2,226 research outputs found

    CEAI: CCM based Email Authorship Identification Model

    Full text link
    In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based content features. It is observed that the use of such features in the authorship identification process has a positive impact on the accuracy of the authorship identification task. We performed experiments to justify our arguments and compared the results with other base line models. Experimental results reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25 authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5% accuracy has been achieved on authors' constructed real email dataset. The results on Enron dataset have been achieved on quite a large number of authors as compared to the models proposed by Iqbal et al. [1, 2]

    "May I borrow Your Filter?" Exchanging Filters to Combat Spam in a Community

    Get PDF
    Leveraging social networks in computer systems can be effective in dealing with a number of trust and security issues. Spam is one such issue where the "wisdom of crowds" can be harnessed by mining the collective knowledge of ordinary individuals. In this paper, we present a mechanism through which members of a virtual community can exchange information to combat spam. Previous attempts at collaborative spam filtering have concentrated on digest-based indexing techniques to share digests or fingerprints of emails that are known to be spam. We take a different approach and allow users to share their spam filters instead, thus dramatically reducing the amount of traffic generated in the network. The resultant diversity in the filters and cooperation in a community allows it to respond to spam in an autonomic fashion. As a test case for exchanging filters we use the popular SpamAssassin spam filtering software and show that exchanging spam filters provides an alternative method to improve spam filtering performance

    BlogForever: D2.5 Weblog Spam Filtering Report and Associated Methodology

    Get PDF
    This report is written as a first attempt to define the BlogForever spam detection strategy. It comprises a survey of weblog spam technology and approaches to their detection. While the report was written to help identify possible approaches to spam detection as a component within the BlogForver software, the discussion has been extended to include observations related to the historical, social and practical value of spam, and proposals of other ways of dealing with spam within the repository without necessarily removing them. It contains a general overview of spam types, ready-made anti-spam APIs available for weblogs, possible methods that have been suggested for preventing the introduction of spam into a blog, and research related to spam focusing on those that appear in the weblog context, concluding in a proposal for a spam detection workflow that might form the basis for the spam detection component of the BlogForever software

    Detecting spam relays by SMTP traffic characteristics using an autonomous detection system

    Get PDF
    Spam emails are flooding the Internet. Research to prevent spam is an ongoing concern. SMTP traffic was collected from different sources in real networks and analyzed to determine the difference regarding SMTP traffic characteristics of legitimate email clients, legitimate email servers and spam relays. It is found that SMTP traffic from legitimate sites and non-legitimate sites are different and could be distinguished from each other. Some methods, which are based on analyzing SMTP traffic characteristics, were purposed to identify spam relays in the network in this thesis. An autonomous combination system, in which machine learning technologies were employed, was developed to identify spam relays in this thesis. This system identifies spam relays in real time before spam emails get to an end user by using SMTP traffic characteristics never involving email real content. A series of tests were conducted to evaluate the performance of this system. And results show that the system can identify spam relays with a high spam relay detection rate and an acceptable ratio of false positive errors

    Survey of the Use of Steganography over the Internet

    Get PDF
    This paper addressesthe use of Steganography over the Internet by terrorists. There were ru-mors in the newspapers that Steganography is being used to covert communication between terrorists, without presenting any scientific proof. Niels Provos and Peter Honeyman conducted an extensive Internet search where they analyzed over 2 million images and didn’t find a single hidden image. After this study the scientific community was divided: some believed that Niels Provos and Peter Honeyman was conclusive enough other did not. This paper describes what Steganography is and what can be used for, various Steganography techniques and also presents the studies made regarding the use of Steganography on the Internet.Steganography, Secret Communication, Information Hiding, Cryptography

    Collaborative intelligent email ranking system

    Full text link
    Email has become one of the most powerful communication tools today. It is has widely proliferated in both business and personal use. It allows for fast communication between multiple parties that can be easily understood by even the most novice user, and allows for advanced transfer of data for power users. Even with that, it is one of the most abused systems on the Internet. Email systems have allowed for widespread distribution of the worst viruses on the Internet, causing billions of dollars in damage. Most of the technologies that have been deployed to prevent these types of attacks have been thwarted; A new email protocol is required to implement accreditation, authentication and reputation to overcome these issues. This new system is a combination of currently accepted systems, along with additions to make them more effective as a whole. This new system is called Collaborative Intelligent Email Ranking System (CIERS)
    • 

    corecore