results give an enhanced performance with a classification accuracy of 99.93% for the whole leaf images and 99.74% for the images with individual lesions. The proposed model also shows a significant improvement in comparison to the state-of-art techniques. The improved results show the prominence of feature fusion and establish cepstral coefficients as a pertinent feature for crop disease detection

    Detecting and monitoring the development stages of wild flowers and plants using computer vision: approaches, challenges and opportunities

    Get PDF
    Wild flowers and plants play an important role in protecting biodiversity and providing various ecosystem services. However, some of them are endangered or threatened and are entitled to preservation and protection. This study represents a first step to develop a computer vision system and a supporting mobile app for detecting and monitoring the development stages of wild flowers and plants, aiming to contribute to their preservation. It first introduces the related concepts. Then, surveys related work and categorizes existing solutions presenting their key features, strengths, and limitations. The most promising solutions and techniques are identified. Insights on open issues and research directions in the topic are also provided. This paper paves the way to a wider adoption of recent results in computer vision techniques in this field and for the proposal of a mobile application that uses YOLO convolutional neural networks to detect the stages of development of wild flowers and plants
    corecore